SEMI-GROUP METHODS IN STOCHASTIC CONTROL

A. BENSOUSSAN

Department of Mathematics, Université Paris Dauphine, Paris, and I.N.R.I.A., Le Chesney, France

INTRODUCTION

We present in this paper some stochastic control problems, which are formulated in terms of semi-groups.

Actually we have two things in mind. On the one hand, the dynamic system is represented by a Markov semi-group for which we formulate several control problems. On the other hand, we consider non-linear semi-groups which are themselves derived from stochastic control.

This second idea has been introduced by M. Nisio [9] (see also S. R. Pliska [10] and J. Zabczyk [12]). In [2], [3] A. Bensoussan considered a semi-group approach to variational inequalities and quasi variational inequalities (or to stopping time and impulse control problems) where purely analytic techniques were used (see A. Bensoussan-J.-L. Lions [4] and M. Robin [11] for earlier work, using partly probabilistic and partly analytic techniques). In [6], A. Bensoussan and M. Robin used discretization to study the same problems. In [5], A. Bensoussan and J.-L. Lions considered non linear semi-groups corresponding to stopping time and impulse control problems. This was motivated by an earlier work of L. Barthelemy [1] (see also J. Zabczyk [12]).

The objective of this article is to review the main results obtained by the author (himself or in cooperation with J.-L. Lions or M. Robin) on these semi-group methods.

1. THE PROBLEM OF SEMI-GROUP ENVELOPE

1.1. Setting the problem and assumptions

Let E be a Polish space provided with the Borel σ -algebra \mathscr{E} . We denote by B the space of Borel bounded functions on E, and by C the space of bounded uniformly continuous functions on E. We consider a family

 $\Phi^{v}(t), v \in V$, of operators such that:

A semi-group of operators on B satisfying (1.2) is called a Markov semi-group.

We will assume that

$$\Phi^{v}(t) \colon C \to C,$$

(1.4) $t \to \Phi^v(t)\varphi(x)$ is continuous from $(0, \infty) \to R \ \forall x \text{ fixed } \forall \varphi \in C$. Next let L(x, v) be a function such that

(1.5)
$$L_{v}(x) \equiv L(x, v) \in B,$$

$$\int_{0}^{\infty} e^{-\alpha t} \Phi^{v}(t) L_{v} dt \in C,$$

where a is a positive number.

The first problem we formulate is the following. Consider the set

(1.6)
$$u \in B,$$

$$u \leq \int_{0}^{t} e^{-as} \Phi^{v}(s) L_{v} ds + e^{-at} \Phi^{v}(t) u \quad \forall t \geq 0 \ \forall v.$$

We have the following

THEOREM 1.1. We assume $(1.1), \ldots, (1.5)$; then the set of u satisfying (1.6) is not empty and has a maximum element.

To prove Theorem 1.1 one relies on the following discretization scheme. Let h > 0; one considers u_h to be the unique solution of

(1.7)
$$u_h = \min_{v} \left[\int_{0}^{h} e^{-as} \Phi^{v}(s) L_v ds + e^{-ah} \Phi^{v}(h) u_h \right], \quad u_h \in C.$$

Then one proves that

$$(1.8) u_{1/2}q \downarrow u as q \uparrow \infty,$$

where u is the maximum element of (1.6). For details see A. Bensoussan-M. Robin [6].

1.2. Regularity results

We now assume the following regularity properties:

$$(1.9) E is a Banach space,$$

$$(1.10) |L(x, v) - L(y, v)| \leq K|x - y|^{\delta}, 0 \leq \delta \leq 1,$$

(1.11)
$$\forall g \in C^{0,\delta}(E) \text{ (i.e., } |g(x) - g(y)| \leq ||g||_{\delta} |x - y|^{\delta}),$$

we have

$$|\Phi^{v}(t)g(x) - \Phi^{v}(t)g(y)| \leqslant e^{\lambda t} ||g||_{\delta} |x - y|^{\delta},$$

with $\lambda \geqslant 0$,

(1.12) $t \rightarrow \Phi^{v}(t) \varphi(x)$ is (Lebesgue) measurable from $(0, \infty)$ into R $\forall \varphi \in B \ \forall x \text{ fixed.}$

We can then state the following

THEOREM 1.2. We make the assumptions of Theorem 1.1 and (1.9), (1.10), (1.11), (1.12). Then the maximum element u of (1.6) belongs to C and $u_{1/2}$ converges to u uniformly on every compact subset of E.

An intermediary result, used in the proof of Theorem 1.2, is that if $a > \lambda$ then actually $u \in C^{0,\delta}(E)$.

1.3. Probabilistic interpretation

We give here the interpretation of the maximum element of the set (1.6). We assume

$$\Phi(t)1 = 1.$$

Consider $\Omega = E^{(0,\infty)}$, $x(t,\omega)$ to be the canonical process, $M_t^s = \sigma(x(\lambda), t \leq \lambda \leq s)$, $M_t = M_t^{\infty}$. For simplicity we take $V = \{1, 2, ..., m\}$. With $i \in V$ we associate a probability P_i^{xt} on (Ω, M_t) such that

$$(1.14) E_i^{xt}\varphi(x(s)) = \Phi^i(s-t)\varphi(x) \forall s \geqslant t.$$

We denote by W the class of step processes adapted to M_0^t with values in V. More precisely, if $w \in W$, then there exists a sequence

$$\tau_0 = 0 < \tau_1 < \ldots < \tau_n < \ldots$$

which is deterministic, increasing and convergent to $+\infty$, and

$$(1.15) w \equiv v(\cdot), v(t, \omega) = v_n(\omega), t \in [\tau_n, \tau_{n+1}),$$

where v_n is $M_0^{\tau_n}$ measurable with values in V.

Then one can construct a probability P_w^x (for given x in E and w in W) on (Ω, M_0) such that the following property holds:

(1.16)

$$E_w^x[\varphi(x(t))|M_0^{\tau_n}] = \Phi^{v_n}(t-\tau_n)\varphi(x(\tau_n)) \quad \forall \varphi \in B \text{ and } \tau_n \leqslant t < \tau_{n+1}.$$

Next one defines the functional

$$J^{x}(w) = E_{w}^{x} \int_{0}^{\infty} e^{-at} L(x(t), v(t)) dt.$$

Set

$$(1.18) W_h = \{ w \in W | \tau_n = nh \}.$$

We can state

THEOREM 1.3. We make the assumptions of Theorem 1.1 and (1.13). (Then u_h , which is the unique solution of (1.7), satisfies

$$u_h(x) = \min_{w \in W_h} J^x(w).$$

Moreover

$$u(x) = \inf_{w \in \bigcup_{q} W_{1/2}^q} J^x(w).$$

2. THE STOPPING TIME PROBLEM

2.1. Setting the problem

Let (E, \mathcal{E}) and B, C be as in § 1.1. We consider a Markov semi-group on $B, \Phi(t)$ (i.e., cf. (1.2)),

$$egin{align} arPhi(t) \in \mathscr{L}(B,B), & arPhi(0) = I, & \|arPhi(t)\| \leqslant 1, \ & \Phi(t+s) = \Phi(t)\Phi(s), \ & \Phi(t)arphi \geqslant 0 & ext{if} & arphi \geqslant 0. \ \end{matrix}$$

We will assume that

(2.1) $t \rightarrow \Phi(t)\varphi(x)$ is continuous from $(0, \infty) \rightarrow R \forall x \text{ fixed } \forall \varphi \in B$.

Let also

$$(2.3) \varphi \in B,$$

(2.4)

 $L \in B$ such that $t \rightarrow \Phi(t)L(x)$ is (Lebesgue) measurable $\forall x$ fixed.

Alternatively, if we make some regularity assumptions on ψ , L, namely

(2.5)
$$\varphi \in C, \quad \int_{0}^{\infty} e^{-at} \Phi(t) L dt \in C,$$

then we use a weaker form of (2.2), namely

$$(2.6) \Phi(t): C \to C \forall t > 0,$$

(2.7) $t \rightarrow \Phi(t) \varphi(x)$ is continuous from $(0, \infty) \rightarrow \mathbb{R}$ $\forall x \text{ fixed } \forall \varphi \in \mathbb{C}$.

We define the following problem. Consider the set of functions

$$(2.8) u \in B, u \leq \psi,$$

$$u \leq \int_{0}^{t} e^{-as} \Phi(s) L ds + e^{-at} \Phi(t) u \forall t \geq 0;$$

then we have

THEOREM 2.1. We assume (2.1), (2.2), (2.3), (2.4) or (2.1), (2.5), (2.6), (2.7); then the set of functions satisfying (2.8) is not empty and has a maximum element.

2.2. Approximation schemes

There are two methods to prove Theorem 2.1, which are approximation methods of different kinds. One can use the penalty method:

(2.9)
$$u_{\bullet} = \int_{0}^{\infty} e^{-at} \Phi(t) \left[L - \frac{1}{\varepsilon} (u_{\bullet} - \psi)^{+} \right] dt, \quad u_{\bullet} \in B,$$

or the discretization method:

(2.10)
$$u_h = \min \left[\psi, \int_0^h e^{-at} \Phi(t) dt + e^{-ah} \Phi(h) u_h \right], \quad u_h \in B.$$

We can also obtain the continuity of the maximum element of (2.8) and the uniform convergence of u_s , u_h towards u under slightly more stringent assumptions. We assume that $\Phi(t)$ satisfies (2.1), (2.6) and

(2.11)
$$t \rightarrow \Phi(t)\varphi$$
 is continuous from $[0, \infty)$ into $C \quad \forall \varphi \in C$.

We also assume (2.5) for the data; we then have

THEOREM 2.2. We assume (2.1), (2.6), (2.11), (2.5). Then the maximum element of (2.8) belongs to C and we have

$$u_{\bullet} \rightarrow u$$
 in C , as $\epsilon \rightarrow 0$, $u_h \rightarrow u$ in C , as $h \rightarrow 0$.

For details, we refer to A. Bensoussan [3], and A. Bensoussan-M. Robin [6].

2.3. Probabilistic interpretation

We give the probabilistic interpretation of the maximum element u of (2.8) (under the assumptions of Theorem 2.1). Consider Ω , M_0 defined in § 1.3. For any fixed x in E, we construct P^x on (Ω, M_0) such that

$$(2.12) E^x \varphi(x(t)) = \Phi(t) \varphi(x) \forall \varphi \in B.$$

Let θ be a M^t stopping time; we define

(2.13)
$$J^{x}(\theta) = E^{x} \left[\int_{0}^{\theta} e^{-at} L(x(t)) dt + e^{-a\theta} \psi(x(\theta)) \right].$$

Consider stopping times of the form

$$\theta = \nu h,$$

where ν is a random integer such that $\{\nu = n\} \subset M^{nh} \ \forall n$. We denote by Θ_h the set of stopping times satisfying (2.14). We have

THEOREM 2.3. We make the assumptions of Theorem 2.1; then one has

$$u_h(x) = \min_{\theta \in \Theta_h} J^x(\theta)$$

and

(2.16)
$$u(x) = \inf_{\theta \in \bigcup_{\alpha} \Theta_{1/2}q} J^{x}(\theta).$$

In the case of Theorem 2.2, one can prove the following

THEOREM 2.4. We make the assumptions of Theorem 2.2. Then u satisfies

(2.17)
$$u(x) = \min_{\theta} J^{x}(\theta).$$

The probabilistic set-up for Theorem 2.4 to hold true is actually slightly different from that of Theorem 2.3. One assumes that:

$$(2.18) E, & is a semi compact,$$

(2.19)
$$t \rightarrow \Phi(t) \varphi$$
 is continuous from $[0, \infty)$ into $\hat{C} \quad \forall \varphi \in \hat{C}$,

where

$$\hat{C} = \{ \varphi \in C | \ \forall \varepsilon \, \exists K_{\varepsilon} \, \text{compact such that} \, |\varphi(x)| < \varepsilon \ \forall x \notin K_{\varepsilon} \} \,.$$

Then one takes

$$\Omega = D([0, \infty); E), \quad x(t; \omega) \equiv \omega(t),$$
 $M_0 = \sigma(x(t); t \ge 0), \quad M^t = \sigma(x(s), s \le t),$

and by the general theory of Markov processes (cf. E. B. Dynkin [8]), there exists a unique probability P^x on Ω , M_0 such that if we consider

$$\overline{M}^{t} = M^{t+0} \text{ completed,}$$

$$\overline{M}_{0} = M_{0} \text{ completed,}$$

then $(\Omega, \overline{M}_0, P^x, \overline{M}^t, x(t))$ is a strong Markov process right continuous and quasi continuous from the left. This set-up permits us to obtain (2.17).

3. IMPLICIT OBSTACLES

We assume that $\Phi(t)$ satisfies (2.1), (2.6), (2.11) and

(3.1)
$$L \in B, \quad \int_{0}^{\infty} e^{-at} \Phi(t) L dt \in C, \quad L \geqslant 0.$$

Also, let M be an operator such that

(3.2) $M: C \to C$ is Lipschitz, concave and monotone increasing (i.e., $M\varphi_1 \leqslant M\varphi_2$ if $\varphi_1 \leqslant \varphi_2$), $M(0) \geqslant k > 0$.

We consider the set of functions

(3.3)
$$u \in C, \quad u \leq Mu,$$

$$u \leq \int_{0}^{t} e^{-as} \Phi(s) L \, ds + e^{-at} \Phi(t) u.$$

Then we have

THEOREM 3.1. We assume (2.1), (2.6), (2.11) and (3.1), (3.2). Then the set of functions u satisfying (3.3) is not empty and has a maximum element.

One can approximate (3.3) by using the following discretization scheme:

(3.4)
$$u_h = \min[Mu_h, \int_0^h e^{-at} \Phi(t) L dt + e^{-ah} \Phi(h) u_h], \quad u_h \in C.$$

In particular, one can prove

$$u_h \to u \quad \text{in} \quad C.$$

4. NON-LINEAR SEMI-GROUP

4.1. Assumptions - The equation

In this section we assume that $\Phi(t)$ satisfies (2.1), (2.6) and

$$(4.1) \quad \sup_{0 \leq s \leq T} \| \varPhi(t) \varphi(s) - \varphi(s) \|_{C} \to 0, \quad \text{as} \quad t \downarrow 0 \quad \forall \varphi \in C(0, T, C),$$

4.2)
$$\forall L \in B$$
, $t \to \Phi(t)L(x)$ is (Lebesgue) measurable $\forall x \in E$,
$$\int_{0}^{\infty} e^{-at} \Phi(t)L \ dt \in C, \quad a \geqslant 0,$$

$$(4.3) \quad \overline{u} \in C.$$

We first consider the problem

$$(4.4) \qquad u(\cdot) \in C([0,T];C), \qquad u(0) = \overline{u},$$

$$u(t) = \int_{0}^{t-s} e^{-a\sigma} \Phi(\sigma) L \, d\sigma + e^{-a(t-s)} \Phi(t-s) u(s) \qquad \forall s \leqslant t \in [0,T].$$

It is easy to check that (4.4) admits one and only one solution, namely:

(4.5)
$$u(t) = \int_{0}^{t} e^{-a\sigma} \Phi(\sigma) L \, d\sigma + e^{-at} \Phi(t) \overline{u}.$$

Then we set

$$(4.6) u(t) = T(t) \overline{u},$$

and T(t) is a non-linear (in fact affine) semi-group of contractions on C. An interesting problem is to prove Trotter's formula, (cf. M. G. Crandall-T. M. Liggett [7]). One considers for $\lambda > 0$

(4.7)
$$R_{\lambda}(\overline{u}) = \int_{0}^{\infty} e^{-(1/\lambda + a)t} \Phi(t) (\overline{u}/\lambda + L) dt.$$

Then we have

THEOREM 4.1. We assume (2.1), (2.6), (4.1), (4.2), (4.3); then one has

$$(4.8) \forall t > 0, R_{l/n}^n(\overline{u}) \to T(t) \overline{u} in C as n \to \infty.$$

4.2. Evolution inequalities

We now consider a function $\psi(t)$ such that

$$\begin{aligned} \psi \in C([0\,,\,T]\,;\,C)\,,\\ \overline{u} \leqslant \psi(0)\,. \end{aligned}$$

We set the following problem:

$$\begin{array}{ll} u(\cdot) \in C([0\,,\,T];\,C), & u(0) = u\,,\\ \\ (4.10) & u(t) \leqslant \psi(t) & \forall t \in [0\,,\,T],\\ \\ u(t) \leqslant \int\limits_0^{t-s} e^{-\alpha\sigma} \varPhi(\sigma) L\,d\sigma + e^{-\alpha(t-s)} \varPhi(t-s) u(s) & \forall s \leqslant t \in [0\,,\,T]. \end{array}$$

One has

THEOREM 4.2. We make the same assumptions as in Theorem 4.1, and (4.9). Then the set of functions satisfying (4.10) is not empty and has a maximum element.

If we consider next the case where $\psi(t)$ is constant,

and denote by $u(t) = S(t)\overline{u}$ the maximum solution of (4.10), then S(t) defines a non linear semi-group of contractions on

$$\mathscr{C} = \{ \overline{u} \in C | \overline{u} \leqslant \psi \}.$$

Moreover,

$$S(t)\overline{u} \rightarrow \overline{u}$$
 in C , as $t \downarrow 0$.

One then states Trotter's formula for this non-linear semi-group. We have to define the equivalent of the resolvent (as in (4.7)). This is done as follows. We write

$$(4.12) R_1(\overline{u}) = z_1,$$

where z_{λ} is the maximum element of the set

(4.13)
$$z \leq \psi, \quad z \in C,$$

$$z \leq \int_{0}^{t} e^{-(\alpha+1/\lambda)s} \Phi(s) \left(L + \overline{u}/\lambda\right) ds + e^{-(\alpha+1/\lambda)t} \Phi(t) z.$$

Then we obtain

THEOREM 4.3. We assume (2.1), (2.6), (4.2), (4.3), (4.11). Then the following property holds:

$$(4.14) \quad \forall t > 0 \qquad R_{t/n}^n(\overline{u}) \to S(t) \, \overline{u} \qquad in \qquad C, \qquad \forall \overline{u} \in \mathscr{C}, \quad as \quad n \to \infty.$$

In the proof of Theorem 4.3 an important role is played by the penalized semi-group. Define $u_{\epsilon}(t)$ as the solution of

$$(4.15) \quad u_{\bullet}(t) = e^{-at} \Phi(t) \, \overline{u} + \int_{0}^{t} e^{-a(t-\lambda)} \Phi(t-\lambda) \left[L - \frac{1}{\varepsilon} \left(u_{\bullet}(\lambda) - \psi \right)^{+} \right] d\lambda;$$

then

$$u_s(t) = S_s(t) \overline{u}$$
.

With this penalized non-linear semi-group one associates the resolvent $R_{\lambda,s}(\overline{u}) = z_s$, defined as the solution of

(4.16)
$$z_{s} = \int_{0}^{\infty} e^{-(\alpha+1/\lambda)t} \Phi(t) \left(L + \overline{u}/\lambda - \frac{1}{\varepsilon} (z_{s} - \psi)^{+} \right) dt.$$

The proof of Theorem 4.3 consists in obtaining a priori estimates, among them the following uniform estimate:

$$||R_{t/n,\epsilon}^n \overline{u} - S_{\bullet}(t) \overline{u}|| \leqslant 2K \frac{t}{\sqrt{n}},$$

where K is a constant which does not depend on ε or t. For details see A. Bensoussan-J.-L. Lions [5].

4.3. Case of implicit obstacles

In this section we assume that $\Phi(t)$ satisfies (2.1), (2.6), (2.11) and we also assume (3.1), (3.2). Also, let \overline{u} be such that

$$(4.18) \bar{u} \in C, \quad \bar{u} \geqslant 0, \quad \bar{u} \leqslant M\bar{u}.$$

One considers the following problem:

$$u(\cdot) \in C([0,T];C), \quad u(0) = \overline{u},$$

$$(4.19) \quad u(t) \leqslant Mu(t) \quad \forall t \in [0,T],$$

$$u(t) \leqslant \int_{0}^{t-s} e^{-a\sigma} \Phi(\sigma) L \, d\sigma + e^{-a(t-s)} \Phi(t-s) u(s) \quad \forall s \leqslant t \in [0,T].$$

One obtains the following

THEOREM 4.4. We assume (2.1), (2.6), (2.11) and (3.1), (3.2), (4.18). Then the set of functions u satisfying (4.19) is not empty and has a maximum element. If we set

$$u(t) = S(t)\overline{u}$$

then S(t) is a non-linear semi-group of contractions on

$$\mathscr{C} = \{ \overline{u} \in C | \overline{u} \geqslant 0, \overline{u} \leqslant M\overline{u} \}.$$

One also can prove Trotter's formula, but only for \overline{u} from a subset of \mathscr{C} . We define the resolvent $R_{\lambda}(\overline{u}): C \to C$ by setting

$$(4.20) z \leq Mz, z \in C,$$

$$z \leq \int_{0}^{t} e^{-(\alpha+1/\lambda)s} \Phi(s) (L + \overline{u}/\lambda) ds + e^{-(\alpha+1/\lambda)t} \Phi(t) z,$$

and $z_{\lambda}=R_{\lambda}(\overline{u})$ is the maximum element of (4.20). One can then prove the following

THEOREM 4.5. We make the assumptions of Theorem 4.4 Then one has

$$\forall t > 0, \quad R_{t/n}^{n}(\overline{u}) \rightarrow S(t) \overline{u}$$

for any \overline{u} such that $\overline{u} \in \mathscr{C}$ and

$$\overline{u} \leqslant \int\limits_0^t e^{-a\sigma} \Phi(\sigma) L \ d\sigma + e^{-at} \Phi(t) \overline{u} \quad \forall t \geqslant 0.$$

In proving Theorem 4.5 one uses the following approximation:

$$u_{s}(t) = e^{-at}\Phi(t)\overline{u} + \int_{0}^{t} e^{-a(t-s)}\Phi(t-s)\left[L - \frac{1}{\varepsilon}\left(u_{s}(s) - Mu_{s}(s)\right)^{+}\right]ds,$$

$$u_{s}(t) = S_{s}(t)\overline{u}.$$

For related results, see L. Barthelemy [1].

References

- [1] L. Barthelemy, Application de la théorie des semi-groupes non linéaires dans L^{∞} à l'étude d'une classe d'inéquations quasi variationnelles, Thèse de 3ème cycle, Université de Franche-Comté, Besançon 1980.
- [2] A. Bensoussan, Optimal impulsive control theory, in: Stochastic Control Theory and Stochastic Differential Systems, Lecture Notes in Control and Information Sciences, edited by M. Kohlmann and W. Vogel, Springer-Verlag, Berlin 1979.
- [3] -, On the semi group approach to variational and quasi variational inequalities, in: Proceedings of the 1st Franco-South East Asian Conference on Math. Sciences, Singapore 1979.
- [4] A. Bensoussan, J.-L. Lions, Applications des Inéquations Variationnelles en Contrôle Stochastique, Dunod, Paris 1978.
- [5] -, -, Contrôle Impulsionnel et Inéquations Quasi-Variationnelles, Dunod, Paris, 1982.

- [6] A. Bensoussan, M. Robin, On the convergence of the discrete time dynamic programming equation for general semigroups, SIAM J. Control Optimization (20) 1982, 722-746.
- [7] M. G. Crandall, T. M. Liggett, Generation of semigroups of nonlinear transformations in general Banach spaces, Amer. J. Math. 93 (1977), 265-298.
- [8] E. B. Dynkin, Markov Processes, Springer-Verlag, Berlin 1965.
- [9] M. Nisio, On a non linear semigroup attached to stochastic optimal control, RIMS Kyoto University 13 (1976), 513-537.
- [10] S. R. Pliska, A semigroup representation of the maximum expected reward vector in continuous parameter Markov decision theory, SIAM J. Control 13, 6 (1975), 1115-1129.
- [11] M. Robin, Contrôle impulsionnel des processus de Markov, Thèse, Paris 1978.
- [12] J. Zabczyk, Semigroup methods in Stochastic Control Theory, CRM 821, Université de Montréal, 1978.