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INTRODUCTION

We present in this paper some stochastic control problems, which are
formulated in terms of semi-groups.

Actually we have two things in mind. On the one hand, the dynamic
gystem is represented by a Markov semi-group for which we formulate
several control problems. On the other hand, we consider non-linear
semi-groups which are themselves derived from stochastie control.

This second idea has been introduced by M. Nisio [9] (see also S. R.
Pliska [10] and J. Zabezyk [12]). In [2], [3] A. Bensoussan considered
a semi-group approach to variational inequalities and quasi variational
inequalities (or to stopping time and impulse control problems) where
purely analytic techniques were used (see A. Bensoussan—J.-L. Lions [4]
and M. Robin [11] for earlier work, using partly probabilistic and partly
analytic techniques). In [6], A. Bensoussan and M. Robin used discreti-
gation to study the same problems. In [5], A. Bensoussan and J.-L. Lions
considered non linear semi-groups corresponding to stopping time and
impulse control problems. This was motivated by an earlier work of
L. Barthelemy [1] (see also J. Zabcezyk [12]).

The objective of this article is to review the main results obtained
by the author (himself or in cooperation with J.-L. Lions or M. Robin)
on these semi-group methods.

1. THE PROBLEM OF SEMI-GROUP ENVELOPE

1.1. Setting the problem and assumptions

Let E be a Polish space provided with the Borel o-algebra £. We denote
by B the space of Borel bounded functions on E, and by € the space of
bounded uniformly continuous functions on E. We consider a family
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@°(t), ve V, of operators such that:

(1.1) ¥V is a finite set,
®°(t) e Z(B; B), @°(0) =1I,
(1.2) 12°MI<1,

D°(1+8) = D°(1)D°(s),
P°(Hp>0 when ¢=0.

A semi-group of operators on B satisfying (1.2) is called a Markov
semi-group.
We will agsume that

(1.3) P°(t): C—»C,

(1.4) t— ®D°(t)p(x) is continuous from (0, oo)—»>R Vx fixed Vp eC.
Next let L(z, v) be a function such that

Ly(z) = L(z,v) € B,
(1.5)

f e~ *P°(t) L, dt e C,
0

where a i8 a positive number.
The first problem we formulate is the following. Consider the set

% € B,
(1.6) !
u< [P (s)Lds+e ™ D (H)u V>0V,
0
We have the following

THEOREM 1.1. We assume (1.1), ..., (1.6); then the set of u satisfying
(1.6) <3 not empty and has a marimum olement.

To prove Theorem 1.1 onerelies on the following discretization scheme.
Let h > 0; one considers %, to be the unique solution of

h
(1.7) %, = Min [f e'“!b"-(s)L,,ds+e‘“"¢”(h)uh], u, €C.
hd 0

Then one proves that
(1.8) thpaj a8 g} oo,

where 4 is the maximum element of (1.6). For details see A. Bensoussan-
M. Robin [6].
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1.2, Regularity results

We now assume the following regularity properties:

(1.9) E is a Banach space,

(1.10) |L(z,v)—L(y,v)| < Kjg—y’, 0<d<1,
(1.11) VgeC*(B) (ie., lg(@)—g) < lglslz—3!"),
we have

18°(t) g (%) —2° (1) 9 (y)] < € Igllale —y1°,
with 2> 0,
(1.12) t1—>®P°(t)p(z) is (Lebesgue) measurable from (0, o) into R
Vo € B Vzfixed.
We can then state the following

THEOREM 1.2. We make the assumptions of Theorem 1.1 and (1.9), (1.10),
(L11), (1.12). Then the maximum element % of (1.6) belongs to C and ;e
converges to % uniformly on every compact subset of E.

An intermediary result, used in the proof of Theorem 1.2, is that if
e > 7 then actually u e C*(E).

1.3. Probabilistic interpretation

We give here the interpretation of the maximum element of the set (1.6).
We assume

(L13) D)1 =1.

Consider 2 = E!"*), #(t, w) to be the canonical process, M} = o(z(4),
t<A<s), M, = My For simplicity we take V = {1,2,...,m}. With
i€V we associate a probability P¥ on (2, M,) such that

(1.14) Fop(n(s)) = D'(s—to@) Vsxt.

We denote by W the class of step processes adapted to M| with
values in V. More precisely, if w € W, then there exists a sequence

T, =0<ny<.. <, <...
which is deterministic, increasing and convergent to 4 oo, and
(1.15) w=ov(), 2 0)=0,(0), iclr,, )
where v, is Mi» measurable with values in V.

4 — Banach Center t. 14
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Then one can construct a probability P, (for given # in ¥ and w
in W) on (82, M,) such that the following property holds:

(1.16)
B lp(x@®)| M) = O (t—7,)p(x(r,)) VeeB and 7,<t< 14,.

Next one defines the functional

(1.17) JE(w) = Ef,,j ¢ L(z(t), v(t)) dt.
Set

(1.18) W, = {weW| r, = nh}.
We can state

THEOREM 1.3. We make the assumptions of Theorem 1.1 and (1.13).
(Then uy, which 8 the unique solution of (1.7), satisfies

(1.19) u,(x) = Min J*(w).
weW),
Moreover
(1.20) u(zx) = Inf J%(w).
wed Wi

2. THE STOPPING TIME PROBLEM
2.1. Setting the problem

Let (E,#) and B, C be as in §1.1. We consider a Markov semi-group
on B, @(1) (i.e., cf. (1.2)),
¢(t)€3’(B,B), ¢(O) =I, "¢(t)”<11
(2.1) D(t+8) = P(1)P(s),
Pte=0 if @=0.

We will assume that

(2.1) t—->®(t)g(x) is continuous from (0, cc)—>R Vzfixed Vo e B.
Let also
(2.3) y€ B,
(2.4)
L e B such that t—®(t)L(x) is (Lebesgue) measurable = Vz fixed.
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Alternatively, if we make some regularity assumptions on y, L, namely

(2.5) veC, [e“d()Ldted,

then we use a weaker form of (2.2), namely

(2.6) &(t);: C—-C Vi>0,

(2.7) t->®(t)gp(x) is continuous from (0, co)>R Vaz fixed Vp eC.
We define the following problem. Consider the set of functions

(28) w#eB, u<y,

4
u<fe-"cp(s)L dst+e d)u Vt=0;
0

then we have

THEOREM 2.1. We assume (2.1), (2.2), (2.3), (2.4) or (2.1), (2.5), (2.6),

(2.7); then the set of functions satisfying (2.8) is not empty and has a maximum
element,

2.2, Approximation schemes

There are two methods to prove Theorem 2.1, which are approximation
methods of different kinds. One can use the penalty method:

(2.9) u, =f e~ P (1) [L— 1— (u,—rp)+] dt, u,eB,
: €

or the discretization method:
r

(2.10) w, = Min[y, [ e~ D()di + e *D(h)u,], e B.

0
We can also obtain the continuity of the maximum element of (2.8)
and the uniform convergence of u,, u, towards % under slightly more
stringent assumptions. We assume that & (t) satisfies (2.1), (2.6) and
(2.11) t->®P(t)p is continuous from [0, oo) into C Ve eC.

We also assume (2.5) for the data; we then have



b2 A. BENSOUSSAN
THEOREM 2.2. We assume (2.1), (2.6), (2.11), (2.5). Then the marimum
clement of (2.8) belongs to C and we have
>4 n €, as €0,
wp—u n C, as h—0.

For details, we refer to A. Bensoussan [3], and A. Bensoussan-
M. Robin [6].

2.3. Probabilistic interpretation

We give the probabilistic interpretation of the maximum element « of
(2.8) (under the assumptions of Theorem 2.1). Consider £, M, defined
in § 1.3. For any fixed « in E, we construct P° on (£2, M,) such that

(2.12) Folzt) = o(e@) VpeB.

Let 6 be a M stopping time; we define
(2.13) J2(6) = B#[ [ e L(n(t)dt+ e~ y(2(0)].

Consider stopping times of the form
(2.14) 0 = vh,

where » is a random integer such that {» = n} ¢ M™* Vn. We denote
by O, the set of stopping times satisfying (2.14). We have

THEOREM 2.3. We make the assumptions of Theorem 2.1; then one has

(2.15) u, () = MinJ*(0)
ﬂeeh
and
(2.16) u(x) = Inf J*(0).
Oe[éellzq

In the case of Theorem 2.2, one can prove the following
THEOREM 2.4, We make the assumptions of Theorem 2.2, Then u salisfies
(2.17) %(z) = MinJ*“(0).
[}
The probabilistic set-up for Theorem 2.4 to hold true is actually
slightly different from that of Theorem 2.3. One assumes that:

(2.18) E,& is a semi compact,

(2.19) t—>®(t)g is continuous from [0, oo) into € V«pe&,
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where

¢ = {p € €| VeIEK, compact such that |p(z)| < & Va ¢ K,}.
Then one takes
C2=D(0, <) E), alt;0) =wl),
M, =o(z(t);t=0), M =oz(s),s<1),

and by the general theory of Markov processes (cf. E. B. Dynkin [8]),
there exists a unique probability P* on Q, M, such that if we consider

M' = M'*° completed,
M, = M, completed,

then (@, My, P, M*, z(t)) is a strong Markov process right continuous
and quasi continuous from the left. This set-up permits us to obtain
(2.17).

3. IMPLICIT OBSTACLES

We assume that &@(t) satisfies (2.1), (2.6), (2.11) and

(3.1) LeB, [e*“o@t)LdteC, L>0.

0

Algo, let M be an operator such that

(32) M: C—-C is Lipschitz, concave and monotone increasing
(i.e., Mp, < Mo, if p;<p;), M(0)=k>0.

We consider the set of functions

ueC u Mu
(3.3) S

)
t
° < fe'“cb(s)L ds e~ D(t)u.
0

Then we have

THEOREM 3.1. We assume (2.1), (2.6), (2.11) and (3.1), (3.2). Then the
set of functions u satisfying (3.3) ¢s not empiy and has a mazimum element.

One can approximate (3.3) by using the following discretization
scheme:

h
(34)  w, =Min[Mu,, [ e *O@t)Ldt+e"B(h)u,], %, eC.
]
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In particular, one can prove

(3.5) u,—>u in OC.

4. NON-LINEAR SEMI-GROUP

4.1. Assumptions - The equation

In this section we assume that ®(t) satisfies (2.1), (2.6) and

(4.1)  Sup [P()e(s)—o(s)ic—>0, as 10 VeeC(0,T,0),
0T

42) VLeB, t->®(1)L(z) is (Lebesgue) measurable VzeE,
[e"amLatec, a>o0,
0

(4.3) weC.
We first consider the problem

(4.4) u() e C([0,T];0), %(0) =%,

i—8

% (2) =f e Do) Ldo+e "Dt —s)u(s) Vs<tel[0,T].

It is casy to check that (4.4) admits one and only one solution, namely:

]
(4.5) u(t) = [ e~ P (o) Ldo+e " D(1)a.

0

Then we set
(4.6) u(t) = T'(t)w,

and T(t) is a non-linear (in fact affine) semi-group of contractions on C.
An interesting problem is to prove Trotter’s formula, (cf. M. G. Cran-
dall-T. M. Liggett [7]). One considers for A > 0

o0

(4.7) = [ e+ (1) (w/A+ L) dt.

0

Then we have

THEOREM 4.1. We assume (2.1), (2.6), (4.1), (4.2), (4.3); then one has

(4.8) Vi>0, Rp(@)>T)a mn C as n->oo.
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4.2. Evolution inequalities
'We now consider a function y(¢) such that

4.9) feC([O,T];C),
< y(0).

We set the following problem:

(') e C([0,T];C), u(0) =wu,
(410) v <y Vie[o,T],

{—s

fu(t)gf e P(o)Ldote 0D (t—s)u(s) Vs<te[0,T].

0

One has

THEOREM 4.2. We make the same assumplions as in Theorem 4.1, and

(4.9). Then the set of functions satisfying (4.10) i8 not empty and has a maxi-
mum element.

If we consider next the case where y(t) i8 constant,
(4.11) y,uel, u<xy,

and denote by w#(t) = S(t)% the maximum solution of (4.10), then S(t)
defines a non linear semi-group of contractions on

¢ ={uel i<y,
Morcover,
S(tyi—% in C, as t]0.
One then states Trotter’s formula for this non-linear semi-group.

We have to define the equivalent of the resolvent (as in (4.7)). This is
done as follows. We write

(4.12) R, (7) = #,
where 2z, is the maximum element of the set

2y, =z2€0,
(4.13) t
2 < [N B (s) (L+TA)ds + e~ D(1)z,
¢

Then we obtain

THEOREM 4.3. We assume (2.1), (2.6), (4.2), (4.3), (4.11). Then the
following property holds:

(414) Vi>0 Rp,(@)>S)Z in C, Vie?, a n->oo.
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In the proof of Theorem 4.3 an important role is played by the
penalized semi-group. Define u,(t) as the solution of

¢
(415) %,(1) = e D) T4 f e Np(1—2) [L—%(u,(l)—tp)'*] di;

then
u,(t) = 8,(1)%.

With this penalized non-linear semi-group obe associates the resolvent
R, .(%) = #,, defined as the solution of

(4.16) z, = f e~ H1Rt gy (4) (L +ﬁ/).—-%— (2, — y:)*)dt.

The proof of Theorem 4.3 consists in obtaining a priori estimates,
among them the following uniform estimate:

i
(4.17) IR} %—8,(0) %) < 2K —=,
Vn

where K is a constant which does not depend on ¢ or ¢t. For details see
A. Bensoussan—J.-L. Lions [5].

4.3. Case of implicit obstacles

In this section we assume that & (1) satisfies (2.1), (2.6), (2.11) and we
also assume (3.1), (3.2). Also, let % be such that

(4.18) ieC, =0, a<Ma.
One considers the following problem:

u(1) e ([0, T]; 0), wu(0) =%,
(4.19) %)< Mu(t) Vie[0,T],

-8

ut) < [ e D(o)Ldo+e " B(t—s)u(s) Vs<te[o,T].
0

One obtains the following

THEOREM 4.4. We assume (2.1), (2.6), (2.11) and (3.1), (3.2), (4.18).
Then the set of functions w satisfying (4.19) is not empty and has a marimum
element. If we set

u(t) = 8(t)%,
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then S(t) <8 a non-linear semi-group of contractions on
¢ ={meC T=0, < Mu}.
One also can prove Trotter’s formula, but only for % from
a subset of ¥. We define the resolvent R,(%): C—»C by setting

2 Mz, z2€C,
¢
2< [ e Mep(s) (L + w[A)ds + 6T D(1)z,
0

(4.20)

and z; = R,(%) is the maximum element of (4.20). One can then prove
the following

THEOREM 4.5. We make the assumptions of Theorem 4.4 Then one has
(4.21) Vt> 0, ra (@) >8 (1) %

for any % such that % €€ and
t
i< [e“D(0)Ldo+ed)T  Vi>0.
0
In proving Theorem 4.5 one uses the following approximation:

t
u,(t) = e~ P (1) T+ f e - (t —s) [L— —t- (u,(s)—Mu.(S))"] ds,

(4.22) - _
u,(t) = 8,(1)%.

For related results, see L. Barthelemy [1].
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