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1. Introduction

For solving the problem F(z) =0 in partially ordered spaces super-
linearly convergent methods are known which give a monotonous en-
closing of a zero 2* of F,

gee e.g. [1],[3], (0] and [10]. In general these methods are based on
the well-known Newton method and on related methods.
This lecture is concerned with the following special matrix problems:

(i) F(z) =a~'—a =0 (2* =a}, inverse),
(ii) Fle) =2*—a =0 (z* = a? square root),
(iii) Flo) =zxr —a=0 (z* = 1, Oholesky factor).

Of course, it is much more appropriate to derive theorems about
these concrete problemp than to apply theorems referring to the general
zero-problem. Furthermore, the original methods mostly have to be
adapted to the problem in question.

The aim of the present lecture is to review some recent results in
the mentioned matrix problems.

2. Enclosing of inverses

Let R be a complete normed ring with a unit element ¢ and let K c R
be a cone by which R is partially ordered: » < y for @, ¥ € K means that
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y—o € K. Let norm and partial ordering be connected by the monotony
condition: 0 < z <y implies |zl < |yl

An esgsential example of a ring possessing the mentioned properties
ig the set of all real (¥, N)-matrices with the natural (elementwise) or-
dering and the row sum norm.

2.1. For a giver a € R the equation
(2) Fx)=2z'—a =20

ig solved by a* = a~! if the inverse exists. Since the inverses of the Fréchet
derivative F' and of a divided difference dF of the operator ¥ are
defined by

F'(2)"'h = —ohe, OF(z,y)"'h = —yhz,
the combined Newton-secant method [12]
Tpi1 = wn_-F,(mn)_lF(wn)!

Yor1 = Yn— aF("Dnr yn)-—lF(yn)

-a

Fig. 1. Method (3) for single-valued functions (i)

applied to (2) immediately leads to the extended Schulz method

(3) Tpy1 = mn"’mn(e—amn))

Ynt1 = Oy +yn(e—a.mn).
A' first enclosing and convergence theorem concerning method (3) was
given by W. Monch [4] assuming that ¢~ > 0. Later J. W. Schmidt [7]
treated a related method under the condition a > 0. As now will be shown,
both the assumptions can be avoided.
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THEOREM 1. Suppose that

(4) o< Yoy BBy Y1< Yo
(5) €—az, > 0,
(6) xy ! exists and |le—am,| < 1.

Then the inverse of a is well-defined and the sequences produced by method
(8) emsure the monolonous enclosing

(7) By oo STy SO, SO K<Y, <Yy <100 < Y.
Furthermore they converge to a™' at least with the R-order 2.

Proof. The enclosing (7) together with e—az, >0 is verified by
induction.
To prove the propositions for » = 1 set

Ty = zy+xz(e—ax,) for zeR.
Because of (6) the operator T is contractive. Furthermore, z, << 7, holds,
and the interval [#, ;] is closed because the cone K i 80. As easily
seen, Tz e [#,, y,] is valid for @ €[x,, ;). Therefore, by Banach’s fixed-
point theorem, T has a unique fixed-point #* € [#,, ¥,]. Using (6), it
follows that z* is equal to ¢~*. Thus z, <z, < a ! < 9, < v, i8 obtained.
For the step from # to m+1 it is seen that

Ty < Tyt 0 (e—an,) =a™!
Yny1 = T+ 07 (e—ar,) = a™"
and ¢—ax,,, = (e—aw,)? > 0. Because of
Dpy1— Ty = (B — B, 1) {(6 — a2, _,) + (6 — am, )%,

yn+1 (yn Yp—1 {(e_a’wn— )‘Jf"(e_";"m - )2}

the inequalities #, < @,,, and y,,, < ¥y, are fulfilled. Hence, the enclosing
(7) is completely proved.

Finally, the convergence of (z,) and (y,) to a~! with the R-order 2
is to be verified. Using [¢—aw, | < |le—ax,|? the estimation

n
lle — az,,)l < lle — azol’®

can be established. Since ¥, — 2., = (¥, —,)(e—ax,) and e —az,| <1,
the inequalitics

27]1
10— @)l < Yo —2ell  and  Warr — Zusall < 1o — 2ol e — azqli

hold, and hence the sequence (yn @,) converges to 0 with the E-order 2.
Because of 0 <ot —2, <y,—&,, 0<Y,—a ' <y,—x, and the monot-
ony of the norm the proof of the convergence properties is complete.
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2.2. For constructing initial elements #, and y, according to
Theorem 1 condition (b) is cruecial. Therefore, the following method for
solving (2) should be preferred, because no assumption of the type
(b) is required,

Mpy1 = mn+mn(e—amn)1
(8)

Tpp1 = Ty le—amy,l.

Here, in addition, R is assumed to be a lattice where the absolute value
is defined by |#| = sup(x, —=z) for # € R. With the abbreviations

(9) By = Mp— Ty Yy = Mty
from (8) one obtains
Bpp1 = My +Tp(6—amy)t —y,(6—am,)™,
Yns1 = My +Yp(e—am,)™ —a,(6—am,)”

where £+ = sup(z, 0) and #~ = sup(—=, 0) for & € R. Now, the following
statement is valid.

THEHEOREM 2, Assume that
(10) 7y 2= 0, [y —my| < ro—7y,
(11) my ! exists and |le —am,l < 1.

Then a can be inverted and the sequences (m,) and (r,) of method (8) provide
the monotonous inclusion

(12) [y — a7 K1y K P < one S
or, using (9),

(13) N/
If, in addition,

(14) llle —am|ll <1,

the sequences (my), (x,) and (y,) converge to o= at least with the R-order 2
and (r,) converges to 0 at least with the same R-order.

A proof of Theorem 2 is given by J. W. Schmidt [9] and will not be
repeated here. For related results with regard to the simplified method

Mg p1 = m0+mn(6—'a’m0)r
(15)
Tpi1 = ¥y 6 —amyg|

see the earlier paper [8].
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Since a~' commutes with a, it is interesting that only the approxi-
mations m, commute with a if m, does so.

2.3. In the case where R is the ring of the real (¥, N)-matrices,
initial matrices can be constructed if m, is a sufficiently good appro-
ximation to a™', see [8]. For this, let ¢ be a matrix with positive el-
ements,

O,ik=(0)ik>0 fOI‘ i’k =1,|05’N,

and assume

(c—cle—amy|)y, >0 for i,k =1,...,N.

Then, a8 is immediately seen, the conditions (10) are satisfied if

18)  ro=f with £= mex APeC=mla
t,km=1,...,.N (€ — 0|6 —amy|)y

Notice that (10) is equivalent to 2, < y,, 2, < 2, and ¥, < Y,.

2.4, The method (8) is closely related to the interval method of
G. Alefeld and J. Herzberger [1]

'(17) -Xn+1 = Xnn{m (Xn) +Xn(3 —a’m(xn))}

where X, i8 an interval matrix and m(X,) the corresponding midpoint
matrix. Using the interval rules on midpoint and radius matrices, the
method without intersection

Xppr = m(X,)+X,(e—am(X,))
is seen to be a special case of (8). If
m(X,)+X,(e—am(X,)) = X, for some ¥,

with regard to Theorem 2, the intersection in method (17) can be avoided
for all n > ».

2.5. The method (15) can be extended to the case where the element
4 18 not given exactly. Now, it is only assumed that

{18) e<a<a

with known g, @ e K. Let m be an approximation to all corregponding
™' and suppose that elements b, b, h, h € R are available with

(19) 0<b<(e—am)t<b, O0<h<(e—am) <h
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for all & with (18). In this situation the method
Suis = M+ T~ 7 B—yF Btush,
&0 Ynpr = M+Yi 0=y b —afh+ar b,
which is due to J. W, Schmidt [8], has the following properties.
THEOREM 3. Assume that
(21) oS Yoy @< By Y1 Yoy
(22) m~! ewists and B 1A < 1.

Then all a with (18) are invertible and method (20) produces the monotonous
enclosing

(23) B o K 1 KT, KA Y S Ypo1 < oo < Yoy
valid for all elements a with (18).

For a proof of Theorem 3 see [8] where, in addition, the construction
(16) of initial matrices is extended to method (20).

2.6. To demonstrate method (20) let
99 99 98
a =199 98 98 , & 6e[—0.001, +0.001].
98 08+¢ 97+ 4

Set a* =lim#, and y* = limy,. Then, by method (20) one gets the
inclusion a* < a~! < y* for all matrices @ in question, where now

—108.77 ... 0.89... 87.23...
ot = 1 -1 0 ,
87.12..., —0.11 ... —-109.88...
—87.23 ... 111... 108.,77...
y* = 1 —1 0
108.88... 0.11... —88.12...

The optimal interval enclosing Z< a™' < § by means of Z= inf{a™'}
and 7§ = sup{a~'} is a little sharper because of

~108.77... 0.89...  89.17...
7 = 1 -1 0
89.08... —0.11... —109.88...
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—80.17... 111... 108.77...
g=] 1 —1 0
108.88... 0.11... —90.08...

However, here the diameter of the optimal interval || — || is considerably
greater than the loss of sharpness max {|[E — 2|, |7 —y*|}.

3. Enclosing of square roots

Let a be a real symmetric, nonnegative definite (N, N)-matrix with the
elements a;, = (a);. Then there exists a unique real symmetric, non-
negative definite matrix a'* such that

a1/2a,1,’2 = a,

and ' is called the square root of a. No finite method for computing
a* is known.

3.1. In connection with the enclosing of square roots especially two-
kinds of partial orderings are of interest. The definite ordering denoted.
by “<£” and generated by the cone of real symmetric, nonnegative defi-
nite matrices seems to be more convenient for theoretical manipulation
than the natural ordering “<(”; the first one is, however, of less numerical
utility. Now, by an important theorem of W. Burmeister [2], starting
from a given inclusion with respect to the definite ordering, it is always.
possible to construct an enclosing with respect to the natural order-
ing. The main step in this direction is the following result.

THEOREM 4. Let the matrices r > 0 and m be given. Then, the interval
of matrices relative to the definite ordering

(24) I={g:m—rZs<mitr}

18 optimally enclosed by an imterval with respect to the natural ordering
whose bounds are given by

(25) (L)-inf I =m—s, (L)-supl =m-+s
where
(26) S‘ik = l/‘i'ﬁ'rkk fO')‘ 'b., 70 = 1, cres .N.

Tor a proof of this theorem see [2]. Now, Theorem 4 immediately
leads to the announced result, see [2].

THEOREM 5. The monotone enclosing with respect to the definite ordering

(27) mn-—l < m‘n é x* { yn < yn—l
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implies the monotone inolusion relative to the nalural ordering
(28) Uy K Uy, ST* KV, < Uy
where

m, = 'L'(mn"l‘yn)’

(29)
(8n)ix =‘%}/(yn'—'mn)ii(yn_mn)kk for 4k=1,..., N
and
{30) Uy = My — 8y  Vp = My +8,.
Proof. Let

I ={x:s,<eccy,}) =& m—r,Lo<Lm,+r,}

with 7, = (y,—®,)/2. Then Theorem 4 gives (<)-infI, = %, and ()-
sup I, = »,. Since a*eI,, it follows that u, < 2*<v,, and because
of I, « I,_,, using the definition of infimum and supremum, %,_; <%,
and v, <%,_, are obtained,

3.2. It i3 well known that for a real number a > 0 the method

(31) Ynt1 = %(yn'l'a’/yn)

provides a gquadratically convergent sequence (y,) with the limit Va for
every initial value y,> 0. Furthermore, using

'(32) Ty = a’/yn!
the monotonous enclosing
(33) By s S By S By VA Y, < Ypy < oon < Y

holds.
This result can be generalized to the computation of square roots
of matrices if the definite ordering is employed, see [2].

THEOREM 6. Let a and y, be real symmetrio, positive definite malrioes
with ay, = yoa. Then the method

(34) Ty, = a’y;;-ly Y1 = %(mn_[_yn)

18 well-defined, and by the sequences (x,) and (y,) the square root a'* is
monotonously enclosed with respect to the definite ordering,

(35) Tp 1 Z0, 202y, €y, . for n2.

In addition, the sequences converge to a'* at Teast with the R-order 2.



TWO-SIDED APPROXIMATIONS OF INVERSES 491

Theorem 6, inclusive enclosing (35), is also valid for the method
without inversion

Ty = n"l"zn(a’—mfzm)’ Ynia =’yn+zn(a—yazt))

36)
Bny1 = Pt 2, (6 —22,9,.,,)

if 0 € a < ¢. But now the initial matrices have to be restricted, e.g. to
Xy = Yo = ¢ and g, = ¢/2.

With regard to Theorem 5 the definite enclosing (35) can be trans-
formed into a natural one. The new sequences (%,) and (v,) converge
to a'® likewise at least with R-order 2.

3.3. The following numerical example is taken from [2]. Let a be
the matrix with the known square root

(@) = L +2—k))"t for i,k =1,..., N,

and let the inifial matrix be y, = be. In general, due to the rounding
errors the theoretically assured commutativity of z, and y, with a and
consequently the enclosing (35) are not preserved during a larger number
of steps. Therefore the iteration (34) is stopped if the condition

(@) € Wp)y fore=1,..., N

necessary for z, €y, is violated. For N = 30 the elements in the fifth
row and first column are

n (®n)51 l {ynls1 (Un)s1 ()51

0 0.0893 ... 0.0 —_ -

1 0.1279... 0.0446 ... —1.0003 ... 1.1708 ...

2 0.1312... 0.0863 ... —0.3148 ... 0.6324 ...

3 0.1136... 0.1087... 0.0016... 0.2207 ...

4 0.11101863.., 0.1111 9731... 0.1000 1492 ... 0.1222 0103 ...
b 0.1111 1425 8912 0.1111 0797 3684 0.1100 4305 9024 0.1112 7917 3572
6 0.1111 1110 659037 0.11111111 6299 0.1111 1105 0143 | 0.1111 1117 2092

Indeed, the elements of «, and ¥, give only an approximate infor-
mation about the corresponding element of a*2. An inclusion, however,
is provided by the elements of «, and v,,.

4. Enclosing of Cholesky factors

A lower-triangular matrix 1 with positive diagonal elements is called
the Cholesky factor of a real gymmetric, positive definite matrix a if

nr = a.
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The Cholesky factor uniquely exists and can be obtained by the Cholesky
method. Here the aim is to give an error estimation for the computed
factor by means of a monotonous enclosing with respect to the natura}
ordering, at first for Stieltjes matrices and then for arbitrary matrices,

4.1. A matrix e = (a;) is defined to be an M-matrix it a, <0 for
¢ # %k and a ' > 0 relative to the natural ordering. A Stieltjes matrix
is a real symmetric M-matrix. Stieltjes matrices a are positive definite
and the corresponding Cholesky factors | are lower-triangular M-matrices
uniquely characterized by

ly>0,1,<0 fork<i (i, k=1,...,N).
Applying the Newton type method

Fy ) +F (Yn) Ynp1—¥n) =0,

37
( ) F(mn) +F’(y'n) (wn+1—mn) =0

to P(x) = xa” —a = 0 the following method is obtained:

Yn (yn+1 - yn)T + (yn-l-l - yn) y£ =a— ynyg)

(38)
Yu (wn+1 _wn)T"I_ (mn+1 - ‘vn) ylﬂ' =0&— 2,0,

Fig. 2. Method (38) for single-valued functions (iii)

From these linear equations the elements of the lower-triangular ma-
tirices ¥,,, and @, can easily be determined, e.g. row by row if (y,); 7 0
for s =1,..., N,

The following result about method (38) is due to J. W. Schmidt
and U. Patzke [13].



TWO-SIDED APPROXIMATIONS OF INVERSES 493

THEOREM 7. Let a be a Stieltjes matriz and x,, y, be lower-triangular
M-matrices such that

(39) 2027 <6< Yoys.

Then, the sequences (»,) and (y,) according to (38) are well-defined. Thoy
converge to the Cholesky factor 1 of a at least with the R-order 2 and

(4'0) m0<“'<mn~1<wn Z yn yn—lg"'g'yﬂ
holds.
The proof [13] is based on three lemmas.

Levmuva 1. Let © and y be lower-triangular M-matrices. Then
xxt < yyT implies x < y.
LEevMMA 2. Let ® be a lower-triangular M-matriz and y be a lower-tri-
angular matrizw. Then ‘
ayT +yx* >0 implies y > 0.

Levma 3. Let @ be a lower-triangular M-matriz, y be a lower-triangular
matriz and z be a symmetric matriz. Then

ay” +ya” <z y >0 implies Iyl < alkl,
where a 18 independent of y and 2. The norm i8 defined by

2]l = A% {|2lleoy ll£7lle0}
where |||, denoies the row sum norm.

Now, a sketch of a proof of Theorem 7 shall be given. At first the
enclosing (40) together with z,2% < a<y,¥y> is verified by induction.

The assumption (39) in view of Lemma 1 implies the inclusion
<1< y,.

In the step from n to n+1, because of I <y, <y, the lower-triangu-
lar matrix 7, is an M-matrix. Therefore, the two relations (38) and

YolVnir =0T + WUpp1 ~DYE = (1, — D (y,~D" >0,
Y (@np1 — DT + @y — DYE = Uy — 50 (2, — DT+ (@, = D) (@, =17 <

by means of Lemma 2 yield the inequalities ¥, ., < yn, Bpy1 22 Py Uns1 2 by

@41 < L. Pinally, the remaining inequalities ¥, Yy — & = 0, L, 05, —
—a < 0 are proved by simple estimations. Therefore (40) holds, and
because the Cholesky factor is unique, limw, = lim y, = [ i§ true. Using

z(yn+1 Zpi1) +(”/n+1 wn+1)ZT

= yn(yn+1_ n+1)T+(yn+1 _'wn+1)y£ = (yn—mn)(yn—_mn)Ti
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Lemma 3 ensures that

”yn+1—mn+1” < a”yn— 71.”2'

Hence the sequences (y,—2,) and consequently (#,) and (y,) converge
at least with the R-order 2.

4.2, The matrix

2 -1
a = [—1 2 —1 ]} N rows

is a Stieltjes matrix, and cond(a)—>oco for N-—oo.

Let
a 14
Yo = ﬁ a ’ &y = 5_ 7. .

Then 2,27 < @ < ¥oyZ holds if a?3> 2, af > —1, a> 0, $ <0 and p2+ &
<2, 96 -1, y>0, 6<0. For N =8 and for a =142, § = —-0.7,
y =1 and § = —1 the element of I, e.g, in the eighth row and column,
is enclosed by method (38) as follows, see [13]:

| (%n)as | (Yn)as

0 1 1.42

1 1.001... 1.181...

2 1.020... 1.091...

3 1.052 ... 1.062 ...

4 1.060 5019 ... 1.0680 86564 ...

& 1.060 6601 3921 1.060 4601 7180
6 1.060 6601 7178 1.080 6601 7178

A more general method for the construction of starting matrices accord-
ing to (39) is described in [13]. There it is assumed that a sufficiently
good approximation to ! is known.

4.3. Let now a be an arbitrary real symmetric, positive definite
(N, ¥)-matrix. The first equation of the iteration (38)

yny11;+l + '.’/n-f-l'yg;' =a+ ynﬁ
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leads to the following method of successive displacements approximating:
the Cholesky factor 7 of a:

k-1
) 1 )t - 2 (yn+l)ir]
n =—|{Yn =1 '
(41) (Y1) 5 Kk e
1 k-1
Wt = Wit la’tk— E(yn-l-l)iv(yn-l-l)kv] for ¢ > k.

Here the elements (y,,,);, of the lower-triangular matrix y,,, are com-
puted, e.g. column by column, ¥ =1,..., N.

U. Patzke [6] modified method (41) under the agsumption that a start-
ing matrix y, is known with

(42) sign((¥o)u) = sign((D)y) for 4, k=1,...,N, i>Fk
in order to guarantee monotonous enclosing:

(43) Fork=1,...,N do

1
Yodrx po—r
(@1 hex = {a’kk 2(1"“ }
(C‘/n+1 ot
1 k—1
(- .
(Ypt)ix = ey {“ik— Qu’;:le;fil} for ¢ > k,
gy —
1 k-1
(Wp 1) = T+1‘{a'ﬂc— Z ﬁ:laﬂl} for i >k,
ik yml
where
HE = @y AT = Wnpe  for sign((T),)> 0,
prt = (Ynt1)ws et = (#pi1)y, Tor Sign((lkv)) <0
ﬂ:nd 1
apt? = (Zp+1)uks W= (Ynai)exe  fOr Sign((l)ik) =0,
alkH! n+1

= (Yn+1)kk w = (Tagrd  Tor Bign((l)ik) <0
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.and
optt = (Buy)ey O = Wasad  Tor sign((f),) >0,
Ot = (Yprthty  Oph' = (@pq1)p  for sign((l),) < 0.
The following theorem concerning method (43) is proved in [6].

THEOREM 8. Leét a be real symmetric, positive definite and let y, be
Jower-triangular with the property (42). If

(@) >0  for k=1,..,N,

(44) @), =0 for i>k and sign(()y) =0,
<0 L0

(¥1)iz for i>% and sign{(l)y) <

then the sequences (x,) and (y,) are well-defined by (43). They converge to
the Cholesky factor T of a at least with the B-order 2 and 1 i8 enclosed mon-
-otonously,

(45) Dy K By Sy ST Y Yy <000 S 1
To show the R-order 2, at first,
”yn+1 —wn+1”F < a ”yn - Z”.}‘

with the Frobenius norm ||-|[ i8 verified. Then, using @,., <1< ¥n1,
it follows immediately that

n 1 — Uz < ally, — l“.2F?
”yn+1 - Z”}i’ <a ”’yn — l“.%f'

These estimations imply the R-order 2 of both sequences (x,) and (¥,),
8ee e.g, [11].

4.4, Let
% B -5 5 3 0 0 0
5 17 3 —3 s |+ 300
5 3 18 6|’ ¥ =|- L 3 ol
5 —3 —6 28 b 3

Then by the method (43) e.g. for the element in the fourth row and column
the following approximations are obtained {6]:
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K l {®n)sa (Yn)as

1 4,1294 ... 5.7947 ...

2 4,9321 ... 5.0584 ..,

3 4.9994 ... 5.0003 ...

4 4.99599 0998 5.0000 0001 ...

b 5.0000 0000 000 5.0000 0000 000
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