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Summary

The theory of topological degree of set-valued maps determined by morphisms, i.e. maps
with values which are continuous images of almost acyclic sets, is presented, together with some
of its applications.

In the first part, morphisms defined on finite-dimensional Euclidean manifolds are considered
and the integer-valued degree is introduced by means of the Eilenberg—-Montgomery—Gdérniewicz
method based on the Vietoris—Begle-Sklyarenko theorem and using the approach of Dold in
terms of the Alexander—Spanier cohomology theory.

In the second part, the degree theory is extended to a wide class of noncompact set-valued
maps determined by morphisms acting in infinite-dimensional spaces. This new class, of the
so-called A-morphisms, generalizing the compact set-valued vector fields, is studied from the
general approximation viewpoint.

Topological and approximation methods are also used in the context of another class of
set-valued maps whose values satisfy some geometrical, rather than topological, conditions. Mo-
reover, the degree theory is extended to the class of Petryshyn’s A-proper maps with nonconvex
values. The class of A-proper maps contains many different types of maps considered elsewhere.

The degree theory is compared with the notion of essentiality, another useful tool in nonlinear
analysis.

The paper proposes several results extending the well-known theorems on single-valued maps,
such as the Borsuk antipodal theorem, the Bourgin—Yang theorem, nonlinear alternative, inva-
riance of domain and others.
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Introduction

The great interest in the theory of set-valued mappings is caused by many
reasons. This intensely developing branch of mathematics has a lot in common
with topology [73], [7], [41], nonlinear analysis [88], [26], [5], the theory of functions
and ordinary differential equations [27], [94], and others. Many results of this
theory have found interesting applications in game theory (the results of J. von
Neumann, Ky Fan), mathematical economics and control theory.

A substantial part of the theory of set-valued maps is the study of the existence
of fixed points and the solvability of generalized equations involving these maps.

In this paper we present some methods allowing us to investigate those que-
stions. The most important approach, which can be called topological or, more
precisely, homotopic, is based on the homotopy properties of a map. As in the
single-valued case (see e.g. [26]), it can be shown, under appropriate assumptions,
that a map which is homotopic to a sufficiently regular one (called essential) has
a fixed point, or the equation involving this map admits a solution.

However, one should have a convenient tool for deciding whether a given map
(or one that a given map can be homotopically deformed to) is essential. Such a
tool is provided by a homotopy invariant called the topological degree.

The degree of a single-valued continuous map allows several descriptions. Some
of them, having an intrinsically geometric nature or being purely analytic (see
[79]), have a very clear geometric meaning.

In the set-valued case, one is forced to apply different techniques. In the first
instance, sometimes there are sufficiently close single-valued approximations (un-
derstood in an appropriate sense) of a map whose topological behaviour reflects
the properties of the map. Thus approximation techniques may interact with to-
pological methods (see [21], [46], [47], [68]). On the other hand, many set-valued
maps can be studied only by methods arising from algebraic topology (see [42]).
For example, it is not clear at all whether any map with acyclic values admits
single-valued approximations. Therefore only the homological apparatus seems to
be applicable for maps with geometrically nontrivial values. However, since ho-
mological methods are convenient for maps of finite dimension, one has to employ
the approximation approach once again. Namely, one approximates a given map
of infinite-dimensional spaces by finite-dimensional (single- or set-valued) maps
which, in turn, can be studied by homological tools.
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We present a self-contained approach combining methods of algebraic topo-
logy with approximation techniques. We give a further and systematic deve-
lopment of the theory of morphisms introduced by Goérniewicz and Granas in
[44]. This theory provides a well-designed tool in studying the general coinci-
dence problems as well as fixed problems of Lefschetz type for not necessarily
acyclic set-valued maps. It turns out that this theory provides also an appro-
priate setting for the treatment of the topological questions mentioned above,
i.e., for example, homotopy properties of set-valued maps, extension problems
and Borsuk type theorems. Extended in this manner, the theory of morphisms
embraces numerous fixed point results previously obtained by several authors
(cf. [30], [49], [51], [20], [44], [45], [42]). Our approach is based on a homological
method initiated by Eilenberg and Montgomery [30], and essentially developed
by Goérniewicz [42], which relies on the study of the homological properties of a
set-valued map with sufficiently regular values by the use of the Vietoris—Begle
theorem (see [102]). We also apply some ideas of Dold [24] used in the single-valued
context.

Next we extend the theory of morphisms to a wide new class of maps of
infinite-dimensional spaces (studied already in the single-valued case: [62], [63],
[69], 106]) by an appropriate use of the approximation techniques.

The paper is organized as follows:

e In the first chapter we recall the most important definitions and properties
of set-valued maps; we define and study Vietoris maps and discuss the notion of a
morphism which is a modified version of the notion introduced in [44]. Moreover,
we establish the properties of essential and inessential morphisms in a general
abstract setting.

e In the second chapter we study the cohomological properties of morphisms,
introduce the notion of the fundamental cohomology class of a compact connected
subset of an oriented finite-dimensional Euclidean manifold; next, using these
results, we present a definition of the topological degree of a morphism defined on
a manifold over a free subset and study its properties. We generalize some results
of Borsuk type concerning the parity of the degree and prove an extension of
the Bourgin—Yang theorem. Moreover, several applications such as the nonlinear
alternative and invariance of domain are given.

e The third chapter is devoted to approximation-admissible maps (mor-
phisms). We give definitions of some auxiliary objects and study the general
approximation properties of A-maps.

e In the fourth chapter we present an approximation degree theory of A-
morphisms together with some applications and examples.

e The last (fifth) chapter is devoted to some other approximation methods
in the theory of set-valued degree theory. We define a class of maps with values
satisfying a condition of more geometric nature which generalizes in a simple
way the class of convex-valued maps, and show the existence of arbitrarily close
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homotopy approximations. The constructed degree theory enables us to prove
other versions of the Borsuk and Bourgin—Yang theorems. Finally, we discuss the
so-called A-proper maps (in the sense of Petryshyn) with not necessarily convex
values.

Preliminaries

We use only standard set-theoretical notations. For a set X, P(X) denotes
the family of all nonempty subsets of X. By the Latin letters f, g, h, ... we denote
only single-valued maps, by the Greek letters ¢, v, x,...,D,¥,... we denote set-
valued maps, while «, 3 denote also single-valued maps. If X is a set, A C X,
then i4 : A — X denotes the (identity) embedding. If Y is another set and
f: X — Y, then f|A denotes the restriction of f to A; if B C Y then fp is the
restriction f|f~1(B). If g: A — Y, then by an extension of g onto X we mean a
map f: X — Y such that f|A = g. The symbol f: (X, A) — (Y, B) denotes a
map f: X — Y such that f(A) C B.

If X = XjeJ X, is the Cartesian product of a family {X,},cs, then the

projection onto X; of X is denoted by pr; (or pry,).

We consider only Hausdorff topological spaces. As a rule, we consider only one
topology on a space. In particular, this concerns operations on spaces. That is,
on a subspace, Cartesian product, topological sum, quotient space we study the
natural topology. If X is a space, A C Y C X, then the symbols cly A, inty A
and bdy A denote the closure, the interior and the boundary of A with respect
to the topology of a subspace in Y. If Y = X, then we omit the subscript Y. If
X and Y are homeomorphic, then we write X~ Y .

By a Euclidean m-dimensional manifold we understand a topological space sa-
tisfying the second countability axiom and such that any of its points has a neigh-
bourhood homeomorphic to R™. Here R™ denotes the m-dimensional Euclidean
space. The scalar product of z, y € R™ is denoted by (x|y) and the norm of z € R™
by |z| = (x|z)'/2. Moreover, we use the following symbols: N7*(z) = N™(x,¢) =
{y e R™: |z —y| < e}, B'"(x) = B™(z,e) =cIN"(x) ={y e R™ : |[x —y| < &}
and S™"(z,e) = S™1(z) = bd B™(z). We write N™, B™ and S™~! instead of
N™(0,1), B™(0,1) and S™71(0,1). The unit interval [0,1] C R! is denoted by I.
If X is a topological space, then, for t € I, iy : X — X X [ is the map given by
it(x) = (x,t) forz e X, tel.

If X is a uniform space, then its uniform structure is denoted by unf X and
elements of unf X are called vicinities. If U,V eunf X, A C X, then U(A) = {y €
X :(x,y) €U forsomex € A}, UoV ={(z,2) e X x X : (z,y) €V, (y,2) €U
for some y € X}. In particular, if X is a metric space with metric d, and if
e > 0, then N(A,e) = N.(A) = {z € X : d(z,A) = infaecad(z,a) < €} and
B(A,e) = B:(A) ={z € X : d(z,A) <¢e}.

The family of F,-subsets of a topological space X is denoted by F,(X); by
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C(X), K(X) we denote the families of all closed and all compact subsets of X,
respectively.

The category of topological spaces and continuous maps of these spaces is
denoted by TOP and the category of pairs of spaces is denoted by TOP?.

A vpartially ordered set (T, <) is called directed if for any tq,t; € T there is
to € T such that t1,t5 < tg.

We consider only rings which are principal ideal domains, i.e. commutative
rings with unit whose all ideals are principal. The direct sum of R-modules
{M;}jes is denoted by @,c; M; and the direct product by [];., M;. If R-
modules M, N are isomorphic, then we write M ~ N. R

We consider several (co)homology theories. By the symbols H,., HX, H*, H* we
denote singular homology, singular cohomology, Alexander—Spanier cohomology
and Cech cohomology, respectively. By H we denote reduced (co)homology.

If E is a vector space, then dim E denotes the (algebraic) dimension of E. If
A C E, then span(A) denotes the set of all linear combinations of elements of
A. If FE is a metrizable locally convex topological vector space, then F admits a
translation-invariant metric d compatible with the topological and convex struc-
ture of E, i.e. d generates the topology of F and balls (with respect to d) are
convex. By a Fréchet space we understand a complete metric locally convex topo-
logical vector space. If A is a compact subset of a Fréchet space, then the closed
convex envelope clconv(A) of A is compact. If E is a locally convex space, then
the space of all continuous linear forms on E is denoted by E'. f x € E, f € E',
then (f,z) = f(z). Any topological vector space E is a uniform space. The fa-
mily of neighbourhoods of 0 in E may be identified with a uniform structure of
E. For a neighbourhood U of 0 in E, we then have U(A) = U + A where A C E.
Moreover, Cy (FE) denotes the family of closed convex nonempty subsets of E.

Other notation:

7Z — the set of integers;
Zo — the field of integers modulo 2;
C — the field of complex numbers;
L>°(I,R™) — the space of essentially bounded functions (with respect to the
Lebesgue measure);
C(X,Y) — the space of continuous mappings between topological spaces
X Y.

A. Elements of homology theory

1. Products. We use some (co)homology theories as presented e.g. in [104]
with coefficients in some R-module.

(1.1) Let X be a topological space. If A; C X, i = 1,2, and a pair {41, A2}
is excisive w.r.t. H,, then there are graded homomorphisms a., B«, A« such that
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the Mayer—Vietoris sequence
o= Ho (X, AN Ay) S Hy (X, A @ Hy (X, Ap)
By Ho (X, Ay UA) S5 Hy y(X, A1 N Ag) — ...
is exact and functorial (see e.g. [55, (17.4), (17.11)]).
(1.2) The homomorphism 3, is defined by the formula

Bi(v1,72) = Hn(j1)(71) + Hu(j2) (72)

where v, € H,(X,A;), i = 1,2, and the homomorphism «, by the formula
ax(v) = (Hp(i1)(y), —Hn(i2)(y)) for v € H,(X, Ay N As), where ji : (X, Ag) —
(X,A1 UAy) and i : (X, A1 NAz) — (X, Ax), k= 1,2, are inclusions.

(1.3) If (X, A) € TOP?, then we have a scalar product (Kronecker duality)
<> > : H:(XaA) X H*(XaA) — R

(see [25, VIL.1.1], [104]) such that, for f: (X,A) — (Y,B), be H!(Y,B), a €
H.(X,A) and a € H:7*(A) we have

(Hg (F)(0),a) = (b, Ho(f)(@)) and  (a,0s(a)) = (57(a), ).
(1.4) If (X, A), (Y, B) € TOP?, then we have a cross product
X Hp(X,A) x Hp(Y,B) - Hpi (X XY, AXxY UX x B)
(see [25, VII.2.1], [104]) such that if f : (X,4) — (V,B) and f' : (X', A") —
(Y B'), a € Hy(X,A) and o/ € H,,(X’, A", then
Hyy o (f X f)) (@ x @) = Hy(f)() X Hi(f)().

(1.5) If (X, A), (Y, B) € TOP? and the pair {X xY, AxY UX x B} is excisive
w.r.t. H,, then we have a cross product

x: H"(X,A) x H"(Y,B) — H'""™(X x Y, Ax Y UX x B)

(see [25, VIL.7.1], [104]) such that, under the same assumptions concerning f, f’
asin (1.4),a € H}(Y,B), be H"(Y', B’), we have

HEF™(f x f)(a x b) = H{(f)(a) x H'(f')(b).

(1.6) If sets A, B are open in X, Y, respectively, then we can define a cross
product in H* having the same properties (see [83, 8.7]).

(1.7) There is a natural transformation £ of the theory H* into H} such that,
for any manifold X and its compact subset K,

Exkx =&(X, X\K): H* (X, X\K) — H}(X, X\K)
is an isomorphism. To see this it is enough to recall [104] and use the five-lemma.

(1.8) There is a functorial isomorphism H*(X) ~ H*(X) where X is a para-
compact space (see [104]).
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(1.9) If (X, A), (Y,B) are compact pairs, then, for any ring R, there is an
exact sequence

0— @ H'(X,A)@r H'(Y,B) > H"(X xY,AxY UX x B)
i—l—Zj"]:n
— @ H(X,A)«r H(Y,B) = 0
z+lj’]=n
where *p stands for the torsion product of R-modules. The exactness of this
so-called Kiinneth sequence follows from the exactness of the Kinneth sequence
for H* (on compact pairs) and from (1.8).

2. Orientation of manifolds. We use [25, VIII]. Let X be an m-dimensional
manifold. For any z € X, H"(X, X\{z}) is an infinite cyclic group for n = m
and vanishes for n # m (we consider integer-valued singular homology). Let X =
Viex Hm(X, X\{z}) and let p : X — X be the map defined by the condition

P~ (2) € Hyn (X, X\{a}).
One can introduce a topology on X such that p becomes a covering map. Let
¢ : X — Z be defined by g(ka) = |k| where o € H,, (X, X\{z}) is a generator.
If A C X, then let I'A be the set of all sections of the sheaf p : X — X.
Obviously, I'A has the structure of an abelian group (see [25, VIII.2.4]). Define
a homomorphism J4 : H,, (X, X\A) — I'A by Ja(7)(z) = Hn(52)(y) for z €
A, v € Hp,(X,X\A) (Y). If B C A, then the diagram

Hn (X, X\4) 2%

(2.1) Hm(jf;)l le

H,(X,X\B) — I'B
B

I'A

where p is the restriction of a section over A to B, is commutative (see [25,
VIII.2.7 and 2.8]).

A section p € I'A is called an orientation (more precisely, Z-orientation) along
Aif g(u(x)) =1for x € A. If A= X, then we say that p is an orientation of X
and the pair (X, p) is called an oriented manifold.

(2.2) If @ € H,,,(S™) is a generator, then Jgm () € I'S™ is an orientation of
the sphere 5™.

(2.3) If U is an open subset of a manifold X, u is an orientation of X, then
the restriction p|U is an orientation of the submanifold U (more precisely: for

(") If B C A, then jg denotes the inclusion (X, X\A) — (X, X\B).
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z € U, (,LL\U)(:E) ; J)l(,u(x)) where J : Hp,, (U, U\{z}) — H,,(X,X\{z}) is the
excision isomorphism).

(2.4) If manifolds X, X’ of dimensions m, m’, respectively, are oriented by
and p/, then X x X’ is oriented by the section p x p’ given by (u x p')(z,2') =
p(z) x p/(a') for x € X, 2’ € X' (see (1.4) and [25, VIIL.2.13]).

(2.5) If X is an m-dimensional manifold with boundary bd X and u is an
orientation of int X, then there is a homomorphism b : I" int X — I' bd X such
that the diagram

Hp(X, X\intX) ¥ PintX

;| s

Hp_1(bdX) — I'bdX

Jba x

is commutative and b(u) is an orientation of bd X (see [25, VIII.2.19]).

Let A C X and consider on Z the discrete topology. Since C(A,Z) is a Specker
group for A compact, we have:

(2.6) The group C(A,Z) is free for any compact A C X.

(2.7) If a manifold X is orientable along A C X, then there is an isomorphism
$p:TA— C(ATL).

Proof. Let u € I'A be an orientation of X along A. If s € I'A, then the
correspondence @4 : s — fs, where fs(x) = ¢(s(x)) for z € A, is an isomor-
phism. =

(2.8) If K is a compact subset of a manifold X, then Jg : H,,(X, X\K) —
I'K is an isomorphism (see [25, VIII.3.3]).

Let (X, u) be an oriented m-manifold. By (2.8), there is a unique class px €
H,, (X, X\K) such that Jx(ux) = p|K provided K is compact. This class is
called the fundamental homology class of the set K. By (2.1), we have

(2.9) If K C N, N is compact, then H,,(¥)(un) = px.

(2.10) Under the assumptions of (2.4), if K is compact in X and K’ is compact
in X', then

(/,L X N/)KXK/ = UK X ,LL,K/ € Hm+m/(X X X/,X X X/\K X K/)

(2.11) Let K = Ky U...U K, where K; is compact connected, i = 1,...,n,
be a decomposition of a compact set K into the union of its components. In view
of (1.1), there is an isomorphism

0y Hy (X, X\K) ~ éHm(X,X\KZ»).
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Moreover, o (i) = {pK, }7—, (up to sign) in view of (2.9). Let

’Yj :{’le};’bzl E@Hm(an\K’L)7 j:177n7
i=1
be given by vj; = djuk, (6;; denotes the Kronecker delta). The system
{a;l('yj)};‘:l is called the fundamental system of homology classes of the set
K and is denoted by {pux}. Clearly, {ux} depends only on pu.

The role of the fundamental class is reflected in the following result.

(2.12) (Comp. [25, VIIL.3.4].) If (X, ) is an oriented m-dimensional mani-
fold,
K C X is compact (resp. compact connected), then H,, (X, X\K) is a free (resp.
infinite cyclic) group and the system {ux} is its base (resp. ux is its generator).

Proof. Follows from the definition, (2.6), (2.7), (2.8) and (2.11). =

I. Topology of morphisms

In the first section of this chapter we recall the basic definitions and properties
of set-valued maps. In the second section we study properties of Vietoris maps. In
the next three sections we give the definition of a morphism which plays a crucial
role in the sequel and establish some simple properties. Moreover, we consider
the most important constructions in the category of morphisms. Next we study
the notion of essentiality of morphisms.

1. Set-valued maps. Let X, Y be sets. By a set-valued mapping we
understand a map 1 : X — P(Y). Observe that any relation G C X x Y with
domain X determines a set-valued map ¢ : X — P(Y) given by ¢vg(z) = {y €
Y : (x,y) € G}. On the other hand, any set-valued map v defines a relation
Gy = {(z,y) € X xY : y € ¥(x)} having domain equal to X and called the
graph of 1. Clearly, the above correspondence is bijective. Hence it is sometimes
convenient to identify a map ¢ with its graph G and study v by means of the
properties of Gy.

Ify: X — P(Y), AC X and B C Y, then we define sets

6(4) = | v().

rx€A
VI B)={ze X :p(x)NB+£0},
;1 (B) ={x € X :4(x) C B},

called the image of A, the large preimage of B and the small preimage of B under
1, respectively. Moreover, we define a set-valued map ¢! : ¢(X) — P(X) by

the formula ¢~ '(y) = v~ ({y}) = {z € X :y € ()}
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Observe that

(1.1) (™1 ZH(A) = ¥(4)
for any A C X.

Given A C X, amap ¥|A: A — P(Y) defined by (¢|A)(x) = ¢(z) for x € A
is called the restriction of 1) to A.

Let Z be a set and ¢’ : Y — P(Z) a set-valued map. The map X > = —
V' (Y(x)) € P(Z) is denoted by ¢’ o1 and called the composition of 1) and v’
Clearly, |A =1 oigz.

Now, let X,Y be topological spaces. We say that a map ¢ : X — P(Y)
is lower-semicontinuous (abbr. l.s.c.) (resp. upper-semicontinuous (abbr. u.s.c.))
provided the set 9 ~!(U) (resp. w;l(U)) is open for every open subset U of Y.
Observe that, in the single-valued case, the upper and lower semicontinuity are
equivalent to the ordinary continuity.

After [7] we recall some properties of set-valued maps.

(1.2) PROPOSITION. (i) The composition of l.s.c. (resp. u.s.c.) maps is l.s.c.
(resp. w.s.c.).

(i) If v : X — K(Y) (i.e. ¥ : X — P(Y) and ¥(x) € K(Y) for any x € X)
is u.s.c., then Gy is a closed subset of X x Y.

(iii) IfYp : X - P(Y), ¥ : X — K(Y), the graph Gy is closed, ¥ is u.s.c. and
Y(x) N (x) # 0 for any x € X, then Yy NV : x — P(x) NP(X) is u.s.c.

(iv) If v : X — K(Y) is u.s.c. and A C X is compact, then ¥ (A) is also
compact.

We say that a map ¢ : X — P(Y) is compact (locally compact) if cly(X) €
K (X) (resp. each point x € X has a neighbourhood U such that ¢|U is compact).

(1.3) PROPOSITION. A locally compact map with closed graph is u.s.c.

(1.4) LEMMA. Let E be a Fréchet space. If 1 : X — P(E) is an l.s.c. map
with convexr values and f: X — E, ¢ : X — [0,00) are continuous maps such
that f(x) € ¥(z) if e(x) = 0 and N(f(z),e(z)) N(x) # O if e(x) > 0, then
U:x— B(f(x),e(x))Ny(z) is l.s.c.

Proof. Let K € C(E). We show that ¥ '(K) € C(X). Consider a net
{z, : p € M} C W7 (K) converging to zo € X. Assume that zo ¢ ¥ ' (K) and
e(zg) > 0. It is easily seen that there is yo € N(f(xo),e(z0)) N Y(xo) N (E\K).
Let 6 > 0 be such that d(f(x0),y0) < e(z9) — 3. There is u; € M such that
N(yo0,0) C N(f(x,),e(x,)) for any p > pi. By the lower semicontinuity of 1),
there exists po € M such that ¥(x,) NV N(yo,0) N (E\K) # () for u > pp. For any
p > pa, p2, we have ¥(z,) N (E\K) D ¢(z,) N N(yo,d) N (E\K) # 0, which is a
contradiction. If e(xo) = 0, then a contradiction follows almost at once. m

Let X, Y be topological spaces. A map ¢ : X — P(Y) is perfect if it is u.s.c.,
Y1 (y) € K(X) for any y € Y and ¥(B) € C(Y) for any B € C(X). A map ¢ is
proper if it is w.s.c. and Y ~"1(K) € K(X) for any K € K(Y).
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(1.5) PROPOSITION. (i) The composition of perfect maps is perfect.

(i) If a u.s.c. map ¢ : X — P(Y) is perfect, then the map ¥~ : (X) —
P(X) has compact values and is u.s.c. If (X) is closed, then this condition is
also sufficient.

(iii) Any perfect map is proper.

(iv) If ¥ : X — P(Y) is proper, the graph Gy is closed and Y is a k-space,
then v is perfect.

Proof. (i) follows from (1.2)(i). To see (ii), it is enough to use (1.1), and
(iii) follows from (ii) and (1.2)(iv). To prove (iv), it is sufficient to show that
Y(B) € C(Y) for any closed B C X. The set ¥(B) is closed in the k-space Y if
and only if ¥(B) N K is compact for any compact K C Y. This last condition is
satisfied since G, is closed and 1) is proper. m

One easily proves

(1.6) PROPOSITION. Let A€ C(X) and BCY. If amap ¢ : X — P(Y) is
perfect, then so are the restrictions Y|A: A — P(Y) and ¢ : v_"(B) — P(B)
given by Yp(z) =Y(xz) N B.

The existence of selections of set-valued maps is an important problem. Let
X,Y be sets and ¥ : X — P(Y). Amap x : X — P(Y) is a selection of 9 if
x(x) C ¢¥(x) for any x € X. There are many results concerning the existence of
selections. The best known is the following result of Michael.

(1.7) THEOREM (see [84]). Let X be a paracompact space and E a Fréchet
space. Any l.s.c. conver-valued map ¢ : X — Cy(FE) has a continuous single-
valued selection.

(1.8) Let F be a class of maps (single- or set-valued ones). We write
F(X,Y)={¢: X — P(Y) : ¢ belongs to F}.

Let F,G be classes of maps and let 7 C G. We say that maps 1,91 € F(X,Y)
are homotopic in the class G if there exists a map ¥ € G(X x I,Y) such that
Y oi; =1, for j =0,1. The map 9 is called a homotopy (in G) joining 1)y and
11. The problem of existence of a homotopy in G between given maps from F is
a complex one and will be discussed later in more definite situations.

2. Vietoris maps. Let X be a topological space. If A C X, A # (), then by
the relative dimension of the set A (in X') we mean the (possibly infinite) number
rdx (A) = sup{dim(C) : C € C(X), C C A}
where by dim(C) we denote the covering dimension of the set C (see [2]). Addi-

tionally we let rdx () = —oc.

(2.1) ProposITION. (i) Let Y C X, ACY and ACBC X. If Y € C(X)
(orY € F,(X) and X is a normal space), then rdy (A) < rdx(B).
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(ii) If a topological space X' is compact, X x X' is normal and A C X, then
I‘dXXX/(A X X/) < I‘dx(A) + dlm(X,)

Proof. (i) If Y is closed, then the assertion follows from the definition.
Suppose that Y € F,(X) and that X is normal. Let C C A be closed. Ob-
viously, C' C F,(X), hence C is normal (as a subspace). Let C' = J;; C; where
C; € C(X). Foranyi > 1, C; C A C B and dim(C;) < rdx(B). By Menger’s
theorem (see [2]), dim(C) < rdx(B).

(ii) Let C € C(X x X'), C ¢ A x X’. Since X’ is compact, by the Ku-
ratowski theorem (see [32]), prx(C) is closed. Hence dim(pry(C)) < rdx(A).
On the other hand, C' C pry(C) x X', so by [2, p. 166] and [33, p. 191],
dim(C) <rdx(A) +dim(X’). =

Let G be a topological space, p : G — X a continuous map and let R be a
principal ideal domain. For integers £ > 0 and N > 0, we define
sp(R) ={x e X : H*(p~'(x); R) # 0},

P
N(py _ k
m, (R) =1+ Ogingaﬁ_l{rdx(sp(R)) + k},

my(R) = sup {mév(R), 0}.
N>0

To simplify the notation, in the whole Chapter I we write H(-) instead of H(-; R),

sk, ml’ and m,, instead s¥(R), m)'(R) and m,(R), respectively, unless this leads

p7
to ambiguity (see Section 7).

(2.2) PROPOSITION. (i) my, < oo (resp. my = 0) if and only if rdx (sh) < co
for all integers k > 0 and 5’; = () for almost all k > 0 (resp. 5’; =0 for all k > 0).

(ii) If my = 0, B C X, pp = plpY(B) : p~*(B) — B, then m,,=0. If
myp >0, Be C(X) (or B € Fy(X) and X is normal), then my, < m,.

Proof. For z € B, pg'(x) = p~'(x). Thus s’;B = s’; N B for any integer
k. If m, = 0, then by (i), sh_ = 0; hence my, = 0. If m;, > 0 and B € C(X)
(or B € F,(X) where X is normal), then in view of (2.1)(i), we deduce that
rdp(sk,) <rdx(sp) for any k > 0. m

The following fundamental result (see [102], comp. [104]) is a generalization
of the well-known Vietoris—Begle theorem (see [108], [6]).

(2.3) THEOREM. Let G, X be paracompact spaces and p : G — X a continuous
closed surjection. If there is an integer N > 0 such that mév <N, then the induced
homomorphism

p": H"(X) — H"(G)

N

is an epimorphism for n = my

morphism forn = N.

an isomorphism for mév <n < N and a mono-
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Let ACX, TCGandletp: (G, T)— (X,A). Given an integer n > 0, the
map p is called a V,,-map (with respect to R) — written p € V,,((G,T), (X, 4))
— if

(i) p is a perfect surjection, p~1(A) = T}

(i) mp < n.

We say that p is a V-map (written p € V((G,T), (X, A))) provided

[ee]
pe V(G T), (X, 4).
n=1
For historical reasons V;-maps are called Vietoris maps (comp. [42], [17], [44]; see
also Section 7). It is clear that V,, C V,, for n < m.
(2.4) A perfect surjection p : G — X is a V,-map if and only if rdx(s’;) <
n — k — 1 for any integer & > 0.
It follows that, for any p € V,, (G, X), the preimages of points are nonacyclic
sets, but the nonacyclicity occurs only in low dimensions and on sets of low
dimension.

Some properties of V-maps are collected in the following:
(2.5) PROPOSITION. Let B C X.
(1) If pE Vl(GaX)a then PB € Vl(p_l(B)aB)'

(ii) If B € C(X) (or B € F,(X) where X is normal), p € V,(G, X),n > 1,
then pg € Vo (p~*(B), B).

Proof. This follows immediately from (1.6), (2.2)(ii). m

(2.6) PROPOSITION. Let G', X' be topological spaces.

(i) If peVi(G,X), p eVi(G', X)), thenp xp' € V(G x G, X x X').

(il) If X' is compact, X x X' is normal, p € V,(G,X), n > 1 and p’ €
Vi(G', X", then p X p' € Vpim(G X G', X x X') where m = dim(X").

Proof. (i) follows immediately from the Kiinneth theorem and [32, p. 232].
Let P = p x p’. By the Kiinneth formula for Alexander—Spanier cohomology (see
A.(1.9)), sk = sk x X' for any integer k& > 0. In view of (2.1)(ii), the proof is
complete. m

We shall need the following auxiliary notions. Consider a triad
() G1— X —Gs.

q p
The fibre product of this triad is a map f : Gy Ky Go — X where G; Ky Go =
{(91,92) € G1 x G2 : q(g91) = p(g2)} and [f(g1,92) = q(g1) (= p(g2)) for (g1,92) €
G1 ®x Gs. By the pull-back of (x) we mean a cotriad G, LG Ry Gy -5 Gy
where p(g1,92) = g1, (91, 92) = g2 for (g1,92) € G1 Kx Ga.

If X, Y are spaces, then we say that a continuous map ¢ : X — Y is an F,-map
if there is a sequence (F,)?2; of closed sets in X such that X = (J -, F,, and



Degree theory of set-valued maps 17

q|F, is a closed map. Clearly, any closed map is an F,-map, any homeomorphism
onto an F,-set is an F,-map and, in particular, the inclusion of an F,-set is an
F,-map.

(2.7) PrOPOSITION. If p € V1(G2,X), then D is a Vi-map. If X is para-
compact, Gy is normal, p € V,(G2,X), n > 1, and q is an F,-map such that
sup{dim(¢~1(z)) : x € X} < m, then P € Vo1m(G1 Kx Ga,G1).

Proof. Clearly, P is a continuous surjection. For any g1 € G1, p 1(g1) =
{1} xp~1(q(q1)) € K(G1KxG3). Let B C G1Xx Go be closed and let g1 € p(B).
Thus {g1} x p~1(g(g91)) N B = () and there are open sets V; C G1,Va C G5 such
that g1 €V, p~1(q(g1)) C Vo and Vi x Vo N B = (). Hence, V; Np(B) = ), which
shows that p(B) is closed and, therefore, P is a perfect map. For any integer
k>0, q: s'g — s’;. Thus if m, = 0, then s’; =0 = sg and mp = 0. Suppose
that 0 < m, < n and let C' be a closed set in G, C C sk. Since ¢ is an
F,-map, Gy = UZO=1 F,,, where F,, is closed and ¢|F,, is a closed map. The set
C, = CNEF, is closed for any n > 1 and ¢(C,,) is closed in s’;; hence dim(q(C,,)) <
rdx (sf) for any n > 1. Since C, is normal and ¢(Cy,) is paracompact, we have
dim(Cy,) < dim(g(Cy)) + sup{dim(¢~'(z)) : € Cn} < rdx(sf) 4+ m. Hence
dim(C) <rdx(s}) +m. =

By (2.3), Vietoris maps induce isomorphisms of cohomology groups. More
precisely:

(2.8) THEOREM. Let X, G be topological spaces, T C G and A C X. If X s
paracompact, A € Fy(X) and p € V,,((G,T),(X,A)), n > 1, then the induced
homomorphism p* : H*(X, A) — H*(G,T) is an isomorphism for any k > n+ 1.
If n =1, then p* is an isomorphism for any k > 0 (in this case, we only require
A to be paracompact).

Proof. Since X is normal, by (2.5)(ii), pa : T'— A is a V,,-map. Moreover,
the spaces G, T are paracompact since the preimages of paracompact spaces under
perfect maps are paracompact (see e.g. [32]). Definep: G — X by p(g) = p(g) for
g € Gandlet k> n+1. For any m > k—1, there is an integer N >m > k—1 >
n>ml =ml >ml . Thus, by (2.3), H™(p) and H™(pa) are isomorphisms. If
n =1, then m; = my, = 0; hence H°(p) and H(p4) are isomorphisms as well.
We have the following commutative diagram:

HYG) — H-YT) — HFNG,T) — HMNG) — HFT)

|7 s [» [ [

Hk_l(X) — Hk_l(A) — Hk(X,A) — Hk(X) — Hk(A)

The use of the five-lemma completes the proof. m
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(2.9) Remark. If X is metrizable and A is open, then the assertion of (2.8)
holds.

(2.10) PROPOSITION. Let Y be a topological space. If p; € V1(G,X), pa €
Vo (X,Y), n>1, then poop1 € Vu(G,Y).

Proof. Obviously, by (1.5)(i), p = p2 o p1 is a perfect surjection. Let y € Y;

then p~1(y) = py ' (p2 ' (1)) By (2.5), p1lp~(y) : p~1(y) — p3 ' (y) is a Vi-map.
In view of (2.8), H*(p~'(y)) ~ H*(p5 " (y)), which ends the proof. m

(2.11) Remark. Clearly, if p; € V,(G,X), n > 1, and ps is a homeomor-
phism then ps op; € V,,(G,Y).

3. Category of morphisms. Let (X, A) and (Y, B) be pairs of topological
spaces. By D((X, A), (Y, B)) we denote the family of all pairs (p,q) where p €
V((G,T),(X,A)) and q : (G,T) — (Y, B) is a continuous map. In the sequel we
identify a pair (p,q) € D((X, A), (Y, B)) with the cotriad

(X, A) — (G.1) — (V.D).

We say that pairs (p, q), (p',¢") € D((X, A), (Y, B)) are equivalent (written (p, q) =~
(p',q")) if there is a homeomorphism f : (p~1(X),p~1(4)) — ('~ 1(X),p' "1 (A))
such that p’ o f = p and ¢’ o f = ¢q. Observe that “~” is an equivalence relation
in D((X,A), (Y, B)); moreover, if (p,q) =~ (p/,q’) then s’; = s';, for any integer
k > 0. This implies that p is a V,-map, for some n > 1, if and only if p’ is a
Vp-map.

The quotient set D((X, A), (Y, B))/~ is denoted by M ((X, A), (Y, B)) and its
elements, denoted by the Greek letters ¢, x, ..., are called morphisms (defined
on (X, A) with values in (Y, B)). The notation and terminology will be justified
below.

(3.1) Remark. The notion of morphism was introduced in [44] in a slightly
different manner (see [7]). Namely, the definition of the relation “~” was less
restrictive. However, equivalence classes of our relation have somewhat better
properties.

If (p,q) € ¢ € M((X,A),(Y,B)), then we say that the pair (p,q) represents
(or determines) the morphism . A morphism ¢ determined by a pair (p,q) is
called an n-morphism, n > 1, if p is a V,-map. The set of all n-morphisms from
M((X,A),(Y,B)) is denoted by M, ((X,A),(Y,B)). Obviously, M = J,—, M,
and M,, C M, if n < m.

Morphisms are closely related to set-valued maps. Any morphism ¢ €
M((X,A), (Y, B)) determines a set-valued map (denoted by the same letter @)

X oz px) =qp™' (2))
where (p,q) € ¢. The set p(z) for x € X, called the value of ¢ at x € X is
well-defined since it does not depend on the choice of the representing pair of .
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Moreover, in view of (1.5)(ii) and (1.2)(i), ¢ : X — K(Y) and is u.s.c. Observe
that, for any € A, ¢(z) C B, and, for any C C Y, ¢~ (C) = p(g~*(0))
provided (p,q) € .

(3.2) Remark. Having a morphism ¢ € M(X,Y) andsets AC X,BCY
such that, for x € A, ¢(x) C B, we have a morphism ¢ € M((X, A),(Y,B)). In
particular, if ¢ "' (B) C A, we have a morphism pap € M((X, X\A), (Y,Y\B)).

We say that a set-valued map ¢ : X — K(Y) is determined by a morphism
if there exists a morphism ¢ € M(X,Y) such that i(z) = ¢(x) for any x € X.
Clearly, any map determined by a morphism is u.s.c. A map may be determined
by different morphisms at the same time.

The most important examples of maps determined by morphisms are provided
by the following constructions. Given an integer n > 1, we say that a map 1 :
X — K(Y) is n-acyclic (with respect to Alexander—Spanier cohomology with co-
efficients in the ring R) — written ¢ € A, (X,Y) —if ¢ isus.c. andrdx{z € X :
H*(4p(z); R) £ 0} <n—k — 1 for any k > 0 (see [17]).

(3.3) PROPOSITION. Any n-acyclic map is determined by an n-morphism.

Proof. Let ¢ : X — K(Y) be an n-acyclic map and let py, : Gy, — X, ¢y :
Gy — Y be the restrictions to G, of the projections onto X and Y, respectively.
Obviously, for any = € X, ¢(z) = q¢(p;1(:r)) and pqzl(x) = {z} x(x) € K(Gy).
Let B C Gy be closed and let « ¢ py(B). Hence {z} x ¢(z) N B = (. It is easy
to see that there are open sets U’ C X and V C Y such that x € U’, ¢(z) C V
and U’ x VN B = (). Since v is u.s.c., the set U" = w;l(V) is open in X. Let
U=U'NU". Clearly, x € U and U Npy(B) = (). This shows that py is a perfect
map. Hence py € V,(Gy, X) because rdX(s];w) < n—k —1 for each nonnegative
integer k. m

(8.4) Remark. (i) The pair (py, ¢y) representing the morphism determining
an n-acyclic map will be called the generic pair. In spite of the fact that an n-
acyclic map may be determined by different morphisms, the following relation
holds. Assume that a morphism represented by a pair (p,q) determines an n-
acyclic map 1. The diagram

G
4 N
X lf Y
pd:\ GQ/J /qw

is commutative, where f(g) = (p(g),q(g)) for any g € G.

(ii) By (3.3), in particular, any continuous single-valued map f : X — Y is
determined by a 1-morphism. In this case, it is convenient to identify f with the
1-morphism represented by the pair (idx, f) which is equivalent to its generic
pair (see (i)).

Now, we define and study the composition of morphisms.
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(3.5) THEOREM. Let (X, A), (Y,B) and (Z,C) be pairs of spaces. If
01 € M,,((X,A),(Y,B)) and 2 € Mi((Y,B),(Z,C)) forn>1,
then there exists a morphism ¢ € M, ((X,A),(Z,C)) such that, for any v € X,
p(x) = @2(p1(x)).

Proof. Assume that (p;,q;) € @i, i = 1,2, and p; € V,((G1,T1), (X, A)),
p2 € V1((G2,T3), (Y, B)). Define a cotriad

G122 G Ry Gy 25 Gy

to be the pull-back of the triad G, i>Y<p—2G2, and let G = G1 Wy Gy, T =
Py H(Th). Obviously, G, (T) CTy. By (2.7), o €V1((G,T), (G1,T1)) and, by (2.10),
DP=Dp1opy € Vn((GvT)>(Xa A)) Let ¢ = q207; : (Ga T) - (Z7 C) It is easy
to verify that if we let ¢ be the morphism represented by the pair (p,q), then
o(x) = pa(p1(z)) for each z € X. m

In the sequel, the morphism ¢ defined above is denoted by 2 o w1 and called
the composition of the morphisms ¢; and ¢s. This definition is correct since it
does not depend on the choice of representatives.

Finally, observe that composing single-valued maps f1 : X —= Y, fo:Y — Z
(or rather the morphisms represented by the pairs (idx, f1) and (idy, fo) — see
(3.4)(ii)) according to the above definition, we get the morphism ¢ represen-
ted by the pair (p,q) where p : G — X, ¢: G — Z, G = {(z, fi(z)) : = €
X}, plx, fi(z)) = x and q(z, f1(z)) = f2(f1(z)) for z € X, which is equivalent to
the one represented by the pair (idx, f2 o f1). Morever, if morphisms ¢; and ¢
determine maps fo and f, respectively, then ¢s o 1 determines the map fs o fi.

In view of the above considerations, one verifies easily the following:

(3.6) THEOREM (comp. [44]). There exists a category MOR? with pairs
of spaces as objects, M1((X,A), (Y, B)) as the set of morphisms between objects
(X, A) and (Y,B), and “o” as composition. The topological category TOP? is a
subcategory of MOR%.

The full subcategory in MOR% with objects from the class of topological spaces
is denoted by MOR; .

The following proposition provides further information concerning composi-
tions of morphisms.

(3.7) PROPOSITION. Let X,Y, Z be topological spaces and let B C X.

(i) If B € C(X) (or B € F,(X) and X is normal), ¢ € M,(X,Y), n > 1,
then poip € My (B,Y).

(ii) If X is normal, Y paracompact, p € M, (Y, Z), n>1,and f: X =Y is
a continuous Fy-map such that dim(f) = sup{dim(f~1(y)) : y € Y} < m, then
pofe€ Myim(X,2Z).

Proof. (i) follows from the definition of composition and (2.1)(i); (ii) is a
consequence of (2.7). m
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It is easy to see that the composition of acyclic maps may fail to be acyclic.

(3.8) EXAMPLE. Let ¢ : S* — K(S') be given by ¢(z) = {y € S* : [z —y| <
\/g} Obviously, 1 € A; (S, S1). However, (¢ o1))(x) = S* for any x € St.

The following proposition justifies the attempt to study maps determined by
morphisms rather than only m-acyclic ones and proves that this class is more
convenient to deal with.

(3.9) PropoOSITION. If 1 € A, (X,Y), ¢ € A1(Y, Z), then the composition
19 011 s determined by an n-morphism.

4. Operations in the category of morphisms. It appears that morphisms
have numerous properties which are similar to those of maps.

(4.1) Let X, Y be topological spaces and ¢ € M,,(X,Y), n > 1. Assume that
a pair (p, q) represents . If

(i)n=1, BC X, or
(i) n>1, Be C(X), or Be Fy(X) and X is normal,

then pp = plp~1(B) € V,.(p~1(B), B) in view of (2.2)(ii). Thus in those cases one
may define the restriction of ¢ to the set B as the morphism ¢|B € M,(B,Y)
represented by the pair (pg, q[p~!(B)). Observe that, for all x € B, (¢|B)(z) =
o(x) and ¢|B = poip (comp. (3.7)(i)). Clearly, if ¢(B) C C, then we can write
p|B € M, (B,0).

Now, we discuss piecing morphisms together. Let X,Y be topological spaces
and Xj € C(X), 71=1,2 X;UXy =X.

(4.2) PROPOSITION. If p; € Ml(Xj,Y), j = 1,2, g01|X1 NXy = @2’X1 ﬂXQ,
then there exists a morphism ¢ € M1(X,Y) such that ¢|X; = ;. If X is normal
and p; € M,(X;,Y), j=1,2, where n > 1, then ¢ € M, (X,Y).

Proof. Let (pj,q;) € ¢; where X; «— G; — Y, j = 1,2. Assume that

Pj g
M; = pj_l(Xl N X5). There exists a homeomorphism f : M; — Ms such that the
diagram

M,
py \Q1
XN X, lf Y
P2\ Mg /q;

is commutative. Let G = G1 Uy G2 be the result of piecing together the spaces
G1,Go along the map f and let h; : G;j — G be the natural quotient map, j = 1, 2.
We easily see that h; is a homeomorphic embedding of G into G (j = 1,2). Define
pj : G — X by the formula

pj(hi(95)) = pi(g;)
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for g; € G, j = 1,2. This definition is correct. In fact, hi(G1) U he(G2) = G
and if g; € G, hi1(g91) = h2(g2), then g; € M;j; hence g2 = f(g1) and pi(g1) =
p2(g2). Clearly, p is a continuous surjection. Moreover, for any B € C(G), p(B) =
p1(hi1(B)) Upa(hy'(B)) € C(X) and p~'(z) = hj(pj_l(x)) € K(G) for any
x € X;, j = 1,2. Therefore, p is a perfect surjection. For any integer k >
0, s’;j = 5’; N X;. If my, =0, then m;, = 0. Suppose that 0 <m, <n. If X
is normal, C' € C(X) and C C sk then C; = C ﬂ X, C sk . Hence dim(C) <
max{dim(C;),dim(Cs)} < max{rdxl( Dsrdx, (sE )} < n— k — 1 in view of [2,
p. 241]. Defining analogously a map q G — Y we get the pair (p,q) which
represents the required morphism ¢. It is not diﬂicult to see that the above
construction does not depend on the choice of (pj,q;) € p;, j=1,2. =

(4.3) Let X,Y1,Ys be topological spaces and let ¢; € M;(X,Y7), @2 €
M, (X,Y3), n > 1. There exists a morphism ¢ € M, (X,Y; x Y3) (denoted by

(1, p2)) such that ¢(z) = ¢1(x) X p2(z) for any = € X. Indeed, let (p;,q;) € ¢;
where X «—G; — YJ, j =1,2. We have the diagram

pj

GQ&GlT Y1 XY2

/;51 152\(
X — G2 Gl
P2
pz\ /p‘l
X

with the cotriad Go <~ Gs Hx G122 Gy being the pull-back of the triad

G —>X<p—G1 and q(g2,91) = (q1(91),g2(g2)). The morphism (1, p2) is re-
1

presented by the pair (p, q) where p = pyop; € V,,(G2 K x G1, X) in view of (2.7)
and (2.10).

(4.4) Suppose that X is a topological space, and that E is a topological
vector space. Let ¢ € M, (X, E), ¢ € M1(X,FE) and o € M;(X,R). If the maps
+:ExFE— FE, e« :Rx E — FE are defined by +(z,y) = z+y and e(\,z) = Az,
then we define morphisms « @ ¢ and 1 4+ ¢ as the compositions e o («, ¢) and
+ o (1, ), respectively. Clearly, c @ p(x) = {\y € E: XA € a(z), y € p(z)} and
W+e)(x)={y+z:y€(z), z € p(x)} for x € X. The above definitions are
correct by (4.3) and (3.5).

(4.5) Remark. In particular, if f : X — FE is a continuous map, then we
have an n-morphism f + ¢ € M, (X, E) since f € M;(X, E) (see (3.4)).

Obviously, if ;1 € A1 (X, E), ¥€ A, (X, E), then the set-valued map 1 +1)5 :
x +— P1(x) + P2(z) € K(F) is determined by an n-morphism.

(4.6) Let X;, Y;, j = 1,2, be topological spaces. If p; € My(X;,Y;), then we
may define a morphism ¢ X po € M71(X; x X5,Y7 X Y5) which determines the
map (1, z2) — @1(x) X po(x) for (z1,22) € X3 x Xs. It suffices to define @1 X @9
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by the pair (p1 X p2,q1 X g2), where (pj, q;) € ¢j, j = 1,2, and use (2.6)(i).

5. Homotopy and extension properties of morphisms. Now, we define
the homotopy of morphisms. Let (X, A), (Y, B) be pairs of topological spaces and
let ; € M((X,A),(Y,B)) for j =0,1. We say that ¢y and ¢ are n-homotopic
(n > 1) (or homotopic in M, ) — written pg ~, @1 — if there exists a morphism
p e M,(X xI,AxI),(Y,B))such that ¢ oi; = ¢;, 7 =0,1. The morphism ¢
is called a homotopy joining ¢ and 1. By (3.7)(i), this definition is correct and
if po =~y @1, then p; € M, ((X, A), (Y, B)) for j = 0,1. Observe that if ¢y ~,, 1
and ¢ is a homotopy joining them, then ¢;(x) = ¢(z,j) for x € X, j =0,1.

Assume that o, 1 € M(X,Y) are joined by a homotopy ¢ in M, and let
AeC(X). If, for any t € I, p ois|A = ¢p|A, then we write pg =, p1 (rel A).

(5.1) ExamPLE. Consider a morphism ¢ € M;(S*, S') represented by the
generic pair (py, qy) of the acyclic map v introduced in (3.8). We show that ¢ is
homotopic in M; to the morphism ¢’ represented by (py,py). Let P : Gy x I —
St x I and Q : Gy x I — S' be given by P(z,y,t) = (z,t) and Q(z,y,t) =
(1 — t)y + tz| (1 — t)y + tz]. By (2.6)(i), P € Vi(Gy x 1,5 x I) and the
morphism represented by (P, Q) joins ¢ to ¢’. Geometrically this fact is obvious:
for any x € S’ the set ¢(x) = 1(x) is contractible to x.

(5.2) PROPOSITION. If ¢g,01 € M(X,Y) are n-homotopic and o, y1 €
M(Y,Z) are 1-homotopic, then g o pg =y, 11 0 1.

Proof. Let ¢ € M, (X x I,Y), ¥ € My(Y x I,Z) be homotopies joining
o, w1 and g, 11, respectively. Define h : X x I — I, T : I x X — X x I by
h(z,t) =t, T(t,z) = (z,t) forz € X, t € I. It is easy to verify that the morphism
poTo(h,@) e My(X x1,Z) joins 1g o @g to 11 0 p1 (see (3.5), (4.3)). m

(5.3) EXAMPLE. Let ¢ be the l-morphism from (5.1). By (5.2), ¢ o ¢ is
homotopic to idg: (more precisely: to the corresponding morphism determining
idg1). From the geometric point of view this is not so obvious since, for x €
St (pop)(z) =St In Example (6.8) we shall see that the notion of homotopy
of morphisms is closely related to the structure of morphisms and does not depend
on the maps determined by these morphisms.

(5.4) EXAMPLE. Let X =T and Y =[0,1] U [2,3]. Let fo : X — [0,1], f1:
X — [2, 3] be continuous maps. These functions are not homotopic in M;(X,Y).
However, the 4-morphism determining the 4-acyclic map ¢ : X x I — Y given by

fo(x) for t € [0, %],
P(x,t) = {fo(z), fi(z)} forte (3,3),
fi(x) for t € [%, 1]

is a homotopy joining fy to f1 in My.

(5.5) Remark. Homotopy of maps in A,, n > 1 (see (1.8)), is compatible
with homotopy in M,,. Precisely: if ¢, ¢’ € A,,(X,Y) are homotopic in A,,, then
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the morphisms ¢, ¢’ represented by the generic pairs of ¢ and v)’, respectively
(see (3.4)(i)), are n-homotopic.

(5.6) THEOREM. The relation “=1" of homotopy of morphisms from M;(X,Y)
s an equivalence relation. Similarly, for n > 1, the relation “=, 1" restricted to
M, (X,Y) is an equivalence relation provided X is a binormal space.

Actually, we prove that “~,” is symmetric and transitive in M,,. But, for a
morphism ¢ € M, (X,Y) (n > 1), we are only able to find a homotopy joining
©o to itself which is merely an (n + 1)-morphism.

Proof of (5.6). Let ¢oeM, (X,Y) be a morphism represented by a cotriad
X« G—Y. By (2.6)(ii), P = p x id; € Vny1(G x I, X x I). Clearly, the pair
q

(P, 63) where Q : G x I — Y, Q(g,t) = q(g) for g € G, t € I, represents a
morphism which is a homotopy joining ¢ to itself. If n = 1, then P € V(G x
I, X x1I) (see (2.6)(i)).

The symmetry of “=,” is obvious.

Now we prove transitivity. Let p; € M,(X,Y), j =0,1,2, and let ¢, ¢" €
M, (X x I,Y) join ¢q to ¢1 and o1 to pa, respectively. Define g : X x [O, %] —
XxI,h: Xx[31] 5 XxTandj: X — X x {1} by g(z,t) = (z,21),
h(z,t) = (z,2¢t — 1) and j(z) = (z,3). Clearly, goj=iy, hoj =1ip. In view
of (3.7)(ii), ¢’ 0g € M, (X x [0,2],Y), ¢’ oh € M,(X x [3,1],Y) and ¢’ o
gl X x {3} =¢' ogoj=¢oit=p1=¢"0ig=¢" ohoj=¢"oh|X x {3}
By (4.2), there exists ¢ € M,(X x I,Y) such that ¢|X x [0,3] = ¢’ 0 g and
<p‘X x [3,1] = ¢” o h. Hence ¢ is a homotopy joining ¢o to @2 in M,. =

The following notion plays an auxiliary role in the sequel. Let (X, A), (Y, B)
be pairs of topological spaces. We say that pairs (p, q), (p',¢') € D((X, A), (Y, B)),
where p € V((G,T),(X,A)) and p' € V((G',T"),(X,A)), are h-linked if there is
a continuous map f : (G,T) — (G, T") (or f': (G',T") — (G,T)) such that the
diagram

% (G, T) N v (G",T") \q,
(X, 4) |7 (Y,B) or (X,A) [
p’\ (G',T") /qt 2 (G,T) 4

is homotopy commutative, i.e. ¢ and p are homotopic to ¢’ o f and p’ o f, respec-
tively (or ¢’ and p’ are homotopic to g o f” and po f’, respectively).

Analogously, we say that morphisms ¢, ¢’ € M((X, A), (Y, B)) are h-linked if
there are pairs (p,q) € ¢, (p',q¢’) € ¢’ which are h-linked.

(5.7) Remark. By (3.4)(i), any morphism determining an n-acyclic map
is h-linked with the morphism represented by (py, gy )-
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It is easy to see that homotopy has a lot in common with A-linking. Never-
theless, the two relations are different.

(5.8) ExaMPLE. Let X be a topological space and let Y be a subset of a
topological vector space. Assume that g € My (X,Y), p1 € M, (X,Y), n > 1,
and let (1 —t)po(z) + te1(x) C Y for any x € X, t € I. This means that the
maps determined by ¢g and @1 are homotopic in the class of all set-valued maps.
However, it is not clear whether these morphisms are homotopic in M,,, for some
integer m > 0. But there exists an n-morphism & such that the morphisms g, ®

and ¢, are h-linked. Indeed, suppose that cotriads X «— G; — Y represent
Pj qj

¢j, J =0,1. Define G = {(go,91) € Go X G1 : po(go) = p1(g1)} and P : G —

X, Q:G—Y by P(go,91) = p1(91) and Q(g0,91) = qo(g0)- It is easy to see that

P e V,(G, X). Moreover, define maps f; : G — G; by f;(g0,91) = g; for j =0, 1.

The diagram

v 9
X l Y
A4
P q
J G] J
is commutative for j = 0 and homotopy commutative for j = 1. This proves

that the n-morphism & represented by the pair (P, Q) is h-linked with ¢y and ¢
simultaneously.

Now, we study extension of morphisms and its relation to homotopy.

Let X,Y be topological spaces and let A C X. We say that a morphism
©* € M(X,Y) is an extension of a morphism ¢ € M(A,Y) if p*|A = . If ©*
is an extension of ¢, then obviously ¢*(x) = ¢(x) for any z € A; if A € C(X)
and ¢* is an n-morphism, then by (4.1), ¢ € M, (A,Y). As is readily seen, the
problem of existence of an extension for morphisms is more complex than the one
concerning single- or set-valued maps.

We begin with the simplest criterion for the existence of extensions.

(5.9) PROPOSITION. Let A be a retract of X.

(i) If ¢ € M1(A,Y), then there is an extension ¢* € M1(X,Y).

(i) If ¢ € Mp(A,Y), n > 1, X is paracompact and there is a retraction
r: X — A which is an Fy-map with dim(r) < m, then there is an extension
0" € Mypm(X,Y).

Proof. It is sufficient to put p* = @ or and use (3.7)(ii). m

(5.10) ExAMPLE. Let E be a normed space and let D = {z € E : ||z| < 1}.
Then D is a retract of F, the radial retraction r is an Fy-map and dim(r) = 1.
Hence, for any ¢ € M,(D,Y), there is an extension ¢* € M, 1(FE,Y) for any
space Y.
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In the case when A and X are absolute neighbourhood retracts, the existence
of extensions is a homotopy property. More generally:

(5.11) PROPOSITION. Let X be compact, A € C(X) and the pair (X, A) be
a cofibration. If o, 01 € M1(A,Y) are 1-homotopic and ¢ € My(A x I,Y) is
a homotopy joining them and there is an extension ¢§ € M1(X,Y) of o, then
there is ¢* € My (X x 1,Y) such that p*|A X I = ¢, ¢*oig =} and p* 0iy is
an extension of 1.

The assertion holds, in particular, when X, A are absolute neighbourhood
retracts.

Proof. The proof is standard and goes as in the case of single-valued maps
since, by assumption, X x {0} U A x I is a retract of X x I and the relevant
retraction is a closed map in view of the compactness of X. m

Below, we give examples of the above situation.

(5.12) LEMMA. Let E be a normed space, D its closed unit ball and A = bd D.
Assume additionally that 'Y is an absolute extensor for the class of normal spaces.
If o € Mi(AY) (or ¢ € M,(A)Y), n > 1), then there exists an extension
©* € My(D,Y) (or ¢* € M,,11(D,Y)) of o.

Proof. Assume that a cotriad A<~ G —%Y represents a morphism ¢ €
M(A,Y). Let f: G x {0} — X be given by the formula f(g,0) = p(g) and
put G* = G x [0,1] Uy D (i.e. we identify # € D with the set f~(z)). If i :
G x[0,1] - Gx[0,1]® D, iy : D — G x [0,1] & D are embeddings and v :
G x [0,1]® D — G* is the quotient map, then j, = voix, k = 0,1, is continuous,
G = jo(G x [0,1]) U j1(D), jo|G x (0,1] and j; are homeomorphisms and jo is a
closed map (comp. [32]). Define p* : G* — D by the formula

p*(o(g,1)) = (3 + 3t)p(g) forge G, tel,

P (ji(r)) = %x for x € D.

The map p* is well-defined, continuous and p*(G*) = D. For any C € C(G*), we
have p*(C) = s(j5 ' (C)) U 357 1(C) where s : G x I — D is given by s(g,t) =
(% + %t)p(g). Hence, p* is a closed map. For any = € D,
o = {0 for la] <
Jo(p~ (llzflz) x {2jz] —1}) for ||z >
therefore, p* is a perfect surjection.

Now, we show that rdp(sf.) < n+1—k—1 for any k > 0 and n > 1.
First, observe that sf. € T'={z € E : ||| > 3} since, for z € D with ||z]| < 3,
H*(p*~Y(z)) =0, k > 0. Next, A is a retract of T'; the radial retraction r : T — A
is an F,-map. Since x € 5’;* if and only if r(x) € s’;, it follows that r maps s];* onto
sh. Let C € C(D), C C sp.. Then r(C) C sk. Since A, T are metric spaces and
dim(r) = 1, we have dim(C) < dim(r(C))+1 < rda(sh)+1 < n+1—k—1 (see [2]).

N D
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Clearly, if ¢ € My, then s’;* = () for any k > 0. It is easily seen that p*~1(A) =
Jo(Gx{1})=4opG x {1}~4opG. Since G is paracompact (as the preimage of a para-
compact space under the perfect map p) and Y is an absolute extensor for the class
of normal spaces, there is a continuous map ¢* : G* — Y such that ¢*(jo(g,1)) =
q(g) for g € G. Now, it suffices to represent a morphism ¢* by (p*,q¢*). =

(5.13) COROLLARY. If S is an m-dimensional simplex in R, k > m,
Y is an absolute extensor for the class of normal spaces, ¢ € M;(0S,Y) (or
© € M,(0S,Y), n > 1), then there is an extension ¢* € Mi(S,Y) (or ¢* €

M,+1(S,Y)) of ¢ (where OS denotes the geometric boundary of S).

(5.14) THEOREM. Let (P, Py) be a (finite) polyhedral pair. If Y is an absolute
extensor for the class of normal spaces, ¢ € My(Py,Y) (or ¢ € M,(Py,Y),
n > 1), then there is an extension ¢* € My(P,Y) (or ¢* C My4m(P,Y) where
m = max{dim(S) : S € T, S & To} and (T,Tp) is a triangulation of the pair
(P7 PO)) Of P

Proof. Let dim(P) = N > Ny = dim(F). For any 0 < k < N, by T*
we denote the k-dimensional skeleton of T, P* = |T*|; and similarly, for 0 <
k < Ny, T} denotes the k-dimensional skeleton of Ty, P¥ = |T%|. Then, for
0 < k < Ny, T¥ is a subcomplex of T*, and PN = P, P = P,. We shall
construct a family of morphisms o5, € M(P*Y), k=0,1,...,N, such that

(i) pr|PF¥1 = pp_1 for 1 < k < N;

(ii) @r|PE = ¢|P¥ for 0 < k < Np.

The morphism ¢* = @y will satisfy the assertion.

Let Py <2 G -5 Y represent ¢. Assume that P° = {z1,..., 2.} and the ver-
tices are ordered in such a manner that z1,...,zs (s < r) belong to Py and
Toit,. Tr & Py. Put Gy = p~1({xy,...,2s}) U {2ss1,...,2,} and define a
map pg : Go — P° by the formula po(g) = p(g) for g € p~*({z1,...,25}) and
po(zj) = x; for s+ 1 < j <r. Define qp : Go — Y similarly, i.e. go(g) = ¢(g) for
g€pt({z1,...,2s}) and qo(z;) = y;, s+ 1 < j < r, where y; are arbitrarily
chosen points of Y. Clearly, the morphism ¢y represented by the pair (pg, o)
satisfies condition (ii).

Assume that, for 0 < k < N — 1, we have defined morphisms ¢, € M (P*,Y)
such that conditions (i), (ii) are satisfied. Now, it suffices to define ;41 on an
arbitrary simplex S from T**! in such a way that 51|05 = ©1|0S; next use
(4.2) in order to piece together the given morphisms and obtain the required
Ori1 € M(PFLY).

Let S € TFHL If k+1 < Ny and S € Té““, then we put pr41 = ¢|S. If
k41> Ngor S ¢Tyt, then, in view of (5.13), there is pg11 € M(S,Y) such
that pg1]0S = pr|0S.

From the above construction it follows that ¢y41 satisfies conditions (i), (ii).
Moreover, if ¢ € M, (Py,Y), then ¢* = on € M, 4,,(P,Y) and ¢* € M;(P,Y)
provided ¢ € M1(F,Y). =
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As an immediate corollary we get:

(5.15) THEOREM. Let X C RY and A C X be a compact neighbourhood
retract in RN . If o € My(A,RM), then there exists an extension p* € My (X, RM)

of .
Obviously, in view of (5.14), the above assertion generalizes to n-morphisms.

Proof. There are a compact neighbourhood U of A in RY and a retraction
r: U — A. There is a polyhedron P such that A C P C U. By (5.9), there is a
morphism ¢’ € My (U, RM) such that ¢'|A = ¢. Let ¢" = ¢'|P. In view of (5.14),
we can find " € My (convP,RM) such that ¢"’|P = ¢ and, in view of (5.9),
there is ¢’V € M; (RN, RM) such that ¢'V|convP = ¢"’. Now, it suffices to define
e =¢V|X. n

In particular, we get the following criterion for the existence of extensions of
acyclic maps.

(5.16) COROLLARY. Under the assumptions of (5.15), if ¥ € A;(A,RM),
then there exists a map ¥* : X — K(RM) determined by a 1-morphism and such
that *|A = 1.

Other facts concerning the existence of extensions of convex-valued maps can
be found e.g. in [80], [94].

6. Essentiality of morphisms. The notion of essentiality of single-valued
continuous maps into spheres was considered by K. Borsuk and other authors;
next, it was thoroughly studied by A. Granas in a more general setting and used
in fixed-point theory (see [51], [52], [26] and others). Some aspects of this notion
for set-valued maps were presented in [46], [68].

Below, we present several results concerning the essentiality of maps determi-
ned by morphisms. First, we give a relatively general and abstract setting, and
next, we confine ourselves to morphisms acting in finite-dimensional spaces.

Let X,Y be topological spaces, let A C X be closed and K C Y compact.
Consider a morphism ¢ € M;((X, A), (Y, Y\K)). We shall be interested whether
there exists z € X such that ¢(z) N K # 0.

We say that a morphism ¢ is inessential on A over K if it is 1-homotopic to
a morphism ¢ € M;((X, A), (Y,Y\K)) such that ¢(X)N K = () (i.e. there is a
homotopy @ € M;((X xI,AxI),(Y,Y\K)) such that ?oiy = p and Poiy = @).
The morphism ¢ is weakly inessential on A over K if there exists an extension
¢ € Mi((X,A),(Y,Y\K)) of p|A such that ¢(X) N K = (. Conversely, we say
that ¢ is (strongly) essential (on A over K) if it is not (weakly) inessential.

It is quite obvious, in view of the results of Section 5, that on this level
of generality we are forced to consider the notion of essentiality in the class of
1-morphisms (see the comments and examples at the end of the present section).
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(6.1) PROPOSITION. 1-homotopic morphisms are either both essential or both
inessential.

Proof. This follows from the definition and the transitivity of homotopy. =

The next result states that inessential (resp. strongly essential) morphisms are
actually weakly inessential (resp. essential).

(6.2) THEOREM. Let X be a normal space. If oo € M1((X,A),(Y,Y\K)) is
inessential on A over K, then there exists a morphism o1 € My ((X, A), (Y,Y\K))
such that po ~1 1 (rel A) (mod A) and p1(X)N K = 0.

Proof. By definition there is a morphism ¢* € M;((X x [, Ax I,(Y,Y\K))
such that ¢* oig = ¢ and ¢7(X) N K = 0 where ] = ¢p* 0i;. Let B =
{z € X :p*(z,t) N K # ( for some t € I}. Clearly, B = pry(¢* ' (K)) where
pry : X xI — X is the projection. Since the map determined by ¢* is u.s.c. and
pry is a closed map, B is closed and AN B = (). The Urysohn Lemma gives a
continuous map f : X — I such that f|A =0 and f|B = 1. Let p = ¢* o g where
g: X xI— X xIisgiven by g(x,t) = (z, f(z)t). Clearly, ¢ € M1(X x1,Y) and,
forx € Aandt € I, p(z,t) C Y\K. If we put 1 = @oiy, then g >~ 1 (rel A)
and )1 (X)NK=10. m

(6.3) Remark. In contrast to (6.1), the question of homotopy invariance of
weak inessentiality (or strong essentiality) remains open. Of course, if (X, A) is a
cofibration and X is compact, then in view of (5.10), these notions are equivalent.
Similarly, in the class of compact convex-valued maps in place of maps determined
by morphisms (e.g. acyclic maps), we get the full homotopy invariance of weak
inessentiality (for single-valued continuous maps — see [26]). Compare also the
discussion in [68].

The essentiality of morphisms has the following property of localization.

(6.4) THEOREM. Let B C A be a closed set and L C'Y a compact superset of
K. Assume that ¢ € M1(X,Y) and p(A) C Y\L.

(i) If ¢ is (weakly) inessential on A over L, then ¢ is (weakly) inessential
on B over K.

(ii) Additionally, assume that X is compact, Y is a locally convex topological
vector space and L is convex. If ¢ is (weakly) inessential on A over K, then it
is (weakly) inessential on B over L.

Proof. (i) is immediate. To prove (ii), it is enough to show the assertion when
A = B and then use (i). Let ¢ be inessential on A over K. By (6.2), there is a
morphism ¢ € M ((X, A), (Y, Y\K)) such that ¢ ~; ¢ (rel A) and g(X)NK = (.
In particular, &'(A x I) C Y\L where ¢ is a homotopy (rel A) joining ¢ to @.
Without any loss of generality we may assume that 0 € K. There is a closed convex
neighbourhood U of 0 in Y such that ¢(X) N (U + K) = (. Since L is compact
there is A > 0 such that L C int \U. Let V = AU and let v : Y — [0, 00) be the
Minkowski gauge of V. Define a retraction r : Y\{0} > y — r(y) = [v(y)] 'y €
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bd V. Now, assume that (p,§) € @ where p € V1(G, X) and ¢ : G — Y. Consider
the morphism @ represented by the pair (p,q) where § = r o q : G — bdV.
Obviously, € M;((X,A),(Y,Y\L)) and p(X) N L = (. The morphism @”
represented by the pair (P, Q), where P : GxI—>XxI, Q:GxI—>Y
and P(g,t) = (p(9),1), Q(g,t) = (1 — 1)g(g) + 1q(g) for g € G, t € I, is such that
@"(A x I) C Y\L and furnishes a homotopy from M;((X, A), (Y,Y\L)) joining
¢ to . Hence, in view of (5.6), ¢ € M;((X, A), (Y,Y\L)) is inessential on A over
L. The proof that weak inessentiality over K implies weak inessentiality over L
is similar. m

(6.5) COrROLLARY (Excision property). Let ¢ € M;((X,A), (Y, Y\K)), let U
be open in X and UNA=0. If o~ (K) C U and ¢ is (strongly) essential on A
over K, then ¢|clU is (strongly) essential on bdU over K.

Proof. Suppose that ¢’ = ¢|clU is inessential on bd U over K. By (6.2),
there exists ¢’ € M;((clU,bdU),(Y,Y\K)) such that ¢’ ~; ¢'(rel bdU) and
@' (clU)N K = (). Let ¢ be the morphism obtained by piecing together ¢|X\U
and @' (see (4.2)). Clearly, ¢ ~; @(rel(X\U)) and ¢(X) N K = 0; hence ¢ is
inessential on X\U over K. By (6.4)(i), we get a contradiction. m

(6.6) COROLLARY. Under the assumptions of (6.4)(ii), if ¢ € M1((X,A),
(Y,Y\L)) is essential on A over L and W is the component of Y \p(A) containing
L, then W is bounded, W C ¢(X) and Y\@(A) is not connected.

Proof. Let w € W and let  be an arbitrary point of L. There is an arc P
which is the union of linear segments P; = [w;—1,w;],1 < i < n, where wy = w
and w,, = z, joining w to x in W, i.e.

P=PU...UP, CW.

Suppose that w € ¢(X). This means that ¢ is inessential on A over {w}. By
(6.4)(ii), ¢ is inessential over P; and, hence, over {w;} as well. By induction, ¢
is inessential over {x} and, once again by (6.4)(ii), it is inessential over L — a
contradiction. Obviously, W is bounded as a subset of the compact set ¢(X) (see
(1.2)(iv)), and since Y'\¢(A) is not bounded, it cannot be connected. =

Below, we give some examples of essential and inessential morphisms. For
simplicity, we confine ourselves to the special case X = B", A= 8S""1, A=R"
and K = {0}, n > 1. In view of (5.10), in this case the notions of essentiality
and strong essentiality are equivalent (see also (6.3)).

(6.7) ExaMPLE (Normalization property). (i) Any morphism
[ZA= Ml((an Sn_l)? (an Rn\{o}))

such that $|S™~! determines the inclusion j : S"~1 — R"™\{0} is essential (on
S™=1 over {0}). Indeed, suppose that there is a morphism ¢ € M;(B™, R™\{0})
such that ¢|S"~! = p|S"~L. Let ¢ be represented by a pair (p,q), where p €



Degree theory of set-valued maps 31

Vi(G,B") and ¢ : G — R™\{0}, and let i : S"~! — B", w:p~}(S"!) - G be
the inclusions. It is easy to see that the diagram

R™\{0}
v

Sn—l - p—l(Sn—l) G

VA
el A4

BTL
is commutative. Therefore, in cohomology, we have

H' (@) o [H ()] ™ o H"Y(a) = H" 1),

which leads to a contradiction. One can easily show that there is no (n — 1)-
morphism ¢ € M,,_1(B"™,R™\{0}) which is an extension of a morphism determi-
ning j. However:

(ii) There is a (2n + 1)-morphism which is an extension of j onto B™. Let
G = {(z,y) € B" x (R"\{0}) : [2| > 5, |y| = |2] and |y — 2] < 4 — 42| or
|z| < %, ly| = %} Let p: G — B™ and ¢ : G — R™\{0} be the projections. The
pair (p, q) represents the required (2n + 1)-morphism.

(iii) J. Jezierski has built (Zeszyty Nauk. Uniw. Gdai. 6 (1987)) a (1-2-3)-
mapping 1 : B2 — K(S') (i.e. a w.s.c. map such that, for any x € B2, ¢(z) is a
set of 1, 2 or 3 elements) such that, for z € S, 1)(z) = x. Clearly, this map  is
determined by a 4-morphism. The construction from (ii) indicates the existence
of a 5-morphism with this property. In view of the results from [28], it follows
that a (1-2)-map with this property does not exist. It would be interesting to find
out whether there exists a morphism ¢ € M (B™,R™\{0}) which is an extension
of jonto B" forn— 1<k <2n+ 1.

The above examples (ii), (iii) show that it is rather senseless to discuss the
notion of essentiality in M} for k£ > 1. In the special case X = B™, one can try
to do that in M, _; but there would be difficulties in obtaining the homotopy
invariance of this new notion.

Below we provide the simplest example of an inessential morphism.

(6.8) EXAMPLE. (i) An arbitrary m-morphism determining a constant k-
acyclic map v : S"7! — K(S™!) (i.e. such that, for each x,y € S"! () =
¥ (y)) has an extension in M,,11(B",R"\{0}) provided k£ < 2n — 1. Indeed, let
T = 1(z) for x € S"~1. There is yo € S" !\T since otherwise ¢ would be a 2n-
acyclic map. Let a pair (p,q), where p € V,,(G,S" 1), ¢ : G — S"~ !, represent
an m-morphism that determines 1. Consider the map Q : G x I — S™~! given
by Q(g,t) = [ta(g) — (1 — t)yo| ' (ta(g) — (1 — t)yo) for g € G, t € I. The map Q
furnishes a homotopy between ¢ and ¢ : G — S™~! given by qo(g) = —o for any
g € G. In view of (5.12), the m-morphism ¢, represented by the pair (p, ¢o) has
an extension ¢f € My,+1(B™,R"\{0}). Assume that a pair (p*,q), where p* €
Vim+1(G*, B™), qf : G* — R™\{0}, represents ¢f. Without any loss of generality
we may assume that G C G* and p*|G = p. The space G* is normal and G is its
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closed subset. Since R™\{0} is an absolute neighbourhood extensor for the class of
normal spaces, the pair (G*, G) has the homotopy extension property. Therefore,
there is a continuous map ¢* : G* — R™\{0} such that ¢*|G = ¢. Clearly, the
pair (p*, q*) represents an (m + 1)-morphism ¢* such that ¢*|S"~1 = .

In particular, any morphism ¢ € M;((B™,S"1), (R*,R"\{0})) such that
©|S™! determines a constant 1-acyclic map ¢ : S"~! — K(S™1) is inessential.

(ii) In the case when k > 2n — 1, a constant k-acyclic map may or may not
have extensions onto B™ and into R”\{0} determined by morphisms. For example,
consider the 1-morphism ¢ defined in (5.1). By (5.3), ¢ o is homotopic in M; to
idg1, hence, by (6.1), (5.11), it has no extensions onto B? with values in R?\{0}
belonging to M;. On the other hand, the map 1 determined by ¢ o ¢ is constant
4-acyclic. The 4-morphism represented by the generic pair (py, ¢,) determines .
However, one easily sees that this morphism has an extension in My (B?,R?\{0}).

The above examples show that the homotopy and extension properties of
morphisms depend deeply on the internal structure of a morphism and not on a
map determined by it. Moreover, we think that studying the generalized equation

ex)NK #£0, ze€X,

it is better to consider morphisms with their structure rather than merely maps
(e.g. acyclic ones).

7. Concluding remarks. In [44], L. Gérniewicz and A. Granas gave another
definition of a morphism. First, by a Vietoris map p : G — X, where G, X are

spaces, they understood a perfect surjection such that H +(p71(z); Q) = 0 for any
z € X, where Q stands for the field of rational numbers and H, is Cech homology

with compact carriers (see [41]). In the set D(X,Y) of all pairs X <>~ G -5,
where p is a Vietoris map (in the above sense) and ¢ is continuous, they considered

arelation “~” such that (p, q) ~ (p',¢'), where X £— G’ 5V, if and only if there
aremaps f : G — G' and g : G’ — G such that ¢’of = ¢, p’of = pand gog = ¢/,
pog=p'. Equivalence classes of this relation were called morphisms. We easily
see that our relation “~” is more restrictive. However, we believe that, having
the relation introduced in Section 3, we will be able to obtain more interesting
results concerning morphisms.

Moreover, in [41] (comp. [17]), acyclic maps with respect to the Cech homology
with rational coefficients were considered. A map ¢ : X — K(Y) is said to be

acyclic (w.r.t. fI*) if, for any z € X, ﬁ*(w(m), Q) =0.
(7.1) PROPOSITION. An acyclic (w.r.t. H) map ¢ : X — K(Y) is 1-acyclic

w.r.t. H* with integer coefficients.

Proof. First, it is easy to see that H*(1(z); Q) = 0 (see [41] and A.(1.8)).
The assertion now follows from the universal coeflicients theorem for Alexander—
Spanier cohomology. =
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In view of the above proposition we see that morphisms (or rather maps de-
termined by them) embrace other classes of set-valued maps considered elsewhere
(cf. e.g. [11], [39], [42], [17]).

As another consequence of the universal coefficients theorem we get:

(7.2) PROPOSITION. Let R be an arbitrary principal ideal domain. A map
p: G — X is a Vi-map with respect to Z if and only if p is a Vi-map w.r.t. R. If
pis a Vp-map, n > 1, w.r.t. R, then p is a V,-map w.r.t. Z.

Proof. Observe that s%(Z) C sF(R) for any integer k > 0. Indeed, if z &
sk(R), then H*(p~'(z); R) = 0. Hence, the exactness of the sequence (see [104])

0— H*(p~'(2);2) ® R — H*(p~'(x); R) — H*" (p™' (2); Z) * R — 0
entails that H*(p~'(x);Z) = 0 and z € sk(Z). Therefore
rdX(s’;(Z)) < rdX(s';(R)) <n—-k—1.m

The above result shows that morphisms represented by pairs (p, q), where p
is a V-map with respect to Z, play the central role in our investigations. Hence,
in the next sections, we shall be mainly interested in these morphisms.

II. The topological degree theory of morphisms

In this chapter we present the theory of the topological degree of morphisms
(and, in particular, of maps determined by morphisms) defined on finite-dimen-
sional manifolds. It is our aim to obtain an integer-valued degree by applying
Alexander—Spanier cohomology with integer coefficients.

The fixed-point index (or the degree) of set-valued maps defined on open
subsets of the Euclidean space R™ or on S™ (resp. on open subsets of Banach
spaces or absolute neighbourhood retracts) was considered and intensively studied
by many authors:

1. Convex-valued maps — [49], [21], [10], [80];

Acyclic maps — [10], [41], [107], [39], [44], [71], [9], [20], [101], [103];
n-Acyclic maps — [10], [11], [17], [16];

Maps with proximally co-connected values — [10], [46], [47];
Morphisms (in the sense of [44]) — [44], [41], [43], [99];

So-called admissible maps — [41], [17], [71].

In [99], 1-morphisms on compact manifolds were studied.

AR ol

In the above-mentioned papers, Cech homology theory with compact carriers
was used and the rational-valued degree or index was defined (see e.g. [41], [71],
[44], [99], [43]), while e.g. [11], [10], [17], [16] use Cech cohomology. Moreover,
in these papers (except for [21], [80], [9], [46], [47], [68], [101], [103] where suita-
ble approximation techniques were used) the Eilenberg—Montgomery method [30]
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based on the Vietoris theorem and developed by Gérniewicz (e.g. [43], [45], [17])
together with ideas of Dold [24], [25] were applied (see also [90], [93]).

In the case of morphisms defined on open subsets of R™ (or on S™) the homolo-
gical approach does not differ too much from the cohomological one (for example
compare [41] and [17]). We are going to define an integer-valued degree of mor-
phisms of manifolds. Therefore we are forced to use cohomology theory. However,
it is to be observed that in the case of manifolds in order to adapt the method
of Dold (used in the homological setting for continuous single-valued maps) to
morphisms and to cohomological context one should overcome several technical
difficulties.

In [24] (comp. [25]), A. Dold introduces the following definition of the degree
of continuous single-valued maps. Let (X, u), (Y,w) be oriented m-dimensional
manifolds and let /' : X — Y be a continuous map. If L C Y is a compact
connected set and the set K = F~1(L) is compact, then H,,(F) : H,,(X, X\K) —
H,,(Y,Y\L) and H,,(F)(urx) = cwr, where ¢ € Z. The degree of F over L is
defined by the equality deg; F' = c¢. The above approach cannot be adapted to
the situation when one considers cohomology (and we have to do that in order to
get an integer-valued degree).

In the first section of this chapter we study the cohomological properties of
morphisms. In Section 2 we prepare some additional objects and notions necessary
in the sequel. Next sections are devoted to the definition of the degree and its
properties. The last section presents some results generalizing the well-known
Borsuk theorem on antipodes.

1. Cohomological properties of morphisms. Let X be a paracompact
space, A € F,(X); let (Y, B) be a pair of topological spaces and let o € M,,((X, A),
(Y, B)), n > 1. Assume that a pair (p, ¢) represents ¢, where peV,,((G, T), (X, A))
and ¢ : (G,T) — (Y, B) is continuous. In view of 1.(2.8), H*(p) : H*(X, A; R) —
H*(G,T;R) is an isomorphism for any integer k > n + 1 (for all k > 0 if n = 1)
and for any principal ideal domain R. Hence, for k>n+1 (or k>0 when n = 1),
we may define H*(p) : H*(Y, B; R) — H*(X, A; R) by

H*(p) = [H*(p)] ™" 0 H"(q)-

I~

This definition is correct: if (p, ) (', q"), where p’ 6 V(G T),(X,A)), ¢ :

(G",T") — (Y, B), then [H*(p)]~ oH’“( "N =[H*(p)] Lo H*(q), k>n+1.
Let ¢1 € Mn((X, A),(Y,B)), n =1, p2 € M1((Y, B), (Z,0)).

(1.1) LEMMA. For any k>n—+1 (k>0 whenn =1),
H"(p2001) = H*(p1) o H* ().

Proof. For simplicity, let A =B = C = 0. Let (pj,q;) € ¢;, j = 1,2, where
p1 € Vn(G1,X),p2 € Vi(Go,Y)and ¢1 : Gy — Y, q2 : G2 — Z are continuous. By
the definition of composition, the n-morphism s o @7 is represented by the pair
(p19Ds, q20G, ) where (py, G, ) is the pull-back of (g1, p2). We have the commutative
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diagram
5, G1 Xy G2 g
P/ 1 9y 2 \q1
X— G lf Gy — 7
p1 q2
qﬁ, Y ‘/Pz

where f: G; Ky Gy — Y is the fibre product of (¢1,p2). For k > n + 1,
H*(3 001) = [H"(p10D,)] " 0 H* (g2 07Gy)
= [H*(p1)] " o H*(q1) o [H*(p2)] " 0 H*(q2) = H* (1) 0 H" (). m
(1.2) LEMMA. Under the assumptions of (1.1), the diagram

k
vH(v,B) T mkx, A

[ &
kal(B) Hﬁw) kal(A)

is commutative, where p € M,((X,A),(Y,B)), Yy =plA andk >n+1 (k>0
when n = 1).
(1.3) LEMMA. Under the above assumptions on X, A and Y, B, if o, 91 €
M, ((X,A),(Y,B)) are n-homotopic, then
Hk(SOO) = Hk(sf?l)
fork>n+1 (k>0 whenn=1).
(1.4) THEOREM. The cofunctor H* of Alexander—Spanier cohomology extends

from the category TOP? (restricted to pairs of paracompact spaces) to a cofunctor
defined on MOR% and satisfying all axioms of cohomology theory.

Proof. This follows easily from the following lemma.
(1.5) LEMMA. If n-morphisms @', ¢" are h-linked, then
H* (') = H*(¢")
fork>mn+1 (k>0 whenn =1). As a consequence, if ¢ : X — K(Y) is an

n-acyclic map, then H*(p') = H*(o") for k > n+1 (k> 0 when n = 1) and for
any morphisms ¢, " determining 1.

Proof. By 1.(5.7), ¢’ and ¢" are h-linked with the morphism ¢ represented
by (py,qy). =

2. The fundamental cohomology class. From now on we assume that
R = Z, that is, we consider (co)homology with integer coefficients, and V-maps
and morphisms with respect to Z.
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Let (Y,w) be an oriented m-dimensional manifold. We say that a subset L
of Y is free (or precisely: Z-free) if the group H,,—1(Y,Y\L) is free. It can be
proved (see [25, VIIL.3.5]) that, for any compact and connected set L C Y (hence,
by Mayer—Vietoris, for any compact L) the group H,,_1(Y,Y\L) is torsion-free.
Thus, L is free whenever the group H,,_1(Y,Y\L) is finitely generated. The
Alexander duality [104] immediately gives the following:

(2.1) PROPOSITION. If L is free, then H*(L) is free, and if H (L) is finitely
generated, then L is free.

(2.2) EXAMPLE. In view of (2.1), any compact contractible set or compact
absolute neighbourhood retract is free (recall that any compact absolute neigh-
bourhood retract has the homotopy type of a finite polyhedron).

Below we show that the family of compact free subsets of Y is cofinal in the
family of all compact subsets of Y directed by inclusion. We prove even more.

(2.3) THEOREM. For any compact connected subset N C Y and an open

neighbourhood U of N, there exists a compact connected and free set L C'Y such
that NC L CU.

First we prove the following:

(2.4) LEMMA. If Ly, Lo are compact connected and free, then Ly U Ly is also
free.

Proof. The pair {Y\L1,Y\ Lz} is excisive for H,. Consider the Mayer—Vie-
toris sequence of this pair:

P Hy (VY (L) 0 L)) 25 Hy oy (Y, Y\ (Ly U Ly)) 25
5 Hyy 1 (VY \L1) @ Hy oy (Y, Y \Lg) 25

It gives us the short exact sequence
(%) 0 — coker(Bs) — Hpm—1(Y,Y\(L1 U Lg)) — im(a,) — 0.

Clearly, im(a) is free as a subgroup of a free group. We show that coker(3,)
is also free. To this end observe that im(f3,) is a direct summand of a free
group H,,(Y,Y\(L1 N Ly)) (comp. A.(2.12)). Indeed, if v € H,,(Y,Y\L1), 0 €
H,,(Y,Y\Lsy), then in view of A.(2.12), v = cwr,,, 6 = dwy, where ¢,d € Z. Thus
(See A(12))7 ﬁ*(77 6) = Hm(JfllﬁLQ)(fY) + Hm(]ffﬁLQ)(é) = (C + d)(wL1ﬂL2) in
view of A.(2.9). Therefore the isomorphism @1, nr,0JL,nL, (see A.(2.8), A.(2.7))
maps im(f,) onto the subgroup of constant functions in C'(L; N Ly, 7Z), which is
a direct summand.

The sequence (x) is split and has outer terms free; hence the group H,,,—1(Y, Y\
(L1 U Lg)) is free. m

Proof of (2.3). Obviously (see (2.1)), the closed ball B™ is a free subset of
R"™. First, assume that N is such that there exists an open V, N C V C U, and
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a homeomorphism h : V — R™. By excision,
H,, 1(Y,2Y\N)~H,,_1(V,V\N) ~ H,,_1(R",R™\h(N)).

Take an arbitrary ball B such that h(N) C int B and let L = h=1(B). Obvio-
usly, the set L is compact connected and free. Now, let N be arbitrary compact
connected. We can decompose IV into a union N = N; U...U N, where N}, for
1 <75 <r, is as above. For any 1 < j < r, there is a compact connected and free
set L; such that N; C L; C U. In view of Lemma (2.4), L = L; U...U L, has
the required properties. m

The main property of free sets is given in the following;:
(2.5) LEMMA. Let L CY be free. There exists a natural isomorphism
Iy, : H*(Y,Y\L) — Hom(H,,(Y,Y\L),Z).
Proof. By the universal coefficient theorem for singular cohomology we have
a functorial short exact sequence

0 — Extz Hyuo1 (Y, Y\L) — H*(Y,Y\L) — Hom(H,, (Y, Y\L), Z) — 0,
L

where the homomorphism [, is given by the Kronecker duality
I.(a)(@) = (a,q)

fora € H*(Y,Y\L), o € H,,(Y,Y\L). Since H,,_1(Y,Y\L) is free, we deduce
that Exty H,,,—1(Y,Y\L) = 0 and, therefore, I, is an isomorphism. m

(2.6) Remark. Ifin (2.5), instead of Z, we consider another ring, then the
assertion may hold without any assumption on L. This is the case, for example,
if the ring is a field.

For later convenience, we say that a set L C Y is admissible if it is compact
connected and free.
By the fundamental cohomology class of an admissible set L C Y we under-

stand the unique element wl € H™(Y,Y\L) such that
(2.7) I (W) (wr) =1

where wy, denotes the fundamental homology class of L (for the given orientation
wonY).
In view of A.(1.3), A.(2.9) and (2.7), we have

(2.8) PROPOSITION. If N, L are admissible sets and L C N, then
HI'(j7 )(wh) = ™.
(2.9) Remark. Similarly to A.(2.11), we can define the fundamental system
of cohomology classes of a compact and free set L C Y. In particular, the funda-

mental cohomology class w” of an admissible set L C Y is a free generator of the
infinite cyclic group H*(Y,Y\L).
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Assume that (Z,v) is an oriented k-dimensional manifold and let L C Y and
N C Z be admissible sets.

(2.10) LEMMA. If, for all mn > 1, the groups Hy,—n(Y,Y\L), H—n(Z, Z\N)
are free, then so is the set L x N.

Proof. This is an immediate consequence of the Kiinneth formula. m
(2.11) PROPOSITION. If the set L x N is free, then
(wx V)N = (—1)™F ol N € HPR(Y x Z,Y x Z\L x N).
Proof. By the natural properties of the products involved we have
(D)™l x N (W x V) pun) = W o) (0N, vy) = 1.
The assertion follows from the definition (2.7). m

(2.12) Remark. It is well known that any manifold Y is Zs-orientable (see
[25]). On the other hand, by (2.6), any compact set L C Y is Zo-free. Hence, in
this situation, we may repeat the constructions from (2.7), (2.8), (2.9) and (2.11).

The notion of free set was suggested to the author by Prof. A. Dold (private
communication) and plays an auxiliary role. However, it is related to some other
interesting problems. Let, as above, (Y,w) be an oriented m-dimensional manifold
and let u be the Thom class of the orientation. In [67], it was shown that, for
any compact path-connected L C' Y and T, : Ho(L) — H"(Y,Y\L) given by

Ti(e) = H () (u)/ v,
where jr, : (Y, Y\L) x L — (Y xY,Y x Y\Ay) is the inclusion, we have
(Tp(1),wr) =1

(recall that Ho(L) ~ Z). Hence, Tr,(1) € H*(Y,Y\L) plays the role of the funda-
mental class of L. But is not clear whether T, is an isomorphism, and so whether
the analogue of (2.5) holds.

In [67], it was also proved that {7} (where L ranges over the family of
compact path-connected subsets of Y') is a morphism of direct systems {Hq(L),
Ho(ixr)}cr and {H™(Y,Y\L), H"(j&)}kcr, where igr, : K — L is the inclu-
sion, and that lim {7’ } is the inverse to the Poincaré isomorphism Dy : H"(Y)) —
Hy(Y) (see [55]). Thus under the assumption of the connectedness of Y, a ge-
nerator of the group H!"(Y') (which was called by Greenberg the fundamental
cohomology class of the connected manifold Y') can be represented as a “limit”
of fundamental cohomology classes of admissible sets L C Y (comp. [55]).

3. The topological degree of morphisms. Let X and Y be topological
spaces, B C Y and let ¢ € M,(X,Y). Assume that ¢~'(B) C A. If a pair
(p,q) represents ¢, where p € V,(G,X), ¢ : G — Y, then p(¢~1(B)) C A.
Hence, for T = p~!(A4), we deduce that p : (G,G\T) — (X, X\A) is a V,-
map and ¢ : (G,G\T) — (Y,Y\B). Therefore we have an n-morphism pap €
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M, (X, X\A), (Y,Y\B) (independent of the choice of (p,q)). Obviously, for = €
X, pap(x) = p(x) and, for x € A, ¢(z) C Y\B (comp. 1.(3.2)).

Let (X, u), (Y,w) be oriented m-dimensional manifolds and let ¢ € M, (X,Y)
where n = 1form =1 and n < m—11if m > 2. Next assume that L is an
admissible subset of Y and that the set K = p~'(L) is compact.

The morphism ¢x; € M,((X,X\K), (Y,Y\L)) satisfies the assumptions of
Section 1; thus, we may define a homomorphism

H™(pxr) : H"(Y,Y\L) — H™(X, X\K).
In view of A.(1.7), there are natural isomorphisms
Exx t H"(X, X\K) - H"(X,X\K), & r:H™Y,Y\L)— H*(Y,Y\L).

We define the topological degree of the morphism ¢ over the admissible set L
by
(3.1) deg(ip, L) = (§xxc 0 H™(pxcr) 0 &y, ("), pixc) € Z.

Identifying H™ (X, X\K) with H(X, X\K) and H™(Y,Y\L) with H*(Y,
Y\L) (through {xx and &y, respectively), we can write

(3.2) deg(yp, L) = (H™(pxr)(W"), ),

keeping in mind the above-mentioned identifications. Certainly, the naturality of
the isomorphisms £xx and £y, plays a crucial role here.

Observe that our definition of the degree, in the case of a map F': X — Y
such that K = F~1(L) is compact, agrees with the classical one of Dold. For, if
deg; F' = ¢ € Z, then, for any morphism ¢ € M, (X,Y) determining F', in view
of (1.5), we have
(H™(prr)(Wh), prc) = (HI'(F)(W"), i) = (05, Hn(F) () = el wr) = c.

As we see the only difference is that we need to take an admissible set L in place
of an arbitrary compact connected one. Under some additional (but altogether
natural) assumptions even this circumstance will be avoided.

Now, we collect the most important properties of the above-defined degree
generalizing those given in [25, VIIL.4].

(3.3) PROPOSITION. Let X,Y,p, L, K be as above.

(i) If deg(p, L) #0, then K = =*(L) # 0.
(ii) If M C X is compact and K C M, then

deg(p, L) = (H™ (pnrr) ("), poar)-
(iii) If M C X is admissible and K C M, then
H™(purr)(w") = deg(p, L)
(iv) If N CY is admissible and N C L, then
deg(ip, L) = deg(p, N).
(v) If deg(p,L) #0, then L C p(X).
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Proof. (i) is immediate.

(ii) Clearly, the homomorphism H"(¢prr) is correctly defined. Moreover,
¢rr o jM is an n-morphism and gk o j¥ = ¢y, Hence, in view of A.(1.3),
(2.8), A.(2.9),

deg(p, L) = (H™(or1) ("), )
= (H™ (o) (@"), Hn (% ) (par)) = (H™ (arr) (W), iar)-
(iii) In view of (2.9), uM is a generator of H™(X, X\M). Hence, H™ (1) (w¥)
=cpuM, ¢ € Z. In view of (ii), we have the assertion.
(iv) First, observe that deg(y, N) is defined because M = ¢~ !'(N) C K and,
hence, M is compact. By (ii) and (2.8),
deg(p, N) = (H™ (oxn) (™), 1)
= (H™(j5 o prr)(@"), px) = (H™ (oxL)(w"), px)-

(v) Indeed, suppose that thereis y € L\¢(X). Hence, deg(y,y) = deg(p, L) =
0, a contradiction. m

Property (v) is a strong extension of the existence property (i) (comp. 1.(6.6)).
Moreover, observe that a set M C X from (iii) always exists provided X is
connected. This follows from (2.3) (if K is not connected, then we can make it
connected by joining the components by paths).

Assume now that ¢ € M(X,Y) and that the morphisms ¢ and v are n-
homotopic. Then ¢ is an n-morphism. There exists a homotopy ® € M,, (X xI,Y)
such that @ o1y = p, o iy = 1.

(3.4) ProproSITION (Homotopy invariance). If Z = ®~'(L) is compact then
deg(p, L) = deg(, L).

Proof. Observe that T = e {z € X : &(x,t) N L # 0} = pry(2) is
compact. Hence K = ¢~ '(L) C T and %~"(L) C T and &rx;. € M,((X x
I,X x I\T x I),(Y,Y\L)) is a homotopy joining @7y and 1. Therefore, by
(1.3), H™(prr) = H™(¢rL) and, by (3.3)(ii),

deg(p, L) = (H™ (pre)(w"), pr) = (H™ (Yrr) ("), pr) = deg(, L). =

(3.5) PROPOSITION Let ¢, € M, (X,Y). If there exists a compact set M C
X such that ¢~*(L),v""(L) € M and the morphisms @nrr, and np are h-
linked, then deg(p, L) = deg(t), L).

Proof. This is obvious in view of (1.5) and (3.3)(ii). =

(3.6) EXAMPLE. Let ¢ : X — K(Y) be an n-acyclic map. Using (3.5) and
(1.5), we define the degree of 1) over L by

deg@b) L) = deg((pv L),
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where ¢ is an arbitrary n-morphism determining 1, provided that ¢ ~* (L) is com-
pact in X. Moreover, observe that if ¢’ € M, (X,Y) is a morphism determining
any selection of v, then deg(y’, L) is defined and deg(y’, L) = deg(p, L).

Suppose that X = s X J where each X7 is an open subset of X. For any
j € J, the set X7 is an oriented (by the section g/ = u|X7) m-dimensional
submanifold of X. Suppose that K7 = ¢~'(L) N X7 are pairwise disjoint (and
hence compact). In view of 1.(4.1), ¢ = ¢| X7 € M, (X7,Y). Thus, deg(y’, L) is
defined for j € J. Clearly, for almost all j € J, deg(y?, L) = 0 (because K7 = ()
for almost all j € J).

(3.7) ProposITION (Additivity).

deg(p, L) =Y _ deg(¢’, L).
jet
Proof. Tt is sufficient to consider J = {1,2}. Let z € K and let w’ :
(X", X\K") — (X,X\K), i = 1,2, be the inclusion. The composition (see
A.(1.1), A.(1.2), A.(2.9))

Hp (X, XNEY) @ Hyp (X2, X2\K2) 25 Hyy (X, X\K) — Hop (X, X\{z})
maps (fif,, f,) onto pu(x) = pg. Thus, by A.(2.1),

1k = B(bic,s ic,) = Hm (W) (nk, ) + Hm (w?) (pk,)-

Hence, using A.(1.3), we have

deg(@? L) - <Hm((pKL)(wL)7MK>
= (H™(ox1)(@"), Hn(w") (i, ) + (H™ (px1) ("), Hm(w?)(ni, )
= (H™(pr, 1) (W), i) + (H™ (9r,0)(W5), i) m

(3.8) COROLLARY (Excision). If U is an open subset of X such that K C U,
then deg(p, L) = deg(¢|U, L).

There is another consequence of (3.7). If X = J,;.; X J is a decomposition
of X into the union of its connected components, then formula (3.7) holds. The
(at most countable) system of integers {deg(¢?,L)};c, is a homotopy invariant
more subtle than deg(y, L). It is obvious that deg(y, L) may vanish despite that
{deg(¢’, L)} e is different from zero (in Z”7). To see that take X = (—2,0)U(0, 2),
L = {0} and let ¢ be determined by the single-valued map z +— 2 — 1. Then the
problem ¢(z) N L # () may have a solution even when deg(y, L) = 0.

Assume that ¢ € M,,(X,Y) determines a proper set-valued map. We easily
see that in order for ¢ to determine a proper map it is necessary that, for
any pair (p,q) € ¢, the map ¢ is proper, and it is sufficient that, for some
(p,q) € ¢, q is proper. Moreover, if X is compact, then any morphism deter-
mines a proper map.
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(3.9) PROPOSITION. Suppose that ¢ € M, (X,Y) determines a proper set-
valued map. For any admissible sets L1, Lo C Y,

deg(p, L1) = deg(p, L2)

provided Ly, Lo lie in the same component of Y.

Proof. In view of (2.3), there is an admissible set L lying in the same com-
ponent of Y as Lj, Ly and such that Ly, Ly C L. By (3.3)(iv), deg(y, L;) =
deg(p, L), for i =1,2. m

(3.10) Remark. (i) Suppose that a morphism ¢ € M, (X,Y’) determines a
proper map and that L C Y is only compact connected. In view of (2.3), there
exists an admissible set L’ C Y such that L C int I’. Let L” be another admissible
set such that L C int L. Once again, by (2.3), there is an admissible N such that
L C N CintL’Nnint L”. Hence deg(p, L") = deg(v, N) = deg(¢, L"). The above
reasoning allows us to make the following definition:

deg(yp, L) = deg(p, L').

(ii) Even if ¢ does not determine a proper map but L is path-connected, then
we can define deg(y, L) as deg(y, y) where y is an arbitrary point of L.

(iii) Under the assumptions of (3.9) and assuming additionally that Y is con-
nected we can speak about the degree of ¢ putting

deg(yp) = deg(p, L)

where L C Y is an arbitrary admissible set. We shall study the special case of
this situation more carefully in the next section.

(3.11) PROPOSITION. If Y is connected, (Z,v) is an oriented m-dimensional
manifold, ¢ € M,(X,Y) determines a proper map, v € My(Y,Z), L C Z is
admissible and K = ¢~ (L) is compact, then deg(s) o , L) = deg(p) deg(v), L).

Proof. Let M C Y be an admissible superset of K. In view of Proposition
(3.3)(iii), H™(¢prr)(vY) = deg(v, L)w™. Hence
deg(¥ o ¢, L) = (H™(onar) H™ (¥ar) (V5), i)
= deg(y), L)(H™ (onar) (@™), pn) = deg(ih, L) deg(p)
where N = ¢~ (M). =

Now, we establish the multiplicativity property of our degree. Let (X1, 1),
(Y1, w1) be oriented k-dimensional manifolds, and L; C Y7, L C Y be admissible
sets such that Lx L is admissible in Y x Y;. Suppose that ¢ € M1(X,Y), ¢1 €
M (X1,Y1) and that K = ¢~ *(L), K; = ¢, (1) are compact. The manifolds
X x X7 and Y xY; are oriented by the sections u x 11 and w X wq, respectively. By
A.(2.10), prrc X p1y, s the fundamental homology class of K x K and, by (2.11),

(—1)mkul x wlLl is the fundamental cohomology class of L x Li. According to
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1.(4.6), o x p1 € M1(X x X1,Y x V7). It is easy to see that (¢ X ©1)kx Ky, LxL =
YKL X YK, L, Therefore, after easy calculations we conclude that

(3.12) deg(p x w1, L x L) = deg(p, L) deg(p1, L1).

The following example shows that the degree of a morphism depends on its
structure and not on the map determined by it.

(3.13) ExamPLE. (i) Consider the 1-morphism ¢ € M;(S?, S') represented
by the pair (p,q), where p,q : {(z,y) € S' xS : |z —y| < \/5} — S p(z,y) = =,
q(x,y) = y? (multiplication in C). Then deg(p) = 2. If ¢’ is represented by (p, ¢'),
where ¢'(x,y) = y3, then deg(¢’) = 3. But it is easy to see that the morphisms
¢ and ¢’ determine the same map = — ¢(z) = ¢/(z) = S*.

(i) Let ¢ € M;(S', S) be represented by (p,q), where p: G — S, ¢: G —
St G = S x I and p(e?™,5) = 2™+ (™) = e2™Fit for t,s € 1. We see
that deg(p) = k.

To end this section we study the relation between the essentiality of morphisms
and their degree.

(3.14) THEOREM. For any closed A C X such that X\ A is relatively compact,
a morphism ¢ € My((X, A),(Y,Y\L)) is essential on A over an admissible set L
provided deg(yp, L) # 0.

Proof. First, observe that deg(p, L) is defined. In fact, the closed set K =
@~ '(L) is compact since K C X\A. Suppose that ¢ is inessential. Then there
exists @ € M1 ((X x I, Ax1I),(Y,Y\L)) such that ¢ = ®oiy and, for ¢1 = Poiy,
we have ¢1(X)N L = (. Since ¢~ (L) C (X\A) x I, by (3.4), 0 # deg(p, L) =
deg(p1, L). In view of (3.3)(i), we get a contradiction. m

Since, for any closed A, there exists a closed absolute retract B such that
A C B, if X\A is relatively compact, then deg(p, L) # 0 implies that ¢ is
strongly essential on B over L because X is an absolute neighbourhood retract
and because of 1.(6.3).

4. The degree of morphisms of spheres and open subsets of Euclidean
space. Let w be an orientation of R” and let U be an open subset of R™. If u =
w|U, then according to Section 3, we can define deg(y, L) for any ¢ € M, (U,R™),
where n < m—1 (or n = 1if m = 1) and an admissible L C R™, provided ¢~ (L)
is compact in U. Observe that if ¢ has an extension ¢* € M (clU,R™) and U is
bounded, then p~!(L) is compact in U if and only if ¢*(bdU) N L = .

Below, we also deal with the degree of morphisms from M (S™,S™), m > 1.
Following (3.9), (3.10)(iii), since any ¢ € M (S™,S™) determines a proper map,
one may define deg(p). Precisely, if ¢ € M,,(S™,S™), then a homomorphism
H™(p) : H™(S™) — H™(S™) is defined and if x4 is an orientation of the sphere
S™. we can consider the fundamental cohomology class a € H"(S™) and the
fundamental homology class @ € H,,(S™) with respect to the orientation .
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According to (3.10)(iii),

(4.1) deg(p) = (H™(¢)(a), a).
Then, clearly, H™(¢)(a) = deg(¢)a (comp. (3.3 )(iii)). Recall also (see A.(2.2))
that u = Jgm ().

Now, we prove that in some cases deg(p, L), for ¢ € M, (U,R™) with U open
in R™ and n < m — 1, depends only on the behaviour on bd U of an extension
©* of ¢ onto clU. For simplicity, let U = N™ = N™(0,1). Then clU = B™ and
bdU = §m~1,

(4.2) PROPOSITION. If ¢,¢" € M,(B™,R™), n < m — 1 where m > 2, and
@|S™ 7t = | S™L then
deg(p|N'™, L) = deg(¢'|N™, L)
for any admissible set L C R™ such that LN @(S™ 1) = 0.

This proposition may be easily generalized for any open convex and bounded
subset U C R™ (since any such Urtyop N™).

Proof. Without any loss of generality we can assume that 0 € L. In view of
(3.3)(iv), it is sufficient to show that

deg(@|N™,0) = deg(¢'|N™,0).

Let f : R™ — I be continuous with f(0) = 0 and f|p(S™™!) = 1. Next, let
r: R™\{0} — S™~! be the radial retraction. Define g : R™ — R™ by

(z) = 0 for x = 0,
I =z - f(x)(x —r(x)) for x #0.
Obviously, ¢ is continuous. Let ¢ = go ¢ and ¥’ = go ¢'. Then 9,7’ €
Mn((Bm, Smfl)’ (Rmvsmfl)) and ,(/)|Sm71 — ,(Zjllsmfl.

We now show that
(4.3)  deg(p|N™,0) = deg(y|N™,0) = deg(4|S™ ") = deg(y'[S™ 1)

= deg(¢/|Nma 0) = deg(80/|va 0)

The third equality is obvious. We prove the first and the second one; the remain-
ing are deduced analogously.

Let a pair (p, q) represent ¢, where p € V,,(G, B™), q : G — R™. Then (p, goq)

represents 1. For the set 7' = {p(y) € B™ : y € G and (1 — t)q(y) + tg o q(y)
=0, t € I}, we have TN S™ ! = (). Moreover, the diagram

—1

p/(G,G\p (T)) N

(B™, B™\T) lid (R™, R™\{0})
N (@0 )

is homotopy commutative, i.e. the morphisms ¢1o and ¥, where O = {0}, are
h-linked, hence in view of (3.5), deg(p|N™,0) = deg(¢|N™,0).
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Let v = b(u) be the orientation of S™~! induced by pu where y = w|N™ and
w is an orientation of R™ (see A.(2.5)). Let a be the fundamental homology class
of S™~! (with respect to v) and let 3 = 9~ !(a) where 0 : H,,(B™,S™ 1) —
H,,—1(S™71) is the connecting homomorphism. If ze N™ and i, : (B™,S™ 1) —
(R™, R™\{z}) is the inclusion, then H,,(i,)() = w, (w, stands for the funda-
mental homology class of {x}). Thus, for any compact K C N and the inclusions
i:(N™, N™\K)— (B™,B™\K) and j : (B™,S™ 1) — (B™, B™\K), in view
of A.(2.5) we have

Hp (i) () = Hm(5)(5)-
On the other hand, if 6 : H™~}(S™"1) — H™(B™,S™!) is the connecting
homomorphism, then
8(a) = H™ (io)(w")

where a is the fundamental cohomology class of S™~1 (with respect to v) and
w? is the fundamental cohomology class of {0} C R™ and io : (B™,S™ 1) —
(R™,R™\{0}) is the inclusion. In fact

(0(a), B) = (a,0(B)) =
and
(H™ (i0)(w"), B) = (W H™(i0)()) = (v, wo) = 1.
Now, we are ready for the proof of the second required equality. Without any

loss of generality, we can assume that 1(B™) C B™. Put K = ~(0). Then K
is a compact set in N™. The diagram

(N, N™K) — (B™,B™K) <~ (G,G\p~'(K)) == (R™,R™\{0})

] I ]

(Bm’smfl) (7 (vafl(smfl)) _ (Bm’Smfl)

goq

is commutative. If we denote by v the morphism represented by the pair from
the lower row, then

deg(y|N™,0) = (H™ (i) H™ (¢¥x0)(w”), i)

= (H™ (Vo) (W"), Hn(j)(8)) = (H™ (j)H™ (¥x0) ("), B)
= (H™(@)H™(io)(w°), B) = (H™ (¥)d(a), B).
2)

One the other hand, in view of (1.

H™(1)8(a) = 6 0 H™ 1 (]S™1)(a);

)

hence
deg(|N™,0) = (6 0 H™ 1 (|S™ 1) (a), B) = (H™(4[S™1)(a), 9(a))
= (H™ 1 (|S™1)(a), @) = deg(¢[S™ ).
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(4.4) COROLLARY. If ¢ € M, (B™,R™), n < m — 1, and for an admissible
set L CR™ such that 0 € L, o(S™ )N L =0, then

deg(p|N™, L) = deg(¥)
where 1 =10 (p|S™1) and r has the same meaning as in the proof of (4.2).

As another consequence we have the following simple criterion of essentiality.

(4.5) COROLLARY. If ¢ € M;((B™, 5™ 1), (R™,R™\{0})) and deg(r o ) #
0, then ¢ is strongly essential on S™~1 over {0}.

Using 1.(5.14), we can easily generalize (4.2) to 1-morphisms. Observe that
(4.2) was valid only for convex, bounded and open sets U C R™.

(4.6) PROPOSITION. Suppose that U is a polyhedral domain in R™ (i.e. U
is open and clU is a finite polyhedron). If ¢, ¢ € My ((clU,bd U), (R™,R™\L)),
L C R™ is admissible and ¢|bdU = ¢'|bd U, then deg(p|U, L) = deg(¢'|U, L).
In particular, deg(y, L) depends only on the behaviour of ¢ on bdU.

Proof. Let ji : clU x {k} — clU, for k = 0,1, be given by jr(z,k) = x
for x € clU and pr : bdU x I — clU be the projection. Define a morphism
@ € Mi(clU x{0}UbdU x IUclU x {1}, R™) by piecing together the morphisms
@ 0 jog, ¢oprand ¢’ o jy. Since (clU x I,clU x {0} UbdU x I UclU x {1}) is a
polyhedral pair, in view of I.(5.13), there exists an extension ®* € My (clUxI,R™)
of &. Obviously, &* ! (L) is compact in U x I and $*|U x I is a 1-homotopy joining

o|U to ¢'|U. By (3.4), we get the assertion. m

Now, let us introduce some notation necessary to formulate the contraction
property of the degree. Let k <m be positive integers. We identify R™ =R™* x
R* and let ¢ : R™~* — R™ r : R™ — R™F be given by the formulae i(x) =
(2,0), 7(x,y) = . In R™ we choose an orientation w, in R™~* an orientation @
and in R¥ — an orientation v such that @ x v = w.

Let U be an open and bounded subset of R™. We put U = i~}(U) c R™~*
and let i = i|U : U — U. Assume that gy = w|U and i = @|U. We consider an
admissible set L C R™*. Then the set L = i(L) is admissible in R™. Finally,
assume that ¢ € M, (U,R™) where n <m — (k+1) for m > k+1 and n =1 for
m=k+ 1.

(4.7) PROPOSITION. Ifx —y € i(R™ %) for any x € U and y € ¢(x), then

deg(p, L) = deg(p, L)
where B =10 poic M,(U,R™F), provided o' (L) is compact.
Proof. Let K =% *(L). Then K = ¢~ !(L) = i(K). Let (p,q) represent ¢,
where p € V,,(G,U), q : G — R™. The morphism @ is then represented by (p,q),
where §=ro0qoj, 7 € Vo(G,U) and the cotriad U <>~ G = U Ky G - G arises
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as the pull-back of the triad UL U2 G. If we define amap f : G — G by
f(m,g) =g for (u,g) € G (i.e. p(g) = u), then the diagram

v &£ ¢ L Rrm

%T Tf Tz
T — G — Rm*

p q

is commutative. There exists a neighbourhood V of K in U and ¢ > 0 such that
V=V xHCV xcHCU where H= N¥(0,¢). On H the orientation is given
by 7 =v|H. Let G/ = p~'(V), p' = p|G’, ¢ = q|G', G'=7*(V), 7 =P|G’and
7 =7q|G" Clearly the diagram

!

’
p G' a R™

(N

- é/ - Rm—k

D’ q

is commutative, where f’ = f|G’ Moreover, put T = p~'(K), T =7 '(K) and
consider the diagram

’ ’

(V,V\K) & (@, 6¢"\T) X (R™ R™\L)
N

G’ xid

(G'x H,G'x H\T x {0})

where h(g,s) = f'(g) for g € G s € H. In view of 1.(2.6), 1.(2.5), 7' x id is
a V,ir-map. Observe that p’ o h(g,s) = p’ o f'(g) = i op(g) and ¢’ o h(g,s) =
¢ of'(g)=ioq(g) for g € G s € H. Therefore, (p/,q') and (7' x id,§ x id) are
h-linked. Hence, in view of (1.5),

[H™ ()" o H™(¢') = [H™(F x id)]™" o H™ (7' x id).
By (3.8), we have
deg(p, L) = deg(|V, L) = ([H™ ()] ™" o H™(¢') ("), (V) k)
= (—1) R x )] o B x 1)@ x 7°), e X 7o)
= (H™ @) o H™(@) (@), ixe)
= deg(p|V,L) = deg(p,L). =

(4.8) Remark. Under the notation of (4.7), assume that ¢ € M, (U, R™~¥)
and let ¢ = iy — ¢. Then the morphism ¢ satisfies the assumptions of (4.7)
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provided the set of fixed points of ¢ (i.e. the set Fix(¢) ={x € U : x € ¥(x)}) is
compact.

To end this section we study more carefully the degree of morphisms of spheres.
It appears that many classical facts concerning the degree of continuous maps of
spheres can be extended to morphisms.

(4.9) PROPOSITION. Let ¢ : S™ — K(S™) be an acyclic map.

(i) If, for any x € S™, x € Y (x), then deg(y)) = 1.
(i) If, for any @,y € S™, ¥(x) = ¥(y), then deg(p) = 0.
Proof. (i) follows from (3.6), and (ii) follows from 1.(6.8) and (4.5). m

(4.10) THEOREM. Let ¢ € M,,(S™,S™).
(i) If ¥ € My(S™, ™), then deg(th o ) = deg(th) deg(p).
(ii) If ¢’ € M(S™,S™) and ¢, ¢’ are m-homotopic, then deg(yp) = deg(y’).
(iii) If, for any v € 8™, x &€ ¢(z), then deg(p) = (—1)™*1.
(iv) If, for any x € S™, —x & p(x), then deg(yp) = 1.
(v) If m =0 (mod 2), then there isx € S™ such that x € p(z) or —x € p(x).

Proof. (i) follows from (3.11), and (ii) from (3.4).
(iii) Let (p, q) represent ¢, where p € V,,,(G, S™), ¢ : G — S™. In view of our
assumption, the diagram

G

id Sm
e

/a

7
Sm
™
is homotopy commutative.

For (iv) we reason analogously to (iii), and (v) follows from (iii) and (iv). =

In the next section we give some other results concerning the degree of mor-
phisms of spheres.

5. Borsuk type theorems. Let X be a topological space. Assume that we
are given two triples (¢,s,h), (¢/,s',h’) of continuous maps, where s,t: Z — X,
h:Z—Zand s'\t': 2 — X, :2Z' — Z' (Z, Z' are topological spaces) such
that h, h’ are involutions. We say that these triples are equivalent if there is a
homeomorphism f : Z — Z’ such that the diagram

Z N = A
t '

hl y X y’ lh

Z A
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is commutative. Assume, moreover, that ¢, ¢’ are V-maps (with respect to some
ring R). Any equivalence class of this relation will be called an involutive
morphism. Clearly, the pairs (¢,s) and (¢',s’) determine the same morphism in
M (X, X). The involutions h, h' give the additional structure.

Observe that if & € M (X, X) is a morphism and, for some pair (¢, s) repre-
senting «, where t € V(Z, X), s : Z — X, there is an involution h : Z — Z, then,
for any pair (¢',s") € ¢, where t’ € V(Z',X) and s’ : Z/ — X, one can find an
involution A’ : Z" — Z' such that the triples (¢, s, h) and (¢, s, h’) are equivalent
in the above sense.

(5.1) EXAMPLE. (i) A 1-morphism ¢ € M;(S*, S') defined in 1.(5.1) is invo-
lutive.

(ii) In [41], L. Gérniewicz defines a set-valued involution as an u.s.c. map
Y+ X — K(X) such that (z,y) € Gy if and only if (y,z) € Gy. Therefore any
n-acyclic involution is determined by an involutive n-morphism.

(iii) It is clear that if o € M (X, X) is an involutive morphism, then, for any
re X,z €aoa(x).

The following theorem is a generalization of the well-known Borsuk theorem
(see [26], [58], [41]).

(5.2) THEOREM. Let ¢ € M;(S™,8™), m > 1, and let o € M;1(S™,S™) be
an involutive morphism.

(1) If ¢(z) Ne(a(z)) =0 for any x € S™, then
deg(¢) =1 (mod 2).

(ii) If o has no fized points and (—p(z)) Ne(a(x)) =0 for any x € S™, then
deg(p) =0 (mod 2).

In [41], it was proved that under assumption (i) and a stronger assumption
on « the degree deg(y) does not vanish.
In order to prove the above theorem we need several auxiliary facts.

(5.3) LEMMA. Let X be a compact space such that
H*(X;Zs) ~ H*(S™; Zs).
If h : X — X is a continuous involution and f : X — S™ is a continuous map
such that, for any x € X, f(h(z)) # f(x), then
(1) : HY (53 Zo) — H™(X: 7o)

is an isomorphism.

This follows from [23, Cor. 4, p. 299] (comp. [34], [57]).

In the same spirit we have:

(5.4) LEMMA. If X is a compact space such that H*(X;Zo) ~ H*(S™;Zs),
h: X — X is a continuous involution without fived points and f : X — S™ is a
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continuous map such that f(h(x)) # —f(x) for any x € X, then the homomor-
phism
H™(f;Zs) : H™(S™; Z2) — H™ (X Zs)

15 trivial.

Proof. In the proof we use the theory of special Cech-Smith cohomology
groups; we mainly follow the monograph of Bredon [12]. Let G = Zy; in the
group ring ZsG we let 0 = 1 + g where g is the generator of G. For an arbitrary
paracompact pair (Z, A), where Z is a G-space and A C Z is G-invariant, the
Cech-Smith graded cohomology group of Z modulo A is defined. Let us recall
several properties of these groups. All the notation is taken from [12] (the ordinary
Cech groups have Zy-coefficients as well).

(i) [12, (7.5)] If Z% = {2 € Z : G(z) = 2}, then the Smith sequence
o —HY(2) S B2 e HM(29) 2 B (2) — .

is exact, where o* is defined in [12], ¢* is induced by the sum of inclusions and §*
is the connecting homomorphism.

(ii) [12, (7.6)] H:(Z) ~ H*(Z/G,Z%) (observe that Z% may be identified
with a subspace of Z/G).

(iii) [12, (7.8)] The diagram

. — H"(2/G,2%) — H"(2/)G) —  H"(2S) —H"tY(2/G, 7% ...

T N .

.~ B}z & HW2) —HN2) e 2% — 32 — ..
is commutative (in the upper row we have the exact cohomology sequence of the
pair (Z/G,Z%) and in the lower row the Smith sequence, and 77 : Z — Z/G is
the quotient map).
(iv) [12, (7.9)] If Z is a compact G-space and A C Z is G-invariant, then

rank H"(Z, A) + Zrankfli(ZG,AG) < Zrankﬁi(Z, A)
>n >n
for any positive integer n.
(v) If Z is a compact G-space such that H*(Z) = H*(S™) and Z€ = 0, then
i*: H™(Z) — H'(Z) is an isomorphism.
The above property follows easily from (iv) and (i).

Now, we are ready to prove (5.4). Let an action of G on X and 5™ be defined
by the involution h and the antipodal map, respectively. There is € € (0, 1) such
that, for z € X, |f(h(z))+ f(z)| > e. Let Y = {(y,¢') € S™ xS : |y —y/| > €}
Then Y is a compact G-space provided we define an action of G on Y by the
involution k : Y — Y given by the formula k(y,y’) = (—y’,—y). Then Y¢ =
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{(y,~y) €Y :y € 8™}, Let p:Y — Y& be given by p(y,vy') = (v, —y) and
let j : YY — Y by the inclusion. Observe that p is a V;-map (with respect to
Zs); hence, by the Vietoris-Begle theorem for Cech cohomology (see e.g. [41]),
H *(p) is a (graded) isomorphism. Since poj = idye, we deduce that H* (j) is an
isomorphism as well. In view of (iv), H:(Y) = 0, so by (i), H*(Y/G, YY) = 0.
The exactness of the cohomology sequence of the pair (Y/G,Y %) implies that
H*(Y/G) ~ H*(YY). Next, if 7y : ¥ — Y/G is the quotient map, then the
commutativity of the diagram

H(Y/G)  —— H (Y9
> 7 G)
e (v)

entails that 7§ is an isomorphism.
In view of (iii) (the action of G on X is free), the diagram

.= I/i\'m(X/G) — ]/':\Tm(X/G) — 0 — ﬁm“'l(X/G) — ...

F s !

i*

- HMX) S Bvx) S Bnx) — 0 —

(the last term in the lower row is trivial because f[*(X) ~ H*(X)= H*(S™) ~
ﬁ*(Sm), see A.(1.8) and use (iv)) is commutative. By (v), we find that 7% = 0.

Let F: X — Y be given by the formula F(z) = (f(x),—f(h(z))). The map
F' is correctly defined and ko F' = F o h. Hence the diagram

H(v/G) D (E)G)
H(Y) e H(X)

is commutative and ﬁm(F) = 0. Let pr: Y — S™ be the projection onto the
first factor. Clearly, f = proF’; hence H™(f) = 0 and H™(f) = 0 because H*
and H* are naturally isomorphic. =

(5.5) LEMMA. Let X be a topological space. Assume that we are given an
exact sequence

O—>Zi>Zi>Zg—>O

where a(c) = 2¢ for ¢ € Z and b(c) = ¢ (mod 2). Then there is an exact sequence

(%) = HY(X) S HY(X) 2 HMX) S BHMTY(X) -
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(from now on by H*(-) and by Hi(-) we denote cohomology with integer and
Zs-coefficients, respectively).

Proof. Let {C*(X),d}, {C5(X),02} denote the Alexander—Spanier cochain
complexes over Z and Zs, repectively. If d : X" — Z is an (n+1)-function, then
b#d : X"t — Zs, given by the formula (b%d)(zg,z1,...,7n) = b(d(zo,...,Tm)),
is also an (n+1)-function. Moreover, it is easily seen that if d is locally zero, then
so is b#d. Hence, we have a well-defined homomorphism b% : C*(X) — C3(X).
Analogously we define a# : C(X) — C(X). One verifies that the sequence

0— C™(X) % C™(X) S Cy(X) =0

is exact, and moreover, a# and b# are cochain maps. Therefore, there exists a
connecting homomorphism e* : HY(X) — H"1(X) such that (x) is exact. m

(5.6) Remark. The above construction may be generalized without change
to an arbitrary short sequence of groups (or R-modules) and in that case e* yields
an equivalent of the Bockstein homomorphism for singular cohomology (see [104]).
Moreover, observe that with the aid of (5.5) we may provide a different proof of
the fact that Vj-maps with respect to Z are Vi-maps with respect to Zs (see
1.(7.2)).

Proof of Theorem (5.2). Let (p,q) represent ¢, where p € V1(G, S™),
q:G — 8™, and let (t,s,h) represent o, where t € V1(Z,5™), s : Z — S™ and
h : Z — Z is an involution. Since p, t are V;-maps with respect to Z, they are
also Vi-maps with respect to Zs.

By the definition of an involutive morphism, £ o h = s. In view of assumption
(i), for any z € Z,

p(t(2)) Np(s(z) = 0;
and, if (ii) holds, then for any z € Z,
(=(t(2))) Np(s(z)) = 0.
E.et X ={(z,9,9) € ZxGxG : t(z) = plg), s(z) = p(g’)}. Consider the
iagram

X - gm
ul Y Tq
sm T G

where f(z,9,9") = a(g), u(z,9,9') = 1(z) and v(z,9,9') = g. This diagram is
commutative and u is a Vi-map (with respect to Zs) in view of 1.(2.10) since it
is the composition of three V;-maps:

wi(2,9,9) = (2,9) = 2 1(2).
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Define a map N : X — X by the formula N(z,g,¢") = (h(2),4’,g). This map is
well-defined and is an involution. If (ii) is satisfied, then N has no fixed points
and, for any (z,9,9") € X, f(N(z,9,9")) # —f(2,9,9'); if (i) is satisfied, then

f(N(2,9,9") # f(2,9,9') for any (2,9,9') € X.
The commutativity of the diagram

o HY(f) .
H2 (S ) - H2 (X)
H;”<q>l TH;’L(u)
Hy (G) 2P HP(S™)

implies that [H'(p)]~! o HY'(q) = [HY(u)]™! o HF*(f). Moreover, Hj(X) =~
H3(S™). Therefore, by (5.3) (resp. by (5.4)), H3*(f) is an isomorphism when
(i) is satisfied (resp. H3'(f) = 0 when assumption (ii) holds). In view of the
functoriality of the sequence (5.5)(*) (here in place of X we take S™), we get the
commutative diagram

[H™ (p)]'oH™ (q)

b*l lb*

m —1O m

Moreover, (5.5) implies that b* is an epimorphism. If assumption (i) is satisfied,
then in the lower row we have an isomorphism, and if (ii) is satisfied, then in
the lower row we have a trivial homomorphism. In both cases this entails the
assertion since otherwise the diagram would not be commutative. m

Theorem (5.2) has several interesting consequences.

(5.7) COROLLARY. Let av € M;(S™,S™) be an involutive morphism and ¢ €
M ((B™*L 8™) (R™,R™ \ {0})). If there exists no ray emanating from 0 that
meets o(x) and p(a(x)) simultaneously, then ¢ is essential on S™ owver 0.

(5.8) COROLLARY. Let « be as above.

(i) If ¢ € M1(S™,S™) and p(z)Np(a(x)) =0 forx € S™, then p(S™) = S™.
(ii) If ¢ € My (S™,R™), then there is x € S™ such that p(x) N p(a(z)) # 0.

Proof. (i) follows from (5.2), (3.3)(v). Now, (ii) follows from (i). Indeed, if, for
all z € 8™, p(x)Np(a(x)) = 0, then treating S™ as a one-point compactification
of R™ we would get a contradiction with (i). m

(5.9) Remark. The proofs of (5.2) strongly relied on the assumption that «
and ¢ are 1-morphisms. It would be very interesting to relax this condition and
show that these theorems remain valid for any n-morphisms, n > 1.
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Proposition (5.8)(ii) is an extension of the well-known Borsuk—Ulam theorem
(comp. [26, (5.2), p. 44]). The theorem of Yang [109] is another strong generali-
zation of the classical result of Borsuk—Ulam. In his paper Yang introduced the
index ind(Z, h) of a pair (Z,h), where Z is a compact space and h: Z — Z is a
continuous involution without fixed points, and proved

THEOREM A. If ind(Z,h) =n and f: Z — R¥ (0 < k < n) is a continuous
map, then the set

Al ={zeZ : f(2) = f(h(2))}

is compact, h-invariant and ind(Af, h) =n —k. In particular, dim Al >n— k.

In [98], W. Segiet showed

THEOREM B. If ind(Z,h) =n and ¢ : Z — K (RF) is a set-valued map having
an acyclic (with respect to Cech homology with rational coefficients) selector, then

AY ={z e Z :(2) NY(h(z)) # 0} # 0.

Next, for Z = 8™ and h = a the antipodal map, K. Geba and L. Gorniewicz

in [40] proved

THEOREM C. If ¢ : 8" — K(R*) is a set-valued map having an acyclic
selector, then the set

AV ={z € 8" :p(2) N(—2) # 0}
is invariant, compact and ind(AY,a) > n — k. In particular, dim(AY) > n — k.

Below, we give an extension of Theorems A, B, C using the notion of involutive
morphism.
We start by recalling some properties of the Yang index (see [22]).

(5.10) PROPOSITION. (i) If there exists an invariant continuous map f :
(Z,h) — (Z', 1), then ind(Z, h) < ind(Z', 1').
(ii) If A,B C Z are h-invariant subsets of Z and AU B = Z, then
ind(Z, h) < ind(A, h) + ind(B, k) + 1.

(iii) If a set A C Z is h-invariant, then ind(A, h) = ind(clU, h) where U is
an invariant neighbourhood of A.

(iv) ind(S™,a) = n.

Moreover, in [40], it was observed that
(5.11) dim(Z) > ind(Z, h).

Let X be a compact space and let @ € M (X, X) be an involutive morphism
(with respect to Zs) without fixed points. We define

Ind(X,«a) =ind(Z, h)

where « is represented by a triple (¢, s, h) such that ¢t,s : Z — X and h: Z — Z
is an involution (¢ is a V-map). This definition is correct since h has no fixed
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points and it does not depend on the choice of the triple representing « in view

of (5.10)(i).

(5.12) ExamPLE. In [98], Segiet proposed the following definition of the in-
dex of the pair (X,1) where v is a set-valued acyclic involution (see (5.1)(ii)):
Ind(X, %) = ind(Gy,T) where the involution T is given by T'(z,y) = (y,z). In
view of (5.10)(i), if an involutive morphism « determines ), then Ind(X,a) <
Ind(X, ). It suffices to consider the diagram from I1.(3.4)(i).

(5.13) THEOREM. Let X be a compact space and o € M (X, X) be an in-
volutive morphism (with respect to Za) having no fized points. If Ind(X,«a) =n
and ¢ € My (X,RF), 0 < k < n, then

ind(A(p),T) >n—k

where A(@) = {(z,y) € Go : (x)N@(y) # 0} and the involution T : A(p) — A(p)
is given by T(x,y) = (y,x).

Proof. Let a triple (¢,s,h) represent «, where ¢t : Z — X is a V-map, s :
Z — X and h: Z — Z is an involution. Observe that s is also a V-map. Let

Az ={z € Z: ¢(t(2)) Np(s(2)) # 0}
Clearly, Az is closed and h-invariant. We shall prove that
ind(Az,h) >n—k.

If so, then considering a map f : Az — A(y) given by f(z) = (¢(2),s(2)), for
z € Ay, we see that foh =T o f and, by (5.10)(i),

n—k <ind(Az,h) < ind(A(e),T).

Assume that (p,q) represents ¢, where p € V;(G, X) (according to our as-
sumption p is a Vi-map with respect to Z, but in view of 1.(7.2), p is also a
Vi-map with respect to Zs) and ¢ : Z — R*. Let

Y ={(2,0.9) € Zx G xG:p(g) =t(2), pg') = s(2)}
and let u : Y — Z be given by u(z,g,¢’) = z. The map u, being the composition
of two Vi-maps, is a Vi-map. Clearly, Y is compact. Let H : Y — Y be given
by H(z,9,9") = (h(2),4’,9). It can easily be seen that H is a fixed-point free
involution and w : (Y, H) — (Z, h) is invariant.

In [98], Segiet sketches a proof of the fact that if (2, h’), (2", k") are compact
spaces with involutions and v : Z’ — Z” is an invariant Vietoris map, then
ind(Z',h’) = ind(Z", h"). He uses Cech-Smith homology (because Vietoris maps
are considered in terms of Cech homology). However, since the Smith theory does
hold in the Cech cohomology setting and the theories of Cech and Alexander—
Spanier cohomologies are naturally isomorphic for compact spaces (see A.(1.8)),
we conclude that also in our case

ind(Y,H) = ind(Z,h) = Ind(X, ).
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Let Y7 = u!(Az). The set Y; is closed and H-invariant. Moreover, by 1.(2.5),
ulYy : Y7 — Ay is an invariant Vy-map. Therefore ind(Y;, H) = ind(Az, h) and
it suffices to prove that ind(Yy, H) > n — k.

By (5.10)(iii), there is an H-invariant neighbourhood U of Y; such that
ind(Y1, H) = ind(clU, H). We prove that ind(Y\U,H) <k—1. Let Q : Y\U —
R* be given by Q(z,9,9') = q(g) — q(g’) for (z,9,9') € (Y \ U). Observe that
Q(Y\U) c R*\{0}. In fact, if q(g) = q(¢’) for (2,g,4¢') € Y\U, then

q(g) = a(g) € ¢(t(2)) N o(s(2))
and hence, z € Az. Thus (z,9,9') € u=({z}) C Y1 C U, a contradiction. The
map roQ : Y \ U — S¥~1 where r : R¥\ {0} — S*~! is the radial retraction,
satisfies
ro@@oH =aoroQ;

hence the map ro Q : (Y \ U, H) — (S¥~1 a) is invariant. By (5.10)(i) and (iv),
ind(Y \ U, H) < k — 1. On the other hand, we see that Y = (Y \ U) UclU, so in
view of (5.10)(ii),

n=ind(Y,H) <ind(Y \U,H) +ind(Y;,H) + 1.
Therefore, we get at once ind(Y1,H) >n—Fk. m
(5.14) COROLLARY. Under the assumptions of (5.13), dim(A(y)) > n — k.

Finally, observe that if a is single-valued and v : X — K (RF) is determined
by ¢, then the pair (A%, ) is invariantly equivalent to (A(p), T).

6. Applications. Let X, Y be topological spaces. In the spirit of Gérniewicz
[41] and adapting his definition we say that a set-valued map ¢ : X — P(Y)
is n-admissible (n > 1) if there exists a morphism ¢ € M, (X,Y) determining
a selector of 1. It seems that the quite general class of n-admissible maps is
particularly well-designed for applications. For example, admissible maps arise
quite naturally in the theory of ordinary differential equations (see e.g. [27]).

(6.1) EXAMPLE. (i) Any map determined by an n-morphism and, in particu-
lar, any n-acyclic map is n-admissible.

(ii) If X is a paracompact space, Y is a Fréchet space, then any l.s.c. map
Y : X — Cy(Y) is 1-admissible (see I.(1.7)).

(iii) The problem of whether a given map ¢ : X — P(Y) is n-admissible is
closely related to the selection problem. Observe that a map v is n-admissible if
and only if there exists a V,,-map p : G — X such that Y op: G — P(Y) has a
continuous selection.

The class of admissible maps has nice functorial properties. In view of 1.(3.5),
the composition of an n-admissible map with a l-admissible one is again n-
admissible. Moreover, by 1.(4.1), 1.(4.3), 1.(4.4) and I.(4.6) some natural ope-
rations in this class are canonical.
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Now, we give several applications of our degree theory to solvability of set-
valued equations involving admissible maps. The following two assertions may be
treated as extensions of the well-known nonlinear and Leray—Schauder alterna-
tives (see e.g. [26] for the single-valued case).

If Y is a vector space, z € Y and A C Y, then we put

conv(z,A) ={yeY :y=(1—t)x+ta, a € A}.

(6.2) THEOREM. (i) Let U be an open neighbourhood of 0 in R™, 1 :clU —
K(R™) an n-admissible map, n < m —14if m > 2 and n =1 if m = 1. If
0 & conv(z,v(z)) for any x € bdU and W is the component of R™ \ ¢(bdU)
that contains 0, then W is bounded, W C (U) and R™\y(bd U) is not connected.

(ii) Let ¢ : R™ — P(R™) be an n-admissible map (n <m —1if m > 2 and
n=11if m=1). Then either the set {x € R™ : 0 € conv(z,9(x))} is unbounded
or 0 € p(R™).

Proof. Let ¢ € M, (clU,R™) be a morphism determining a selector of .
Clearly, ¢ € M, ((clU,bd U), (R™,R™ \ {0})) and, for each t € I, x € bd U,

(I —t)z +tp(x) Cc R™\ {0}.
Using 1.(5.8), we see that there exists an n-morphism @ € M, ((clU,bdU),
(R™,R™\ {0})) such that ¢, @ and ¢, P (where ¢ is an arbitrary n-morphism
determining the inclusion cl1U — R™) are h-linked. Therefore, in view of (3.5),
deg(cp0|U, 0) = deg((10|U7 0)

But, by (4.9) and (4.4), deg(¢o|U,0) # 0. Hence, by (3.3)(i), 0 € ¢(U). Next, let
w € W. By (3.3)(iv), if L is a path in W joining w to 0, then L is an admissible
subset of R™ and

deg(¢|U, L) = deg(¢|U,0) # 0;
hence, by (3.3)(v), w € L C ¢(U). Obviously, W is bounded and R™ \ ¢(bd U)
cannot be connected not being bounded. m

(6.3) COROLLARY. (i) Let U C R™ and n be as above. If ¢ :clU — P(R™)
is an n-admissible map such that, for x € bdU and y € (x), (y|x) > 0, then
0 € (cllU).

(ii) If ¢ : R™ — P(R™) is an n-admissible map such that, for y € ¥ (x),

lim_[2] = (y]z) = oo,

|z|— o0
then Y(R™) = R™.
As another corollary we have the following version of the Brouwer fixed point

theorem.

(6.4) COROLLARY. Any n-admissible map ¢ : B™ — P(R™) such that
(8™ 1) € B™ (n < m—1 when m > 2 and n = 1 when m = 1) has a
fized point.
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Proof. Obviously, ¢ = igm — % is an n-admissible map. In view of (6.2) we
deduce that either, for some zg € S™~!, 0 € conv(zg, ¢(z¢)) and then zo € 1 (z0),
or, for any x € S™~1, 0 € conv(x, p(x)) so, by (6.2), 0 € (N™). m

Using (4.10), (5.8) and (5.11) we easily obtain

(6.5) THEOREM. (i) Let ¢ : S™ — P(S™) be an n-admissible map. There is
x € S™ such that x € Y(z) or —x € (x) provided m is an even integer.

(ii) If v is 1-admissible and Y(—z)NY(xz) = 0 for any v € S™, then Y(S™) =
S

(iii) If v is 1-admissible, then there is x € S™ such that (x) NY(—x) £ or
() () # 0.

(iv) If ¢ : S™ — P(R¥), 0 < k < m, is 1-admissible, then there is x € S™ such
that ¥(z) NY(—x) # 0. Moreover, dim({z € S™ : ¢(x) NY(—x) #0}) >m — k.

As another consequence of (5.2) we can prove the following version of the
theorem on the invariance of domain.

(6.6) THEOREM. Let U be an open subset of R™, ¢ € My (U,R™). If for any
r,y €U, x #y, o(x)Np(y) =0, then p(U) is an open set in R™. More generally,
if X is an n-dimensional manifold, p € My(X,R™) and ¢(x)Np(y) = 0 for any
x,y € X, x #vy, then o(X) is open in R™.

Proof. Let yo € ¢(U). There is 9 € U such that yo € p(zg). Without
any loss of generality we can assume that yg = zg = 0. Otherwise, consider the
morphism @ = j — poi wherei: z+— xg —x and j :  +— yg.

Since g = 0 € U, there is € > 0 such that B! = B™(0,¢) C U. Obviously,
for v € S~ = Sm71(0,¢), 0 & ¢(z). We shall show that deg(¢|N,0) # 0
where NI" = N™(0,¢). If so, then we are done since, in view of (3.3)(iv), p(N")
contains the whole component of R™ \ ¢(S™~1) containing 0.

By (4.4), deg(¢|N™,0) = deg(r o p|S™1) where r : R™ \ {0} — S™~! is the
radial retraction. Let (p, ¢) represent the morphism | B, where p € V1(G, BI"),
q: G — R™. Consider the commutative diagram

—1 m—1
b, PS5 g
S;nfl Jk Smfl
1’L\ 7 /r‘of

where Z = {(z,2/,9,9') € B"XB"xGxG:|lzx—2'| =¢, p(g) =z, p(¢') =2'},
k(g) = (p(9),0, 9, g0) for g € p~*(S™ ") and go € G such that p(go) = ¢(go) = 0,
f(z,2',9,9") = q(g) — q(¢’) for (z,2',9,¢") € Z and u is defined as follows: For
(v,2',9,9') € Z, u(x,2’,g,g) is the point of S™~1 which is the intersection of the
ray emanating from x’ passing through = with S™~!. It can easily be seen that u
is a Vi-map. Therefore H;(Z) ~ H;(S™™!). Define an involution h : Z — Z by
h(z,2',9,9") = (&', 2,9, g). We see that, for any z € Z, ro f(z) = —ro f(h(2)).
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In view of (5.3), Hj(r o f) is an isomorphism. Arguing similarly to the proof of
(5.2)(i), we conclude that deg(r o ¢|S™ 1) =1 (mod 2).
To see the last assertion, recall that X is locally homeomorphic to R™. =

(6.7) COROLLARY. If ¢ € Mi(R™ R™) and, for any z,y € R™ X € R,
o(x) + ¢(y) C o(x +vy) and e(Ax) C A\p(z), then either

(i) there is x # 0 such that 0 € ¢(z), or
(i) e(R™) = R™.

Proof. First, in fact, for any z,y € R™ and A € R, p(z) + ¢(y) = ¢(x +y
and p(Ax) = Ap(x). Next, if for z,y € R™, x # y, o(z)Np(y) = 0, then, by (6.6),
©(R™) = R™. Otherwise, there are points x,y, x # y, such that ¢(z) N p(y) # 0.
Hence 0 € p(z —y). m

For n-admissible maps of manifolds the following definition of degree seems
to be the most satisfactory.

Let X, Y be m-dimensional oriented manifolds, L C Y be an admissible set
(i.e. compact connected and free). If ¢» : X — P(Y) is an n-admissible map
(n < m —1when m > 2 and n = 1 when m = 1) such that K = ¢~(L) is
compact, then we put (comp. [41])

Deg(, L) = {deg(#, L)}
where ¢ € M,,(X,Y) ranges over the set of all n-morphisms determining selectors
of 1.

Observe that if Deg(¢, L) # {0}, then L C ¢(X). Moreover, Deg has all the
important properties. In view of (3.6), if ¢ : X — K(Y') is an n-acyclic map, then
Deg(v, L) = {deg(¢, L)}. On the other hand, for instance, if ¢ is determined by
the 1-morphism ¢ o ¢ where ¢ is as in (5.1), then Deg(¢) o L) = Z since any
continuous single-valued f : S — S is a selector of .

ITI. The class of approximation-admissible morphisms

The degree theory and its applications were successfully extended to set-valued
maps of infinite-dimensional spaces. In many papers (e.g. [49], [21], [80], [10]) con-
vex-valued compact maps were considered, in others (e.g. [35], [36], [105], [60])
convex-valued condensing maps were studied. Similarly, acyclic and admissible (in
the sense of Gérniewicz) compact maps, condensing maps or maps with compact
attractor were considered (see [16], [71], [72], [107], [39], [20], [48], [68]). In these
papers the degree theory was developed for maps of the form i — ¢, where ¢ was
a map from the class considered, using appropriate approximation procedures.

In this chapter we introduce a class of set-valued maps and study its proper-
ties. In the next chapter, we shall build the approximation degree theory for this
class of maps.
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1. Filtrations. In order to define the class of approximation n-admissible
morphisms (and set-valued maps determined by them), we have to introduce
several notions concerning the structure of underlying spaces.

Let X be a topological space and let (T, <) be a directed set. By a filtration
in X we mean a family X = {X;}ier of closed subsets of X such that, for almost
all t € T, X; # 0 (i.e. there is ty € T such that, for t > to, X; # 0), and X C X;
for s <t. We say that a filtration X is countable if the set T is countable, and

that X is dense if
o ( U Xt> — X
teT

If F is a topological vector space and £ = {E; }¢er is its filtration, then we say
that the filtration £ is linear provided, for any t € T, E; is a finite-dimensional
linear subspace of F.

(1.1) ExampLE. (i) If X = {X;}ter is a filtration in a space X and Y C X
is such that, for almost all (a.a.) t €T, Y; =Y N X; # 0, then Y = {Y; }1er is a
filtration in Y. In particular, the filtration ) is dense if so is X.

(ii) If X = {X;}ier is a (dense) filtration in X and 77 C T is cofinal in T,
then X' = {X;}ier is a (dense) filtration in X.

(i) fY € X and YV = {Y;}ter is a (dense) filtration in Y, then the family
{clY}} is a (dense) filtration in clY.

(iv) If E is a topological vector space, & = {E; }ter is a linear filtration, U C E
is an open set such that Uy = UNE; # 0 for a.a. t € T, then {U;} is a filtration in
U and, for all t € T', U; is an oriented n;-dimensional manifold where n; = dim E}.

(v) If U is an open set in E such that clU # E, then the family {B;}ier,
where B; = bdU N E, is a dense filtration in B = bd U provided €& = {FE; }ier is
a dense filtration in E. In fact, let x € B and let V' be a neighbourhood of z in B.
Therefore, V = VN B where V is open in E. Thereisty € T and T € VNEy,. Let
W be an Z-starshaped neighbourhood such that € W C V. By (i), the families
{UNE}, {(E\clU)NE;} are dense filtrations in U and E \ clU, respectively.
There are t1,t; € T and points 71 € W N Ey, NU and To € W N (E\ clU) N Ey,.
For any ¢t > tg,t1,t2, the union [ of linear segments joining Z; to T and T to
Ty lies in E;. Since L is a connected set, T; € U and Ty € E \ clU, there is
yelNBCW CBCE,.

Let X be a uniform space with uniformity unf(X). We say that a filtration
X = {X,}ier in X is reqular over a set Z C X such that ZNcl(J,epX¢) # 0 if, for
any vicinity U € unf(X), there is V € unf(X), to € T and a family of continuous
maps {m; : V(Z) NV (X;) = Xi}i>e, satisfying the following conditions:

(R1) forz e V(Z)NXy, m(x) =z, ie. moj =idx, where j; : Xy — X is the
inclusion;
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(R2)  the maps jrom and j : V(Z) NV (Xy) — X (j is the inclusion) are
U-homotopic (i.e. there is a homotopy h: V(Z) NV (X;) x I — X such
that h(-,0) = jrom, h(-,1) = j and, for x € V(Z) NV (Xy), h({z} x I) x
h({z} x I) C U).

If Z = X, then we say that the filtration X" is regular (comp. [63]).

(1.2) THEOREM. Let E be a metrizable locally convex topological vector space
and let C be a closed subset of E. Assume E={E;}icr is a linear filtration in E.

(i) If, for a.a. t € T, Ct = CNEy # 0, then the filtration {C;} in C is
regular.

(ii) Let X be an open subset of C such that the family {X;}, where X; =
X N Ey, is a filtration in X. If Z C X, Z N cl(UyerXe) # 0 and there is a
neighbourhood W of 0 in E such that (W +Z)NC C X, then the filtration { X}
is reqular over Z. In particular, the filtration {X;} is reqular over any compact
subset of X.

(iii) If U is a convex open and bounded subset of E and E is a normed space,
B =bdU, {B;} ={BnNE,} is a filtration in B, then {B;} is regqular.

Proof. (i) is a consequence of (ii).

(ii) Let d be a translation-invariant metric on E, compatible with the topology
and convex structure of E. Let € > 0 be such that B(0,4¢) C U NW and put
V = N(0,e). Then V(Z) = N.(Z). Choose tg € T such that N.(Z) N Xy, # 0.
Forany t € T, t > tgp and x € N.(Z) N N.(Xy), let dyy = d(z,Cy) < . We define
a set-valued map

Ne(Z) N Ne(Xy) 2 2 — he(x) = B(2,2dst) N C,  t > .

Cleary, ¥, has nonempty closed convex values and, by I.(1.4), ¢, is L.s.c. Therefore,
in view of 1.(1.7), there is a continuous map m; : N.(Z) N No(X;) — E; such that
me(x) € Yy(x). Obviously, for x € N.(Z) N N(X}), m(x) € Xy and my(x) = x for
x € N:(Z) N X;. Moreover,

(I =MN)jrom(z)+ Az € N(x,2d,+) C X NU(x),

hence j; o m; and j are U-homotopic.
(iii) follows easily from (ii). m

(1.3) Remark. (i) If we assume in Example (1.1)(iv) that E is locally convex
and metrizable, then the filtration {U;} in U is regular over any set Z that lies
“deeply” in U, i.e. such that W + Z C U for some neighbourhood W of 0 in E.

(i) In view of (1.1)(v), (1.2)(iii), if U is a bounded convex and open neigh-
bourhood of 0 in a normed space E with a given linear filtration {E};}, then {B;}
is a regular filtration and, for any ¢t € T', B, is a finite-dimensional manifold.

It is clear that in a uniform space with a dense regular filtration any point
may be approximated in a controlled way by points from the sets of the filtration.
There is a homological analogue of this fact — see [63].



62 W. Kryszewski

Let X, X be topological spaces with filtrations X = {X;}ier and X =
{X:}ier, respectively. By the Cartesian product of these filtrations we mean
the filtration X x X = {X; x X }ser in X x X. In particular, in the space X x I
we always consider the filtration X x Z where Z = {[; };er with I; = I for all
teT.

Let X be a topological space and let X = {X;};er be a filtration in X. We
say that a set A C X is bounded with respect to X if, for a.a. t € T, Ay = ANX; is
relatively compact (in X;). We say that the space X is locally bounded with respect
to X if every point of X has a neighbourhood bounded with respect to X. It is
clear that in order for X to be locally bounded with respect to X it is sufficient
and necessary that X can be represented as a union of open sets bounded with
respect to X. Moreover, any locally compact space is locally bounded with respect
to any filtration.

(1.4) EXAMPLE. Let E be an infinite-dimensional locally convex space. The
following conditions are equivalent:

(i) there exists a dense linear filtration & = {E;}ier in E with respect to
which F is locally bounded,

(ii) there is a continuous seminorm p : E — [0, 00) with dim(E/p~1(0)) = oo.

In fact, assume that (ii) does not hold. Let {E}}.cr be an arbitrary linear
and dense filtration in £ and let U be a neighbourhood of 0 in E. Choose a
convex balanced neighbourhood V' of 0 such that V' C U. The Minkowski gauge
pv of V is a continuous seminorm and codim py,'(0) = n < oco. For some ¢ € T,
dim(E;) > n; hence E; Np;,'(0) > x # 0. Thus the set V N E; is not bounded.

Assume that (ii) is satisfied. Let {y4}aca be a dense subset of E and {V}}ren
a base of neighbourhoods of 0 in E. Make the set A x B well-ordered. Then it
is well-ordered similarly to the set of all ordinals £ < a3 where « is the ordinal
number of A and [ is the ordinal of B. Let ¢ : A x B — {£ : £ < af} be
a given similarity. Using transfinite induction we define a transfinite sequence
Eo, Eq, ... ,Eg, ..., &€ < af + 1, of finite-dimensional subspaces of E such that
E¢Np~1(0)={0} and AUecapin E¢)=E. Let Fg=0 and let £ < af3. The space
E¢ +p~1(0) is a nowhere dense subset of E, since otherwise codimp™!(0) < oo.
Let (a,b) € A x B be such that £ = p(a,b) and let z¢41 € yo + Vi \ (B¢ +p~1(0)).
We put E¢pq = span({we1} U E¢). If A < o is an ordinal of the second type,
then we put E, = ﬂ§<)\Eg = {0}. Observe that E¢i1 N (yo + Vi) # 0 for
¢ = p(a,b) < af. Hence, if U is an open subset of F, then there exists (a,b)
such that y, +V, C U, so U N E¢qq # 0 where & = ¢(a,b). Therefore, the set
Ug<apr1Le is dense in E. Moreover, if x € Eeiq Np~1(0), then = = szeqq1 + uy
where s,u € R and y € F¢. If s =0, then 2 € E¢ Np~1(0), so z = 0. If s # 0,
then z¢y1 = s 1 (z —uy) € E¢ +p~1(0), a contradiction.

Now, let H be an (algebraic) base of E = Ug<aps1 B and denote by T' the
family of all finite subsets of H (directed by inclusion). If ¢ € T, then we put
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Ey = span(t). Then J,.rE: = E is a dense subspace; hence {F;};cr is a dense
linear filtration. Moreover, for t € T, E;Np~1(0) = {0}, thus F is locally bounded
with respect to the filtration {E;}, as required. m

2. Approximation-admissible morphisms and maps. In this section we
define a class of morphisms (set-valued maps) for which the approximation degree
theory is available.

Let X, Y be topological spaces and let X = {X;}ier, YV = {Yihier be fil-
trations in X, Y, respectively. Next, let F be a class of set-valued maps (e.g.
F is the class of all upper-semicontinuous maps, n-acyclic maps (i.e. F = A,),
convex-valued maps etc.).

We say that a map ¢ : X — P(Y) belonging to F is a filtered map with
respect to the filtrations X', Y (written ¢ € F¥'((X, X), (Y,)))) if there is to € T
such that, for any t > to, ¢(X;) C Y;. Similarly, we say that an n-morphism ¢ €
M, (X,Y) is an F-n-morphism (written ¢ € M ((X,X),(Y,)))) if ¢ determines
a filtered map. Moreover, we let M* =] -, MF and

M (X, 4;2), (Y, B;Y)) = {p € M (X, X,(Y,))) : 9(A) C B}.

Suppose additionally that Y is a uniform space. A map ¢ : X — P(Y) from
the class F is called approximation-admissible relative to X, ) (written ¢ €
FAX,X),(Y,)))) if, for any vicinity V' € unf(Y), there is to € T such that
¢(Xt) C V(Y}) for t > tp.

Analogously we define the class M2 ((X, A; X), (Y, B;))).

Remark. If the filtrations X, ) of X, Y, respectively, are fixed, then we
suppress the symbols X', ) in the notation.

(2.1) ProrosiTioN. (i) FF c F4; in particular, MF c M2,

(ii) If the class F is closed under composition, then so is F¥. In particular,
if Z is a space with a filtration {Z}ier, p1 € ME(X,Y), po € ME (Y, Z), then
w201 € M (X, Z).

(iii) If Y is a metric space with a metric d, then a map ¢ : X — P(Y) from
the class F is an A-map (i.e. ¢ € FA(X,Y)) if and only if

lim sup sup d(y,Y;) =0.
teT ye X, yeYP(z)

The same statement holds for morphisms.

Now, assume that X is also a uniform space. A map ¢ : X — P(Y) from
the class F is called strongly approzimation-admissible relative to X, Y (written
¢ € FA((X,X), (Y,))))if, for any V € unf(Y), there are U € unf(X) andty € T
such that, for ¢t > to, ¢(U(X;)) C V(Y;). Analogously we define sA-n-morphisms.

(2.2) ProposITION. (i) F*4 c FA. If ¢ € FAX,Y) and ¢ is uniformly
upper-semicontinuous (i.e. for any V € unf(Y'), there is U € unf(X) such that
o(U(x)) C V(¢(z)) for z € X), then ¢ € F*A(X,Y).
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(ii) Let F be closed under composition. If ¢1€FA(X,Y), ¢o € FA(Y, Z),
then ¢ 0 p1€FA(X, Z). A similar statement holds for morphisms.

(iii) Let E be a topological vector space with a linear filtration € = {E},
b1,02 € FAX,E) and f1, fo : X — R be continuous bounded functions; then
fi01 + fato € FAX,E) provided fip) + fapa € F. Similarly for morphisms
01 € M{* and oy € M.

(2.3) Remark. Using I.(4.1), I.(4.2) and 1.(4.6), the reader will easily for-
mulate and prove facts concerning restriction, piecing together and Cartesian
products of A-morphisms.

We shall be mainly interested in A-morphisms (the class of A-morphisms or
maps determined by them constitutes the most general class of those considered
in this chapter).

Let X be a topological space with a filtration X = {X;};cr and Y a uniform
space with a filtration ) = {Y;}ter. Assume that ¢ € M(X,Y) and let a pair
(p,q) represent ¢, where p € V(W,X), ¢ : W — Y. The map p determines
a filtration W = {W;}ier in W where W, = p~1(X;). We easily see that if
(p',q¢) € ¢, where p’ € V(W' X), and f : W — W' is a homeomorphism such
that p’ o f = p and ¢’ o f = ¢, then f is a filtered map relative to W, W' (in
W, W', respectively). Moreover, p is a filtered map as well. The following simple
fact holds.

(2.4) PROPOSITION. A morphism ¢ € M(X,Y) is an A-morphism relative
to X and Y if and only if, for any pair (p,q) € ¢, where p € V(W,X) and
q: W — Y, the map q is an A-map relative to W,). If, for some (p,q) €
o, p~t : X — K(W) is uniformly upper-semicontinuous and q is a uniformly
continuous A-map, then ¢ € M*4(X,Y) provided X is a paracompact uniform
space.

Proof. The first part is obvious. Next observe that, since p: W — X is a
perfect map, p~! is u.s.c. and W = p~!(X) is paracompact, hence uniformizable.
The further reasoning is evident. m

The next theorem gives sufficient conditions for a given morphism to be ap-
proximation-admissible.

Let W be a topological space and Z a normed space with norm || - [|. A
continuous (single-valued) map f : D — Z, where D C W, is called uniformly
finitely approzimable (u.f.a.; see [75]) if for any £ > 0, there is a continuous map
f': D — Z such that

sup || f(w) — f/(w)l| <e
WeD
and f/(D) C L where L is a finite-dimensional subspace of Z. In view of the well-

known Schauder projection lemma, it follows that any compact map f: D — Z
is u.f.a.
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Let E be a topological vector space and F' be a normed space. Assume that
we are given families {X,,}22 ;, {V,,}5°,, where X, is a topological vector space
and Y, is a normed space for any n = 1,2,..., and families of linear operators
{in : Xoy = E}224, {jn : Yoo — F}22,. Suppose that the families {iy}, {jn}
satisfy the following conditions:

(%) for any n, in(Xn) C in+1(Xnt1), Jn(Ya) C Jnr(Yns1);

(s5)  sup 7] < oo

(k%)  for any n, dimi,(X,) > dim j,(Y,).

Let B C E and B, = i,(X,) N B for any integer n. Finally, we assume that

¢ : B — P(W) is a set-valued map, ¢ : W — F, where W is a topological space,
and W,, = p(B,,) for any n.

(2.5) THEOREM. If there exists a family {q, : W,, — Y, }22, of u.f.a. maps
such that
lim sup [[g(w) — jn © gn(w)| =0,
=0 weW,
then there are linear filtrations {E,}52 1, {Fn}52, in E and F, respectively, such
that dim E,, = dim F,, for any n and qo ¢ : B — P(F) is an A-map relative to
(BOE} (F}.

Proof. Let ¢ : Wi — Y] be a map such that

sup |[q1(w) — g (w)]| <1
Wy

we
and ¢;(W;y) C Ly where Ly is a finite-dimensional linear subspace of Y;. Let
F, = jl(Ll) Clearly, dim F} < oco.
Assume that, for & < n — 1, we have defined a map ¢, : Wi, — Y}, such that
sup ||qi(w) — g (w)[| < 1/k,  q(Wi) C Ly,

weWy,
where L;, is a finite-dimensional subspace of Y}, and a finite-dimensional subspace
F, CF, F,_1 C Fy and jk(Lk) C Fj,.
Let ¢, : W,, — Y,, be a map such that

sup ||gn(w) — g, (w)|| < 1/n
weW,

and ¢/, (W,,) C L,, where L,, is a finite-dimensional subspace of Y,,. We let F,, =
Fo_1 + jn(Ly). Clearly, F,,_1 C Fy,, jn(L,) C F,, and dim F,, < oo.
Let € > 0 and let NV be a positive integer such that

sup |[q(w) — Jjin © gn(w)|| < &/2
weW,

for n > N and such that, for any n and y € Yy, [|jn(v)|| < £/2 provided ||y| <
1/N.
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Let n > N and z € B,,. For any w € ¢(x) C W,,, we have

d(q(w), Fn) < llg(w) = jnogy ()| < llg(w) = jnogn(w)||+ljn(gn(w) =g (w))|| <e.
Clearly, dim i, (X,) > dim F,,. Choose a subspace E,, in i, (X,,) such that dim F,,
= dim F},. Since, according to (x), in(X,) C in41(Xnt1), one can choose E,, in
such a manner that F,, C E,;1 for any n. Then

lim sup dr(y,F,) =0.
N0 yegop(z)

Therefore, in view of (2.1)(iii), the proof is complete. m

(2.6) Remark. (i) If E = F and i, = j,, then go ¢ is an A-map relative
to {Fn}, {Fn}

(ii) Under the assumptions of the above theorem, if in place of ¢ we take the
map p~! : E — K(W), where p € V(W, E), and assume that ¢ : W — F is
continuous, then (2.5) gives a sufficient condition for a morphism represented by
(p,q) to be an A-morphism.

Below we give several examples of A-morphisms (or maps determined by
them). Obviously, we shall be interested in A-maps belonging to the class of u.s.c.
maps, acyclic or convex-valued maps or at least those determined by morphisms.
For these set-valued maps, we can construct the degree theory.

Let X, Y be topological spaces. Recall that a map ¢ : X — P(Y) from the
class F is called compact (or a K-map, written ¢ € FE(X,Y)) if cly(X) is a
compact subset of Y.

(2.7) ExamPLE. (i) If Y is a uniform space, X', ) are filtrations in X, Y,
respectively, and ) is a dense filtration, then FX(X,Y) c FA((X, X), (Y, ))).
(ii) If X, Y are uniform spaces and ) is dense, then FX¥(X,Y) c F*4(X,Y).

We shall show (ii) (the proof of (i) runs similarly). Let ¢ € FX(X,Y) and
V € unf(Y). Since cl¢(X) is compact and ) is a dense filtration, there are a
finite number of points y1,...,yx € J,cp Yz such that cly(X) C Ule V(yi). Let
to € T besuch that y; €Yy, i =1,... k.

For any vicinity U € unf(X) and ¢ > tg, Y (U(X)) C V(Yy).

Similarly, any compact morphism ¢ € M%(X,Y) (i.e. a morphism determi-
ning a compact map) is an A-morphism.

(2.8) ExaMPLE. Let X be a topological vector space and U its open subset.
If a filtration X in X is dense, ¢ € M® (U, X) and iy : U — X is the inclusion,
then the morphism iy — ¢ is an A-morphism relative to {U N X;} and X = {X,}.
In particular, any set-valued compact field with convex or n-acyclic values is an
A-map relative to any dense filtration in the range.

(2.9) ExamMpPLE. Let X be an arbitrary space and Y a topological vector
space. If 9 € FE(X,Y), then there is a linear filtration £ = {Y;};er in Y such
that cly(X) C cl(U,er Yi). Moreover, 1 is an A-map relative to an arbitrary
filtration & in X and &.
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The above examples show that (even in the single-valued case) the class of
A-maps generalizes the class of maps considered in the Leray—Schauder theory
and its set-valued analogues.

There are several “concrete” examples of A-maps which are not compact (in
the abstract setting it is rather easy to find this type of examples). We give one
such example. Others are given for instance in [65], [66] together with applications
to boundary value problems for ordinary differential equations.

(2.10) EXAMPLE. Let Z be a compact acyclic (in the sense of Alexander—
Spanier cohomology) metric space and let f : Z x RY — RM be a continous map.
Consider the set-valued map 1 : L (I,RY) — K(L*(I,RM)) given by

() = {y € L®(I,RM) : y(t) = f(z,2(t)), t € I, for some z € Z}.

This map is well-defined and determined by a morphism. Indeed, let p : Z X
L*(I,RN) — L>°(I,RY) be the projection. It is easy to see that p is a V;-map.
Next, define ¢ : Z x L>®(I,RY) — L*>(I,RM) by q(z,2)(t) = f(z,z(t)), t € I,
z€ Zand x € L¥(I,RY). Let z € Z, x € L=(I,RY) and ||z]oc < R. Since
flZ x BN(0, R + 1) is uniformly continuous, for any ¢ > 0, there is 0 < § < 1
such that |f(2/,u') — f(2",u")| < € provided 2, 2" € Z, ', u" € BN (0, R+1) and
dz(#',2") < 8, |u' —u"| < 6. Hence, for 2’ € L¥(I,RN), 2/ € Z, if ||z — 2'||0c <
0 and dz(z,2") < 6, then |f(z,2(t)) — f(2',2/(t))] < e almost everywhere, so
la(z,2) — q(, ") [0 <.

We see that ¢(z) = q(p~!(x)) for z € L>°(I,RY), therefore ¢ is determined
by the morphism represented by the pair (p,q). This type of maps is frequently
encountered in control theory.

Consider a map ¢ : I x RM — RM and define the superposition operator G :
L®(IL,RM) — L(I,RY) by G(y)(t) = g(t,y(t)) for t € I and y € L>=(I,RM).
We now show that G o : L®(I,RY) — L*(I,RY) (which is obviously de-
termined by a l-morphism) is an A-map relative to some linear filtrations in
Lo (1,RY).

First observe that the operator G is well-defined and continuous. For any
positive integer n and j = 0,1,...,2"—1,let t,,; = j/2" and, for j =0,...,2" -2,
let Ip,; = [tnj,tnj+1), and I on_q = [(2" — 1)/2™,1]. If we denote by &,; the
characteristic function of the interval I,,;, then we put

2" —1
By ={z e I*(ILRY) :2 = Y an;Xog, an; €RV .
§=0
Clearly, E,, C E,41 and dim E,, = N2" for any n.

We claim:

If B is a bounded subset of L®(I,R") such that {B, = BN E,}>2, is a
filtration in B, then G o|B is an A-map relative to {B,},{En}.

Fixe > 0 and let R = sup,¢p ||7||co- The uniform continuity of g|7 x BY (0, R)
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implies the existence of 6 > 0 such that |g(t,u) — g(t',u)| < € provided t,t" € I,
|t —'| < § and u € BN (0, R). Choose ng such that 27" < §, let n > ng, z € B,
and y € ¢(x). For v € L>®(I,RY) given by v(t) = g(tnj, y(tn;)) for t € I,; we
have v € E,, and

1G(y)(t) —v(®)] = lg(t,y(t)) = g(tnj, y(tn;))|
= lg(t, f(z,2(t))) = g(tnj, f (2, 2(tn;)))| <&,
where z € Z, 0 < j < 2" — 1 is such that ¢t € I,,;. Thus, for n > ny,

sup sup d(G(y), E,) <e.
rEB, ye(x)

Finally, observe that, generally speaking, the considered map is not compact.

3. Approximation of A-maps. In this section we discuss some other pro-
perties of A-maps relating to approximation.
Denote by F; the following classes of set-valued maps:

1 = 1: the class of all uper-semicontinuous maps;
1 = 2: the class of compact-valued u.s.c. maps;
1 = 3: the class of compact convex-valued u.s.c. maps.

We start with the following simple result.
(3.1) THEOREM. Let X be a topological space with a filtration X = {X;}ier-

(i) Let Y be a uniform space with a filtration Y = {Y; }rer regular over a set
ZCY. If p CFAX,X),(Y,))),i=1,2,%(X) C Z, then for any U € unf(Y)
there is ty € T and a family {¢; : Xy — P(Y:)}i>e, of maps from F; such that
Yi(z) C U((z)) and YP(x) C U(ye(x)) for x € Xy, t > t1. Moreover, the map
iz 0y is homotopic in F; to | X; (1).

(ii) If E is a metrizable locally convexr space with a linear filtration £ =
{E}ier and o € FLA(X, X)), (E,E)), then, for any neighbourhood U of 0 in E,
there is t1 € T and a family of maps {¢, : X; — K(E})}i>1, from the class Fs
such that ¥,(x) C Y(z) + U, ¥(z) C ¥,(z) + U and iz o 1y, | X, are homotopic
m .7:3.

Proof. (i) Let U € unf(Y). We can assume that U is symmetric. By the
definition of the regularity of a filtration over Z, we have V € unf(Y), to € T
and a family {m, : V(Z) N V(Y:) — Yi}i>4, such that, for ¢t > ty, i; o 7, and
i:V(Z)NV(Y:) — Y are U-homotopic. Since v is an A-map, there is t; > g
such that, for t > t1, ¥(X;) C V(Y;)NZ. Define ¢, = mo1)|X;. Clearly, if ¢ € F;,
i = 1,2, then ¢y € F; as well. Moreover, for z € Xy, t > t1, ¥(x) € U(¢4(x)) and
Y(x) C U@W(x)). If hy - V(Z)NV(Y:) x I — Y denotes the homotopy joining
it o ¢ to i, then i; o and 1| X; are joined by x:(x,s) = he(¢¥(z) x {s}), z € X,
scl t>t.

(1) Recall that by i; we denote the inclusion X; — X.
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(ii) In view of (1.2)(ii), the filtration £ is regular. In the above proof put
Y = F and Y = £ and let U be a convex symmetric neighbourhood of 0 in £
such that U c U. Other notation comes from the above proof. Thus, we have
a family {¢y : Xy — K(Y;)}t>1, such that ¢, (z) C U((x)) = U + ¢(x) and

Y(x) C U+ () for x € Xy, t > ty. Define ¢, (x) = convij(x) for 2 € Xy,

t > t;. The map 1, is u.s.c., has compact convex values and satisfies the other
conditions of the assertion. m

We easily see that if ¢ is, for instance, an acyclic map, then the maps ¢, may
not be acyclic in general. Hence, from the topological point of view, the above
result is not sufficient.

The next result justifies the use of morphisms in Chapter II instead of just
acyclic maps. It appears that morphisms (or rather maps determined by them)
can be conveniently approximated by maps of this class. Precisely:

(3.2) COROLLARY. Let X, Y, X, Y and Z have the same meaning as in
(3.1). If ¢ € MA((X,X),(Y,))), ¢(X) C Z, is represented by a pair (p,q),
where p € V,,(W, X), ¢ : W =Y, then, for any U € unf(Y'), there is t; € T and
a family of morphisms {@i}i>t,, where ¢, € M, (Xy,Y:), t > t1, is represented
by a pair (pt,qe), such that p; = plp~ 1 (Xy), ¢ : p~1(Xy) — Vi, and the maps
iroq and qlp~t(X;) are U-homotopic. Moreover, fort >t and w € p~1(Xy), if
4(w) € Yy, then gy(w) = g(w).

The following definition will be frequently used in the sequel. Let X be
a topological space with a filtration X = {X;};er and let Y be a uniform
space with a filtration = {Y;}ter. Assume that U € unf(Y) and ¢; € T.
By a U-approzimation system of an A-morphism ¢ € M2 ((X,X),(Y,))) we
mean a family {¢;}i>¢,, where ¢, € M,,(X;,Y;) is represented by a pair (p, qr)
with p; € V,,(Wi, Xy), ¢ : Wy — Y;, provided the following condition is satis-
fied:

e there is a pair (p,q), p € Vo(W,X), ¢ : W — Y, representing ¢ and a
family {f; : Wy — p~%(X;)}i>¢, of homeomorphisms such that, for any ¢ > ¢y,
the diagram

X £ pfl(Xt)
A %,
Wi

is commutative and the maps i; o ¢;, g o f; are U-homotopic.

(3.3) Remark. (i) Under the assumptions of (3.1)(i), in view of (3.2), any
A-morphism ¢ € MA((X, &), (Y,))) has a U-approximation system for any U €
unf(Y).

(ii) If {¢¢}i>¢, is a U-approximation system of ¢, then p(z) C U(pi(z)),
oi(xz) C U(p(x)) for t > t; and = € X;.
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(iii) If {¢¢}e>t, is a U-approximation system of ¢, to > t; and U C V €
unf(Y'), then {¢;}+>¢, is a V-approximation system of ¢.

(iv) Observe that the definition of an approximation system does not depend
on the choice of representing pairs of the morphisms ¢; and .

The next result shows that all U-approximation systems, for sufficiently small
U, are homotopically equivalent.

(3.4) THEOREM. Let X, Y, X, Y, Z satisfy the assumptions of (3.1)(i) and let
v € MA((X,X),(Y,))), ¢(X) C Z. For any R € unf(Y), there is V € unf(Y)
such that if {oi}i>e, and {@,}>f, are V-approzimation systems of ¢, then

(i) there is to € T, to > t1, such that the morphisms ¢, and @, are h-linked
Jort > ta;

(ii) moreover, there exists a family {xi}t>1,, where x4 € My,41(Xy X I,Y3), of
homotopies joining ¢, to @, such that xi(x,s) C R(p(z)) for v € Xi, s € I and
t>ty.

Proof. Fix R € unf(Y) and take a symmetric vicinity U € unf(Y") such that
UoU C R. In view of the regularity of ¢ over Z, there is a symmetric vicinity
Veunf(Y), V CU, and a family {m; : V(Z) NV (Y;) — Yi}i>4, such that
() T 04y = idy,, t > to;

(#%)  the maps i; om and i : V(Z) NV (Y;) — Y are U-homotopic.

Let {¢i}i>¢, and {@,}4>f be V-approximation systems of ¢. Assume that
pairs (pi, i), t > t1, pr € Va(Wi, Xy), o = Wi — Vs and (5, Qy), t > 1, Py €
VoW, X4), G, : Wi — Yy, represent ¢, and @,, respectively. By the definition
of approximation system, there are pairs (p,q) and (p,q), where p € V,,(W, X),
q: W — Y andp € V,(W,X), ¢: W — Y, representing ¢ and families of
homeomorphisms {f; : Wy — p~ (X)) hst,, {fy 1 D H(Xt) — Witisg, such that
the diagrams

v, pH(Xe) P H(Xe) N

Xt Tft lft Xt

N = 7

bt Wt Wt bt
are commutative and the maps i; o ¢, go f; and i; 0q,, go f, ! are V-homotopic
for ¢ > tg > tl, fl.
__ Since the pairs (p, q), (p, ) are equivalent, there is a homeomorphism f : W' —
W such that the diagram

W

leY
w

N
N

is commutative.
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Fix t > t5 and consider the diagram

P\t/ Wt \Qt
Xy Jgt Y:

N

t Wt qt

where g; = f, o fo fi. We shall show that this diagram is homotopy commutative.
Clearly, D, 0 g = pt. Therefore, we need to prove that the maps g, o g, and ¢; are
homotopic.

There exists a V-homotopy h; : W; x I — Y joining i; o ¢; to q o f; and
a V-homotopy hy : Wy x I — Y joining i; 0, to go f~'. It is easy to verify
that hy(w, 1) = hy(gi(w), 1) for any w € Wy, and moreover, hs(w,0) = i; o g;(w),
hi(g¢(w),0) = i; 0G, 0 g¢(w). On the other hand, we easily show that, for any w €
Wi, s € I, hi(w, s), hi(ge(w),s) € V(Z) NV (Y;). Define a map Hy : Wy x I — Y;
by

Hy(w, 5) = {ﬂ't oﬁt(w, 25) for s € [?, 1],
T 0 he(ge(w),2 — 2s) for s € [4,1].
This map is well-defined and continuous. Moreover, H¢(w,0) = ¢:(w), Hy(w,1) =
q, o g; for any w € Wy.

To prove (ii), observe that, for w € Wy, s € [0, %], Hi(w,s) € U(ht(w,2s))
and, for s € [1,1], Hy(w,s) € U(hi(gi(w),2 — 2s)). Hence, for w € Wy, s €
I, H(w,s) € UoV(qo fi(w)) C R(qo fi(w)). Now, define a morphism y; €
M, 11(X:x1,Y}) by the pair (py xid, Hy), t > to. Then xto0ig = ¢4 and xi0i1 = ;.
Therefore x; joins ¢; to ¢ in My,y; and, for any x € X, s € I, x¢(z,s) C
R(p(x)).

Theorems (3.2) and (3.4) are the principal approximation results for A-mor-
phisms.

Now we prove a result which needs stronger assumptions but whose assertion
seems to be also stronger and interesting.

(3.5) THEOREM. Let X be a paracompact space with a countable filtration X =
{X,}22, and let E be a locally convex space with a linear filtration € = {E,}52 ;.
If Xo=U;2, Xn and ¢ € MH((X,X), (E,E)), then, for any neighbourhood U
of 0 in E, there exists a morphism p € ME((Xo,X),(E,E)) such that p(x) C
@(x)+U, p(x) C p(z)+ U for each x € X,.

Proof. Let V, V be open symmetric and convex neighbourhoods of 0 in E
such that V+V C V C U. Let a pair (p, q) represent o, where p € V,,(W, X), ¢ :
W — Y. By (2.4), ¢ is an A-map relative to filtrations W = {W,, = p~}(X,,)} in
W and €. Let w € Wy = cl(U,—, Wy) = clp~!(Xo). Then q(w) € cl(Ur—; (En +
V)). Hence (q(w) +V)NU,—,(E, + V) # 0. Define an integer n(w) by n(w) =
inf{n : (¢(w) + V)N (E, + V) # (0} and let a(w) be an arbitrary point of the set
(q(w)+ V)N Eyy. Put V(w) = ¢ ((g(w) + V)N (a(w) +V)). Then w € V(w);
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hence {V(w)}wew, is an open covering of Wy. Since W is paracompact, so is
Wy. Take a locally finite partition of unity { fi, }wew, subordinate to the covering
{V(w)}. Define a map g: Wy — E by

av) = Y fulv)a(w)

weWy

for v € Wy. There is ng such that ¢(W,,) C E, +V for n > ng. Fix n > ng
and v € W,,. If f,(v) # 0, then v € V(w), so q(v) € (q(w) + V) N (a(w) +
V) and (¢(w) + V)N (E, + V) # (. This implies that n(w) < n and hence
a(w) € Eppy C E,. Therefore, g(v) € E,. Moreover, for v € Wy, q(v) — q(v) =
> wew, fw(v)(a(w) — q(v)) € V Cc U. In place of % we can take a morphism
represented by the pair (p,q) where p = p|J,—, W,,. This definition is correct
since in view of 1.(2.5)(ii), p is a V,,-map. =

To end this section we introduce the notion of A-homotopy. Let F, G be two
classes of maps and let 7 C G. If X, Y are topological spaces with filtrations
X, Y, respectively, and 1,11 € FA(X,Y), then we say that the maps 1y and
are A-homotopic in G provided there is a map ¢ € GA((X x I,X x I),(Y,)))
such that 1 is a homotopy joining ¥, %1 € F(X,Y) in G (see 1.(1.8)).

Analogously we define the notion of F-homotopy, sA-homotopy in the class G
(of maps from F), and the notions of A- (resp. F-, sA-) homotopy of morphisms
in M,.

By the definition and I1.(5.6), we have an immediate corollary:

(3.6) PROPOSITION. If X is a space with a filtration X and Y is a uniform
space with a filtration Y, then A-homotopy of morphisms from M, ((X, X), (Y,)))
s an equivalence relation. Similarly, whenn > 1 and X is a binormal space, then
A-homotopy in M, 11 of morphisms from M, ((X,X),(Y,))) is an equivalence
relation.

The reader will easily prove the following statement which extends (3.4).

(3.7) THEOREM. Let X, Y, X, Y, Z satisfy the assumptions of (3.1)(i) and let
morphisms ¢, € MA((X,X),(Y,))) be A-homotopic in M,,. For any vicinity
U € unf(Y), there exists a vicinity V. € unf(Y), V. C U, such that, for V-
approzimations systems {p¢}e>¢,, {9 hi>, of @ and @, respectively, there is ty >
t1, t1 such that the morphisms @i and @,, t > to, are homotopic in My 1.

(3.8) Remark. One easily shows that already for k > n, H*(¢;) = H*(3,),
t >t

Having the notion of homotopy we are in a position to define the analogues
of essentiality and strong essentiality for A-maps. All results from 1.6 extend to
this case. We leave the details to the reader (comp. [65]).
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IV. Approximation degree theory for A-morphisms

In 1934, the celebrated paper [78] of Leray and Schauder was published. Since
then, and particularly in the past three decades, various degree theories which
extend or generalize the Brouwer and Leray—Schauder theories have been defined
for various classes of maps of infinite-dimensional spaces. In general, construc-
tions of generalized degree theories are accomplished by certain approximation
methods; in an approximation framework it is possible to extend the given degree
theory from a class of (single- or set-valued) maps to a wider or more general
one. An abstract setting of an approximation process was presented in the single-
valued context by Browder in [14]. Browder’s approach can easily be generalized
to the set-valued case. However, here we stick to an intuitive understanding of
approximation. It should be stressed that almost any degree theory may be put
into an approximation framework — for continuous single-valued maps see [79],
[88], for condensing maps [97], for A-proper maps [15], [82] or finally for DC-maps
(this is another name for continuous single-valued A-maps) see [89], [69], [90]; for
others see [70].

1. The degree of A-morphisms. First, let us describe a group the con-
structed degree will take values in. Let T be a directed set. For any t € T, let
Gy =7 and Gy = [I.>;Gs, G = Uier G;. We define an equivalence relation in G
by setting:

(gs)SZt ~ (g;)SZt’
if and only if there is ¢/ € T such that ¢’ > ¢,¢' and, for s > t", g5 = ¢,. Let
G = G/~; we call G the asymptotic product of Gy = Z. The canonical projection
G — G will be denoted by v. Observe that the neutral element of G is given by
(g9s)ser where g; = 0 for all s € T. Additionally, put 1 = (gs)ser where g; = 1
for any s € T'. It is easy to see that if T" is a countable set, then G is isomorphic

to the group
ﬁ v/ / é A
n=1 n=1

Now, we state the general hypotheses allowing us to construct the degree for
A-morphisms.

(1.1) ASSUMPTIONS. (i) Let X be a topological space with a filtration X =
{Xitier and'Y a uniform space with a filtration Y = {Y; }ter, such that, for a.a.
teT, Xy and Y; are oriented manifolds of the same dimension.

(ii) Let ¢ € M2A((X,X),(Y,Y)), n > 1 and n+ 1 < sup,c dim X;.

(iii) Let the filtration ) be regular over a set Z C'Y such that ¢(X) C Z.

(iv) Let L be a compact connected subset of Y such that L C cl{J,cq Vs

(v) For any vicinity U € unf(Y'), there is R € unf(Y') such that R(L) NY; is
connected for a.a. t € T.
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(vi) There is a vicinity Uy € unf(Y') such that clp”= (Uy(L)) is bounded with
respect to the filtration X.

Below, we discuss the above assumptions.

(1.2) Remark. (i)Let E be a topological vector space with a linear filtration
E ={E;}ter and let U C E be an open set such that U N E; # 0 for a.a. t € T.
Ifweput X =U, X; =UNE,;, Y =FE and Y; = E;, then assumption (1.1)(i) is
satisfied.

(ii) If £ is a metrizable locally convex space with a linear filtration £ = {E;}
and Y is a convex closed subset of E such that Y; = YNE; # 0 for a.a. t € T, then
the filtration {Y;} is regular (see III.(1.2)(ii)), so assumption (1.1)(ii) is always
satisfied regardless of the choice of ¢.

(iii) If Y = E is a locally convex space with a linear filtration {Y;}, L C Y is
compact connected and (1.1)(iv) holds, then (1.1)(v) is also satisfied.

(iv) Assume that U is an open convex and bounded subset of a normed space
E with a linear filtration &€ = {E; }ter. Y =bdU and YV; =Y N E; # 0 for a.a.
t € T (see also III.(1.1)(v)), then the filtration {Y;} is regular (see IIL.(1.2)(iii)).
Moreover, if (1.1)(iv) holds, then (1.1)(v) is satisfied as well. In particular, if in
this case we put X =Y, X; = Y; and assume that U is an open ball in F, then
(1.1)(i),(iii),(v) are satisfied provided (1.1)(iv) holds.

(v) Observe that if (1.1)(vi) is satisfied, V € unf(Y") and V' C Uy, then, clearly,
the set clo "' (V(L)) is bounded with respect to X. Now, we discuss assumption
(1.1)(vi). Let E be a locally convex space with a linear filtration & = {E;}ier
and X C E a set open and bounded with respect to £ (see III.(1.4)). Assume
that X = {X; = X N E;} is a filtration in X, (1.1)(ii) holds and there exists a
morphism @ € M (clgX,Y) such that p| X =¢. We claim that (1.1)(vi) is satisfied
whenever clg(bdgX) N L = (. Indeed, there is a vicinity Uy € unf(Y’) such
that B(bdpX) NclUy(L) = 0. Hence the set clp~*(Uy(L)) = clg_*(Uy(L)) C
7 (cl(Up(L))) C X is also bounded with respect to X

Suppose now that X is a uniform space locally bounded with respect to some
filtration {X;} of X. If K = ¢ ~'(L) is compact and there exists a closed neigh-
bourhood W of K such that ¢|W determines a perfect map then (1.1)(vi) holds.
In fact, there exists a vicinity V' € unf(X) such that clV(K) is bounded with
respect to X, and V(K) C W. Since ¢|W is perfect, (gp]W)fl is u.s.c., so there
is Uy € unf(Y) such that ¢ =" (Up(L)) = o~ (Us(L)) C V(K).

(vi) In particular, if Y = F is an infinite-dimensional normed space (or merely
a locally bounded locally convex space), X is an open subset of E, &€ = {E}}1er
is a dense linear filtration in £, X = {X N E;}, p =ix — P where ix : X — E
is the inclusion and ® € MX(X,Y) (n is arbitrary) and Fix(®) is compact in X,
then, for L = {0}, all assumptions (1.1) are satisfied.

Now, we present an approximation process leading to an approximation degree
theory for A-morphisms.
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(1.3) Let R € unf(Y) be a symmetric vicinity such that Ro R C Uy and,
for t > to, the sets R(L) NY; are connected. Without any loss of generality we
may assume that, for t > tg, the set clo”'(Up(L)) N X, is compact in X; and
dim X; = dimY; > n.

(1.4) Since all assumptions of Theorem III.(3.4) are satisfied, there is a vicinity
V e unf(Y'), V C R, such that the assertion of III.(3.4) holds. Let {¢¢}+>,, where
t1 > tp, be an arbitrary V-approximation system of .

(1.5) For any ¢t > t1, let L; be an admissible (see I1.2) subset of R(L) N Y;.
For t > t, we have ;' (L;) C clo”*(U(L)), hence ;' (L;) is compact in X;.

(1.6) According to I1.3, for ¢ > t1, we may define an integer d; = deg(py, Ly).
This number does not depend on the choice of L;. Indeed, if L} C R(L) NY;,
t > t1, is another admissible set, then, in view of I1.(2.3), there is an admissible
set LY such that L;, L}, C L} C R(L)NY;, t > t;. By I1.(3.3)(iv), deg(ps, Lt) =
deg(ps, L}) = deg(py, LY) for t > t4.

(1.7) We have defined an element d = (d;),~,, € Gy, and consider D = v(d) €
G. We show that D does not depend on the choice of R, V', L; and {¢;}¢>+,. Let
R, V, Ly, {®,}1>¢, be as in (1.3)-(1.5). Clearly, we may assume that R C R,
V cVand# <t;. Then {#+}1>4, is a V-approximation system of ¢. According
to I11.(3.4), the systems {¢; }+>4, and {@, }+>+, are equivalent, i.e. there is a family
{Xxt}t>¢, of homotopies joining ¢; to @, and x:(x,s) C R(p(x)) for x € Xy, s € 1
and t > t;. Therefore, since Ly C R(L)NY; C R(L)NY;, we deduce that Xt_,l(ft)
is compact in X; x I. By I1.(3.4), deg(y, L;) = deg(®,, Lt), t > t1. This equality,
together with (1.6), ends our argument.

(1.8) We introduce the following definition of the degree of the morphism ¢
over L:

Deng(go, L)=D.
In the sequel, we shall write Deg(ip, L) if the filtrations X and Y are fixed.

(1.9) Remark. In view of the above construction, if assumptions (1.1) are
satisfied, then there exists a vicinity V' € unf(Y’) such that

Deg((pa L) = V((deg(sohl’t))tzh) €eG

where {¢;}+>¢, is a V-approximation system of ¢, L; is an admissible subset of
a nonempty connected set V(L) NY; and clo”'(V(L)) is bounded with respect
to X, t > t1. We say that such a vicinity is admissible for the construction of the
degree of an A-morphism ¢ over L.

Clearly, for any vicinity U € unf(Y’), there exists an admissible vicinity V' C U.

2. Properties of the degree of A-morphisms. Suppose that all assump-
tions (1.1) hold, and moreover, let a compact connected set N C L satisfy the
same assumption as L does (see (1.1)(v)).
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(2.1) THEOREM. (i) If Deg(p, L) #0 € G, then L C clp(X).

(if) Deg(p, L) = Deg(p, N).

Proof. (i) Suppose to the contrary that there is y € L such that y & clp(X).
There is a symmetric vicinity V' C unf(Y’) admissible for the construction of the
degree over L, such that ¢(X)NV oV (y)=0. Take any V-approximation system
{@t}1>1, of ¢ and let, for t > t;, L; be an admissible subset of V(L) NY; and let
yr € V(y) NY;. By I1.(2.3), there is an admissible set L; such that {y;} U L; C
L, CV(L)NY,, t > ty. Clearly, for t > t1, deg(ps, L) = 0 since y; & pi(X:) (see
I1.(3.3)(v)). Therefore, deg(¢y, Lt) = 0 and Deg(p, L) = 0, a contradiction.

(ii) follows easily from II.(3.3)(iv). m

In order to formulate the next property, let us introduce the following notatio-
nal convention. Let to € T' and let J be an arbitrary set. We say that an indexed
family (df),s,, jes of integers satisfies condition (SUM) if

SUM) (i) for any j € J, (d] )t>t € Gyy;
(ii) for any t > to, dJ =0 for all but a finite number of j € J.

If the family (d/) satisfies condition (SUM) then we put

ZV((d t>t ((Zdj>t>t0>

jeJ
(2.2) PROPOSITION. Assume that X = UjEJX where X7, j € J, is an open

subset of X such that X7 = {X] = X7 N X, yer is a filtration in X7. If, for
some vicinity U € unf(Y), the sets clo”*(U(L)) N X7 are pairwise disjoint, then

Deg(p, L) = > Degyiy(p| X7, L).
=

Proof. It is easy to see that, for any j € J, the degree Dega;y (| X7, L) is
defined. Let V' be a sufficiently small vicinity admissible for the construction of
the degree of p| X7 over L, for any j € J. If {¢;}1>¢, isa V- approximation system
of p,and Ly C V(L)N Y}, t > t;, is an admissible set, then the sets @; ' (L;) N X7
are disjoint, and since ¢; * (L;) is compact for each t > t;, Pr Y(L)N X7 = { for all
but a finite number of j € J. Hence the family (deg(p:| X7, Lt))i>t, jeu satisfies
condition (SUM). Thus ZjEJDeg(<p|X],L) = V((ZjEJdeg(got|Xg,Lt))tztl) =
V(deg(pt, Lt)t>t,) = Deg(p, L) by IL.(3.7). m

(2.3) Remark. Observe that if 7' = J is the set of all positive integers, then
the family (67 )ier jes (Where (5] =1 for j =t and 0 for j # t) satisfies condition
(SUM). We have v((3_,c;07)ter) = 1 € G but, for all j € J, V((6))ier) = 0.
Therefore our definition of .. ; may lead to paradoxes. In [95] an example is
given of a single-valued A-map for which, in the situation of (2.2), the paradox
described above occurs.
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(2.4) COROLLARY. Let X be an open subset of X such that X = {X; =
X N X} is the filtration of X. If clo(X \ X)N L = 0, then Deg(p,L) =
Degfy(gp\X,L).

Proof. For some vicinity U € unf(Y), (X \ X) NclU(L) = 0. Hence
cdxp ' (U(L)) C ¢ '(clU(L)) c X. Therefore clxp_"(U(L)) is bounded
with respect to X', where B = ¢|X, provided U is sufficiently small, and hence
Degzy, (¥, L) is defined. The assertion follows from I1.(3.8). m

Now, let x € MA((X x I, X x I),(Y,))) be an A-homotopy joining ¢g, ¢ €
MA((X, X),(Y,Y)). If, for some Uy € unf(Y), the set cl x~*(Uy(L)) is bounded
with respect to X x Z, then the sets cl(y 0 i5) " (Uy(L)) are bounded with respect
to X for any s € I (as usual, is : X — Xol, is(x) = (x,s), z € X, s € I). Hence,
for each s € I, Deg(x ois, L) is defined.

(2.5) PROPOSITION. Under the above assumptions,

Deg(po, L) = Deg(p1, L).

Proof. Asin (1.4), (1.5), we take V €unf(Y") such that, for any V-approxima-
tion system {x¢}+>1, of x and a family {L; C V(L)NY;};>, of admissible sets, the
sets x;' (L) are compact in Xy, t > t;. Then one can define deg(x; o4, L;) where
it 0 Xy — Xy x I, it (x) = (x,5) for © € Xy, s € I, for any ¢t > t;. To this end,
it is sufficient to observe that, for each s € I, {x; o’ }i>¢, is a V-approximation
system of x ois and recall I1.(3.4). m

Now, suppose that assumptions (1.1)(i)—(v) are satisfied.
(2.6) PROPOSITION. If

(i) X is locally bounded with respect to X and ¢ determines a perfect map, or
(ii) X s bounded with respect to X,

then Deg(p, L) is defined. If, moreover, for a.a. t € T, Y; is connected, then,
for each compact connected L' which satisfies (1.1)(iv)—(v), we have Deg(yp, L) =
Deg(ep, L').

Proof. The first assertion was already discussed in (1.2)(v). The second fol-
lows easily from the construction in Section 1 and II.(3.9). =

(2.7) Remark. If, for a.a. t € T, Y; is a connected manifold and (2.6)(i) or
(ii) holds, then we can define Deg(y) by putting

Deg(yp) = v(deg(t)t>t,)

(comp. II.(3.10)(iii)), where {¢; }+>¢, is a V-approximation system of X and V is
a sufficiently small vicinity in unf(Y’). Indeed, when (2.6)(i) holds, ¢ determines
a perfect map provided V is sufficiently small.

(2.8) ExampPLE. If F is a normed space furnished with a linear filtration
E = {Ei}ier and X =Y is the boundary of a convex bounded neighbourhood
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of 0in E, and X =Y = {Y N E;}, then, for each ¢ € M ((X,X),(Y,))) where
n + 2 < sup,ep dim Ey, assumptions (1.1)(i)—(v) (see (1.2)) and (2.6)(ii) are sa-
tisfied. Hence, we can consider Deg(y).

3. Further properties of the degree. Applications. Assume that F is
an infinite-dimensional normed space with a given dense linear filtration £ =
{E;}ter. Of course, sup,cpdim By = co. Let X be an open subset of E and
let ® € ME(X,E), n > 1. If X = {X;}, where X; = X N E;, t € T, then
X is a filtration in X and, by I11.(2.7), & € M2((X,X),(E,£)). Consider the
morphism ¢ = ix —® (as usual, iy denotes a morphism determining the inclusion
X —E). In view of 1.(4.4) and I11.(2.8), p € MA((X, X), (E,£)). Take a compact
connected set L C E and suppose that ¢~'(L) is compact in X (observe that if
L = {0}, then ¢~ (L) = Fix(®)). There exists a closed neighbourhood of ¢~ (L)
on which ¢ determines a perfect map. Since X is locally bounded with respect
to L, by (1.2), all assumptions (1.1) are satisfied and Deg y¢ (¢, L) is defined. We
shall prove that this degree stabilizes to the value of the Leray—Schauder degree
(or the fixed-point index if L = {0}) — see [71], [16], [11].

(3.1) PROPOSITION. Under the above assumptions,

Deg(, L) = v((dt)>1,)
where dy = d for each t > to. If L = {0}, then d = Ind(®) (see [71]).

Proof. Let V be a neighbourhood of 0 in E admissible for the construction of
the degree of ¢ over L. Then Deg(p, L) = v((deg(pt, Lt))t>t,) where {¢;}i>¢, is
any V-approximation system of ¢ and Ly C V(L)NE; is any admissible set, t > .
We may assume that V' is open and convex and such that cl ¢(X) C V+E};, where
dim Ey, > n. For any t > ¢, assume that &; = po® where p: V + E;) — E, is
a Schauder projection. For t > tg, we put ¢; = iy — @; where i; is a 1-morphism
determining the inclusion X; — E;. It is easily seen that the family {¢:}i>4,
constructed above is a V-approximation system of . Moreover, put L; = L for
any t > tg, where L C V(L) N Ey, is any admissible set. In this situation, for
any t > tg, v € X; and y € ¢i(z), we have x —y € Ey,. Therefore, for t > tg,
deg(p¢, L) = deg(py,, Lt,) in view of I1.(4.7). m

The above proposition shows that our degree, when applied to the so-called
compact set-valued vector fields, is compatible with the usual Leray—Schauder
degree.

Let E be a normed space with a linear filtration £ = {E} };>7 and X an open
subset bounded with respect to £ and such that X = {X; = XN E};} is a filtration
in X. If D =clg X, then D = {D;, = DN E;} is a filtration in D. Consider a
compact connected set L C cl,cr By and ¢ € MA((D,D),(E,€)) such that
clp(C)N L = () where C = bdg X. Let p|X € M2 ((X,X),(E,£)), n> 1, and
sup;cp dim £y > n + 1. Then Deg(p|X, L) is defined.
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(3.2) PROPOSITION. If D is a conver set, then for any morphism ¢ €
MA((D,D),(E,€&)) such that p|C = ¢'|C, we have Deg(¢'| X, L) = Deg(¢|X, L).

Proof. This follows immediately from II.(4.2). Namely, it is easy to find
(arbitrarily close) approximation systems {¢:}, {¢}} of ¢, ¢’, respectively, such
that gOt|C N Et = QOHC N Et. u

(3.3) Remark. If D is bounded convex, ¢ € M2 ((D,D),(E,€£)), 0 ¢
clo(C) and r : E\ {0} =S = {x € E : ||z|| = 1} is the radial retraction, then
Y=ro(p|C)eM2(C,C),(S,S)) where C={CNE;}, S={SNE;} are filtrations
in C and S, respectively. By (2.7), Deg(¢) is defined. By II.(4.4), Deg(y)) =
Deg(¢|X,0) = Deg(p|X, L) provided L C cllJ,cq By is a compact connected set
lying in the same component of E \ clp(C) as {0} does.

Now, we show several applications of the presented degree theory (comp. I1.6).

(3.4) THEOREM. Under the above assumptions, if o € X NclJ,er Er and

xo & cl conv(z, p(x))
for all x € C, then xo € clyp(D).

Proof. Let a pair (p,q), p: W — X, q: W — E, represent the morphism
¥ = ¢|X. We define an A-homotopy x € M2, ((X xI, X xT),(E,E)) by the pair
(P,Q) where P: W xI — XxI,Q:WxI — FE are given by P(w, s) = (p(w), s),
Q(w,s) = (1 — s)p(w) + sq(w) for w € W, s € I. In view of our assumption,
xo€clx(C x I). Since Deg(y 0ig|X,z0)=1€G, Deg(x 0i1|X, zo) =Deg(p|X, xo)
#0. m

(3.5) COROLLARY. Under the same assumptions, suppose additionally that X
is bounded and xo = 0. Suppose that either

(i) D is convex and, for all x € D and y € p(z), we have x —y € D, or
(ii) |y — x| < ||z|| for allz € C and y € ¢(x), or
(iii) |ly — z|| < |ly|| for all z € C and y € p(x), and sup{|ly — z| : = € C,
y € p(x)} < oo, or
(iv) for some r > 1, |ly — z||” < |lyl|” + ||z||” and sup{|ly —z| : = € C,
y € p(x)} < 0.

Then 0 € clp(D).

Proof. (i) Let p be the Minkowski gauge of the set D. Then, for any x € C
and y € p(z), p(y — x) < p(x) = 1. Next, the reasoning goes as in (ii) below.

(ii) Let m = inf{||z|| : = € C}, M = sup{||z|| : = € C}. Suppose that
0 & clp(D). There exists €g > 0 such that g < 2m and, for x € C and y € p(z),
llyl| > 0. By (3.4), there are sequences (z,,) in C and (y,,) in E, y, €o(xy), (Sn)
in I, such that [|s,yn + (1 — sp)zy|| — 0 as n — oo. Therefore, in case (ii), for
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some positive integer N and n > N, we have
€0 < [[ynll < [lsnyn + (1 = sp)zn|l + (1 = sp)l[yn — @
<eo/24 (1 —sp)lznl <eo/2+ (1 —s,)M,
and thus s, < 1—¢¢/2M = 3 < 1. Hence

2]l < llsnyn + (1= sn)znll + snllyn — 2nll < [[snyn + (1 = sn)znl + Bllzall
and [[s,yn + (1 — sp)xnl| > (1 — B)m, a contradiction.

In case (iii) or (iv), put M = sup{|ly —z| : x € C, y € p(x)}. For n > N,
lznll = snllyn *$n||§ |80 yn + (1 —sp)wn|| < e0/2. Hence s, > |lyn — linHil(m*
£0/2) > (m —e9/2)M ' = a > 0. Therefore, when (iii) holds,

[ynll < Isnyn+(1=sp)@nll+(1=sp)yn—zall < [[snyn+(1—=sn)znll+(1—a)|yal],
so agg < allyn || < [|$nyn + (1 — sp)zy ]|, a contradiction.

Consider (iv). Put a, = ||yn — zn||, bn = ||2n]| and ¢, = ||yn]||. Then |b, —
Spap| — 0 and |¢, — (1 — s,)a,| — 0. Since the function z +— 2" is uniformly
continuous on bounded sets, b, — sl al'| — 0 and |c], — (1 —s,)"al| — 0. In view
of the assumption (iv), al < bl + ¢}, hence

ar(1—s7)—(1—=s,)")<c —(1—s,)a. +b, — s ar — 0.
Since inf{((1—-s")—(1—s)") : s € [, B]} > 0, a,, — 0. However, a,, = ||yp—x,| >
(1 —s5,)"te0/2> (1 —a)teg/2 > 0, a contradiction. m

(3.6) COROLLARY. Let E, & be as above. If ¢ € M, (E, E) is such that, for
any closed bounded neighbourhood D of 0 in E, ¢|D € MA((D, D), (E,€&)) where
D = {D N E.}, then either the set

Ss(p) ={z € E:inf{]|z]| : z € conv(z, p(x))} <}
is unbounded for any 6 > 0, or 0 € clo(F).
Proof. If S5(¢) is bounded for some § > 0, then Ss(¢) C {z € E: ||z| < R}

where R > 0. Putting D = {z : ||z|| < R} and using (3.4), we get the assertion.
]

(3.7) COROLLARY. Assume that E is furnished with a scalar product and D
s a closed bounded neighbourhood of 0 in E.

() If o€ MA((D, D), (E,&)) and, for each x € C and y € o(x),
Re (y|z) = 0,

then 0 € clo(D).
(i) If ¢ € M2 ((E,E),(E,€)) and

lim |jz]|~! inf Re(y|z) = oo,
llz||—o0 yep(z)

then clo(E) = E.

Proof. (i) Similarly to (3.5)(ii), assuming that 0 ¢ clg(D), we can find
sequences (z,) in C, (y,) in E, y, € ¢(z,) and (s,) in (0, 3], where 0 < § < 1,



Degree theory of set-valued maps 81

such that [|s,yn+(1—5,)Z,|| — 0. Hence (1—8)m? < (1—5,)|7.]]? = Re (spyn+
(1 = sp)xn|zn) — Re (snynlzn) < Re(spyn + (1 — sp)zp|zy), a contradiction.
(ii) is a straightforward corollary of (i). m

(3.8) Remark. (i) Observe that, for 7 = 2 in (3.5)(iv), (3.7¢)(i) and (3.5)(i)
are equivalent.

(i) If in (3.5), (3.7)(i) we take a morphism ¢ = ip — @ where @ is an arbitrary
A-morphism, then we obtain sufficient conditions for the existence of approximate
fixed points of @. These conditions correspond to the well-known criteria of Rothe
((3.5)(ii)), Altmann ((3.5)(iv)) and Krasnosel’skii ((3.7)(i)) (comp. [26], [88]).
Similarly, (3.6) corresponds to the so-called Leray—Schauder alternative (comp.
126)).

Now, we shall confine ourselves to the particular situation when X = B =
{zeE |z]| <1}, D={zeE:|z[|<1l}land C =S ={x € E: |z| =1}
Clearly, B={BNE;}, D={DNE;} and S = {SN E;} are filtrations in B, D
and S, respectively. Obviously, S; = SN E; ~op S™* where m; =dim Fy — 1. For
any morphism ¢ € M, ((S,S), (S,S)), according to (2.7), Deg(y) is defined.

Let us collect several properties of this degree.

(3.9) PropoOSITION. (i) If Deg(y) # 0 € G, then cl{J,cp St C clp(S).

(ii) If ¢ determines a constant m-acyclic map, then Deg(p) = 0. If
sup,er dim By = oo and ¢ determines a constant map, then Deg(¢) = 0 as
well.

(iii) If ¢ determines an n-acyclic map and, for any x € S, x € p(x), then
Deg(p) =1 €@G.

(iv) If there is € > 0 such that, for any x € S, x & N.(¢(x)), then Deg(p) =
v((dt)t>t,) where dy = (—1)™¢ T,

(v) If there is € > 0 such that, for any x € S, —x & N:(p(z)), then Deg(yp) =
1cG.

Proof. Only (iii) requires some comments. By III.(1.2)(iii), the filtration &
is regular. For an approximation system that defines Deg(y), we may take the
system given in III.(3.2). Then, for t > ¢ty and = € S, © € (x). The assertion
follows from II.(4.9)(i) (observe that here ¢, is no longer n-acyclic). However, we
have the factorization

I,)/ pil(st) i) S

S, s |~

St ? St

for t > tg, where f(z) = (z,z) and p, g are projections. m

(3.10) COROLLARY. (i) The set S is not n-acyclically A-contractible, i.e.
there exists no morphism x € MA((Sx 1,8 xT),(S,8)) such that xoij, j =0,1,
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determine an n-acyclic map and such that x € x oig(x) and x o1 is a constant
map.
(ii) There exists no acyclic A-retraction of D onto S. Precisely, there is no

map ¢ € A}((D, D), (S,S)) such that x € (x) for z € S.

Proof. (i) In view of (3.9)(iii), if such an A-homotopy existed, then Deg(x o
i9) = 1, while Deg(x 0 i1) = 0 in view of (3.9)(ii). By homotopy invariance, we
get a contradiction.

(ii) If such a retraction 1 existed, then the A-1-morphism y = ¢ o h, where ¢
determines ¢ and h : S x I — D is given by h(z,s) = (1 — s)x, would be of the
kind whose existence was excluded by (i). m

The above simple fact has a consequence in the theory of Banach spaces (see
V.2).

As a straightforward corollary of the construction of Deg(y) (comp. (2.7),
(2.8)) and II.(5.2) we have

(3.11) THEOREM. Let a € M¥((S,S),(S,S)) be a fived-point free involutive
morphism and ¢ € M{*((S,S), (5,S)).

(i) If there exists € > 0 such that, for x € S,

Ne(p(x)) N Ne(p(a(z))) =0,

then Deg(p) = v((di)i>t,) where dy =1 (mod 2) for each t > ty.
(ii) If there exists € > 0 such that, for x € S,

(=Ne(p(x))) N Ne(p(a(z))) = 0,
then Deg(p) = v((di)i>t,) where dy =0 (mod 2) for each t > t.

Assume now, additionally, that the filtration £ is dense.

(3.12) THEOREM. Let a be as above. If E* is a vector subspace in E of
codimension k > 1, ¥ = {E* N Ey}ier and ¢ € M{((S,S), (E*,EF)), then, for
any € > 0,

(i) there is © € S such that N:(¢(x)) N Ne(p(a(x))) # 0, and
(ii) rdg A(p) > k — 1 where A.(¢) = {z € S: N:(¢(z)) N Ne(o(—2)) # 0}.

Proof. Fix e > 0 and let {¢;}+>¢, be an e-approximation system of ¢. Since
«a determines a filtered map and the filtration is dense, we may assume that, for
t > to, a(S¢) C St and dim(E*¥ N E;) = dim E; — k. Since ¢; € M1 (S, E¥ N Ey),
t > to, in view of IL.(5.8), for some x € S;, vi(z) N (a(x)) # O, which proves
(i). In order to prove (ii), put A(p:) = {z € St : pe(x) Npr(—2x) # 0}. Clearly,
A(pe) is closed in S and A(y:r) C Ac(g); moreover, by I1.(5.13), dim A(y) >
dim E;—1—dim(E*NE;) >k —1.

We also have the following partial generalization of (3.11).
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(3.13) PROPOSITION. If a morphism ¢ € M2((D,D),(E,&)) is represented
by a pair (p,q) (with p € V,(W, D), q: W — E), h : W — W is a continuous
involution such that, for w € p~1(Sy), t € T, po h(w) € S;, 0 & clp(S) and
—q(w) = q(h(w)) for w € p~1(S), then Deg(y|B,0) # 0.

Proof. Obviuosly, inf{||g(w)|| : wep™(S)} > 0. Let r: E\ {0} — S be the
radial retraction. An A-morphism ¢ = r o (¢|S) is represented by the pair (p, Q)
where p = plp~1(S), @ = ro(glp~'(5)). For any w € p~(S), Q(h(w)) = —Q(w).
Let {Q}}i>1, be an n-approximation system for @, n < 1/2, i.e. for t > to,
Q) : p1(S:) — S and ||Q(w) — Q}(w)|| < n for w € p~1(S;). Define a map
Qi : pH(Sy) — Sy, t > tg, by Qi(w) = r(Q}(w) — QL(h(w))) for w € p~1(Sy).
Then, for t >ty and w € p~1(S;), we have ||Q:(w) — Q(w)|| < 21 and —Q;(w) =
Qi (h(w)). A family {1 }+>t,, where the morphism v, is represented by the pair
(plp~1(S;), Qy), is a 2n-approximation system of 1. Therefore, if 7 is sufficiently
small, Deg(¢) = v((deg(¢y))). =

Below we give an example showing that the theory of A-maps may provide a
useful tool for studying classical problems for compact maps.

( 3.14) ProprosITION (The Birkhoff-Kellogg theorem, comp. [26], [62]). Let
& be a dense filtration. If p € MX(S,E) and 0 & clp(S), then there exist X > 0
and x € S such that Az € p(z).

Proof. Clearly, Deg(v) is defined where ¢y = rog and r: E\ {0} — S is
the radial retraction. Since ¥(S) is a compact subset of S, there are ty; € T and
Yo € Ey, and 0 > 0 such that Ns(yo) N(S) = 0. Let {¢1}i>¢,, t1 > Lo, be an
g-approximation system of 1, with 0 < & < 4, such that Deg(¢) = v((deg(¢r))).
It is easy to see that, for any ¢ > t1,y0 & ¥+(St), therefore deg(¢;) = 0. Thus
Deg(y) = 0. On the other hand, Deg(ids) = 1. Hence, for the morphism x €
M;:‘(SXI, E) given by X = TO(fl idS +f290)¢ where fl('rvs) = (1_8)7 f2(x78) =3
for z € S, s € I, one must have cl x(S x I) 5 0, which ends the proof. =

V. Other classes of set-valued maps

In this chapter we present other approximation methods available for the
construction of the degree theory of other classes of set-valued maps.

1. Single-valued approximations. In Chapter II we gave a description of
the degree theory of morphisms (or maps determined by them) based on methods
of algebraic topology, while in Chapter IV, the degree was built with the use of an
appropriate approximation of the original set-valued map by finite-dimensional
maps.

On the other hand, there is another useful technique allowing one to construct
the degree; namely that of single-valued approximation.
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Let X, Y be metric spaces, and 1 : X — K(Y') an upper-semicontinuous map.
If € > 0, then a continuous single-valued map f : X — Y is said to be an e-graph-
approzimation of 1 (written f € a.(¢)) if

Gf - Ne(Gw)

where the e-neighbourhood of G, is considered in the product X x Y furnished
with the ordinary max-metric. By straightforward calculation we get

(1.1) PropPOSITION. (i) f € a:(v) if and only if f(z) € Ne(¢¥(Ne(x))) for
each z € X.

(ii) If X,L C Y are compact, U C X is open and ¢~ (L) C U, then there is
§ > 0 such that, for any f € as(v), f~1(L) C U.

In order to provide examples of maps having sufficiently close continuous
graph-approximations, we recall the following definition. By an Rs-set we mean a
metric space which may be represented as the intersection of a decreasing sequence
of compact contractible metric spaces. Any Rs-set is acyclic and, for example, any
convex compact set in a metric vector space is an Rs-set.

(1.2) THEOREM. Let X, Y be absolute neighbourhood retracts, X be compact,
and let ¢ : X — K(Y) be a u.s.c. map such that, for any x € X, (z) is an
Rs-set.

(i) For any e > 0, a.(¢) # 0.
(ii) For any 6 > 0, there is € > 0 such that any f,g € a-(v) are joined by a
homotopy h : X x I — Y such that h(-,t) € as(¢) for anyt € 1.

The above result was proved in [47] (comp. [46]). It enables us to build the
degree theory of maps having Rs-values.

Let X, Y be two oriented manifolds of the same dimension and let ¢ : X —
K(Y) be a u.s.c. map such that, for each z € X, ¢(z) is an Rs-set. Let L be
a connected compact subset of Y such that K = ¢~ (L) is compact. Obviously,
there exists a compact absolute neighbourhood retract A C X such that K C
int A. Combining (1.1)(ii) and (1.2), we get

(1.3) COROLLARY. There is € > 0 such that, for any f, f' € a-(¢¥|A), there is
amap h: Ax I —Y such that the set {x € A: h(x,t) € K for somet € I} is
compact in int A, and h(-,0) = f, h(-,1) = f.

We define

d(wv L) = deg(.ﬂX/’ L)
where X’ = int A and f € a.(1)|A). Here, on the right-hand side we have the
(ordinary) Brouwer degree of a map of manifolds. This definition is correct since
it does not depend on the choice of f (in view of (1.3)) and on the choice of A in
view of the excision property of the ordinary degree (comp. II1.(3.8)). It is easily

shown that the degree defined above satisfies all the standard properties of the
topological degree.
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Since, as has already been mentioned, any u.s.c. map with Rs-values is 1-
acyclic, a natural question arises whether deg(v, L) = d(¢, L) provided L is
an admissible subset of Y (see II.(3.6)). The answer is positive. To see this,
in view of the above construction, it is enough to prove the following general
theorem.

(1.4) THEOREM. Let X,Y be oriented manifolds of the same dimension m
and let ¢ : X — K(Y) be an n-acyclic map (n =1 if m =1 andn <m—1
for m > 2) such that, for any e > 0, a.(v¥)) # 0. If L is an admissible subset of
Y such that K = ¢~ (L) is compact, then deg(y, L) = deg(f, L) where f is a
sufficiently close graph-approximation of .

Proof. In view of (1.1)(ii), there are § > 0 and a compact M C X such that
K C M and f~Y(L) C M provided f € as(¢). By I1.(3.3)(iii),

deg(4, L) = (H™ (Yarr) (wh), punr)
where 1, w are orientations of X, Y, respectively. Put v = w”.

Let N be a positive integer such that N~! < §. For any integer i > N, we
define U; = Ny/;(G) C X x Y where G is the graph of ¥. Moreover, let (p,q),
with p € V,,(G, X), ¢ : G — Y, be the generic pair representing .

Clearly, ;> y Ui = G and ;5 5 UM = p~1(X \ M) where UM = U; N (X \
M) xY). Forany j > i > N, let s : H"(U;, UM) — H™(U;,UM) be a ho-
momorphism induced by the inclusion U; — U;, and let x; : H m(U;, UM) —
H™(G,GM), where GM =p~}(X \ M) =GN ((X\ M) xY), be the homomor-
phism induced by the inclusion G — U;. By the tautness of Alexander—Spanier
cohomology (see [104]),

H™(G,GM) ~ lim i > NH™(U;, UM)
——
i>N
and this isomorphism is realized by the compatible system {r; : i > N}.

Let, for any ¢ > N, p; : U; — X, q; : U; — Y be the projections. Then
pi: (U, UM) — (X, X\ M) and ¢; : (U;,UM) — (Y, Y \ L). For any j > N, we
have the following commutative diagram:

P/ ril
H™(X, X\M) Tm H™(Y,Y\L)

Moreover, for any j>i> N, p; = k;j0p; and ¢j = k;;0q;. Fix i> N. Obviously,
there exists « € H™ (X, X \ M) such that k;;0p} (o) = p* () = ¢*(7) = Kiog} (7).
Thus there is j > i such that p}(a) = ¢} (7). Now let f € a;/;()). Hence G' =
GrcU;. Ifp: G — X, ¢ : G = Y are projections and 3 : Hm(Uj,UJM) —
H™(G',p'~1(X\ M)) is a homomorphism induced by the inclusion G’ — U;, then
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we have the following commutative diagram:

v
H™(X, X\M) |7

PN (G (X\M))

H™(V,Y\L)

where p* is an isomorphism. Hence, after an easy computation,

*

p*log () = a=p""¢"(v).
Therefore deg(v, L) = (o, ppr) = deg(f,L). m

(1.5) Remark. (i) It is rather clear that the above result does not hold if
we replace the n-acyclic map ¢ with a map determined by an n-morphism. For
instance, it is easy to see that the constant map ¢ : S — K(S') with ¢(x) = S!
for any x € S may be determined by a morphism ¢ such that deg(p) = 1;
however, 1 has a selection f : S' — S with deg(f) = 2 (selections are obviously
g-approximations for any € > 0). On the other hand, applying the same reasoning
as above, we can generalize (1.4) as follows. Let ¢ € M,,(X,Y) be a morphism
represented by a pair (p,q) where p € V,,(W, X), ¢ : W — Y. If, for any ¢ > 0,
the map ¢ : X — K (W) given by t(x) = p~!(x) has e-approximations, then the
assertion of (1.4) holds. In particular, if ¢ = v o... 01, 1; is an acyclic map,
j=1,...,k, and for any ¢ > 0 and j = 1,...,k, a-(¢);) # 0, then the assertion
of (1.4) holds as well.

(ii) In spite of the fact that the algebraic-topological approach can be ap-
plied to a far more general class of maps (it is known that the class of maps
having sufficiently close approximations is only slightly more general than maps
with Rs-values — see [47]), it should be stressed that the approximation appro-
ach presented above is much simpler and sometimes gives better computational
results.

Now, we shall consider a class of set-valued maps whose values satisfy a certain
geometrical condition instead of topological ones. This class contains the class of
convex-valued maps (see [68]).

Let X be a topological space and let E be a locally convex space. We say that
amap ¢ : X — P(FE) is 0-separating if, for any x € X, there is a continuous
linear form [, € E’ such that either I,,(y) > 0 for y € ¥(z), or 0 € ¢(x).

It is obvious that nothing can be said a priori about the topological structure
of values of a 0-separating map. On the other hand, any closed convex-valued
map is clearly O-separating.

Let ¢ : X — P(E) be a 0-separating map such that 0 € ¥)(X). A continuous
(single-valued) map f : X — E'is a homotopy approzimation of ¢ if for any z € X,
there is a linear form [, € E’ such that I,(y) > 0 for any y € conv(f(z),(x))
(see I1.(6.2)).
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(1.6) TuEOREM. If X is paracompact and ¢ : X — P(E) is a u.s.c. 0-
separating map such that 0 & (X)), then there exists a homotopy approrimation
f of ¥ such that f(X) C conv (X).

Proof. For any linear form [ € E', let U; = {zx € X : l(y) > 0 for y € ¢(x)}.
Clearly, U ={U;}ic g’ is an open covering of X since ¢ is u.s.c. Let V={V}};c; be
an open pointwise starshaped covering inscribed in U (see [32]) and let {f;};cs be
a locally finite partition of unity subordinate to V. Choose arbitrary y; € ¥(V;),
j € J, and, for x € X, define

f@)=>" fi(z)y;.
jeJ
Obviously, f : X — E is continuous and f(X) C conv(X). We shall show

that f is a homotopy approximation of 1. Let z € X and let {j1,...,jx} ={j €
J : fj(x) # 0}. There is | € E’ such that

St(z,V) = J{V;:j CJand x € V;} C UL

Thus, for i = 1,...,k, l(y;,) > 0, and I(y) > 0 for y € ¢(x). Hence I(z) > 0 for
z € conv(f(z),v(z)). =

Having the above result, we are in a position to define the topological degree
for O-separating maps. We shall provide a construction in a certain particular
situation leaving a more general case to the reader. Let X be an open bounded
subset of R™ and let ¢ : c1 X — P(R™) be a u.s.c. 0-separating map such that
0 ¢ ¥(bd X). By (1.6), there is a homotopy approximation f : bd X — R™ of
¥|bd X. In particular, 0 ¢ f(bd X). Define

deg(wv 0) = deg(f*|Xa 0)

where f*:cl X — R™ is an arbitrary extension of f onto cl X.

This definition is correct since it does not depend on the choice of f and f*.
Indeed, let f* be another extension of f onto cI X. Then the map h:clX x I —
R™ given by h(x,t) = (1—t)f*(x) +tf*(x), x € cl X, t € I, provides a homotopy
from f* to f* and shows that deg(f*|X,0) = deg(f*|X,0) because h(z,t) # 0 for
x €bdX,tel Now,letg:bdX — R™ be another homotopy approximation
of ¥|bd X. According to the definition, the maps x1, x2 : bd X — P(R™) given
by Xl(x>t) = (1 - t)f(.%‘) +t’¢(l‘), X2($7t> = tg(.%') + (1 - t)¢($), T € ban le Ia
are O-separating and 0 ¢ x;(bd X x I), i = 1,2. Define x : bd X x I — P(R™) by

[ xa(=,2t) fort € [O, %},
X(@,t) = {X2($,2t —1) forte [%, 1},

for x € bd X. The map x is O-separating and 0 ¢ x(bd X x I). In view of (1.6),
there is h : bd X x I — R™ such that, for each z € bd X, ¢t € I, there is a

linear form I, ; over R™ such that I, ;(z) > 0 for z € conv(h(z,t), x(x,t)). Define
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h:bd X x I — R™ by

3th(z,0) + (1 — 3t) f(z) for t € [0, 1],
h(z,t) = { h(z,3t—1) for t € [4, 2],
(3 = 3t)h(z,1) + (3t — 2)g(z) for t € [2,1],

for zebd X. Then h(-,0) = f, h(-,1) = g and 0¢h(bd X x I). Using the Borsuk
homotopy extension theorem, we end the proof. m

The defined degree of 0-separating maps has all the properties of the topolo-
gical degree. As an illustration we show three of them.

(1.7) PROPOSITION. Under the above assumptions:

(i) 1f 0 & ¥(X), then deg(1),0) = 0.
(ii) If x:cl X xI — P(R™) is u.s.c. and 0-separating, 0¢ x(bd X x I), then
deg(xo0,0) = deg(x1,0) where x; = (+,i), i =0, 1.

Proof. (i) In view of (1.6), there is a homotopy approximation f of 1 such
that 0 ¢ f(cl X) and deg(v,0) = deg(f,0).

(ii) Repeat the arguments proving the independence of the definition on the
choice of homotopy approximation and its extensions. m

The following is a generalization of the Borsuk antipodal theorem to 0-sepa-
rating maps.

(1.8) THEOREM. Let X = N™ = {z € R™ : |z| < 1} and let b : B™ —
P(R™) be a u.s.c. 0-separating map such that, for any x € S™ 1, there is a
linear form 1, over R™ such that if y € ¥(x), ¥ € ¥(—x), then l,(y) > 0 and
l:(y) < 0. Then deg(1,0) =1 (mod 2).

Proof. First of all, observe that the degree is defined since 0 & ¥(S™™1).
Now, we modify a bit the construction provided in the proof of (1.6). For any
linear form [ over R™, let

U={zeS™ ! :1(y)>0,I(7y) <0foryc (), ye€p(—z)}
The family & = {U;} is an open covering of S™~!. Moreover, for any form I,
U = —U_;. In particular, if x € U, then —x € U_;. Let V = {V;};cs be an
open pointwise starshaped covering inscribed in U. Consider the open covering
W={V;N =V;}ijcs. Itis easy to see that if W=V, N —-V; € W, then —W =
V; N =V; € W. Moreover, WV is a pointwise starshaped covering inscribed in U
since, for each x € S™~1, St(x, W) C St(z,V). Assume that elements of W are

indexed by a set .S and let { f }ses be a locally finite partition of unity subordinate
to W. We define a map f: S™~! — R™ by

flx) = Zfs(x)ys for z € S 1
seS

where ys € (W), s € S, is an arbitrarily chosen point. Clearly, f is a homotopy
approximation of . Observe that, for any z € S™~ !, f(z) # f(—x). In fact, if
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St(x, W) C Uy, then I(f(z)) > 0 but, as can easily be verified, I(f(—z)) < 0.
Therefore, the classical Borsuk theorem shows the assertion. m

In order to state the next result, we introduce the following notation. For any
positive integer m, let L,, be the set of all linear forms over R™. If ¢ : S —
P(R™) is a 0O-separating map and [ € L,,, then we put

U(,) = {z e 8" : 1(d(x)) > 0, I((~x)) < 0},
Aw) ="\ U v@w).

leLy,

(1.9) Remark. If ¢ : S* — P(R"*1\ {0}) is a u.s.c. and O-separating map,
then we define

deg(y) = deg(r o f)
where f : S" — R"*1\ {0} is a homotopy approximation of ) and r : R**1\ {0} —
S™ is the radial retraction.

(1.10) CorOLLARY. (i) If ¥ : S™ — P(R™™1) is w.s.c. and 0-separating,
A(p) =0, then, for any y € R* T (S™) N {ty : t > 0} # 0.
(ii) If ¢ : S™ — P(R™) is u.s.c. and 0-separating, then A(y) # 0.

Proof. (i) If for some yo € R" 1 4(S™)N{tyo : t > 0} = 0, then deg(¢)) = 0,
a contradiction.
(ii) follows directly from (i). m

Let ¢ : S™ — P(R™) be a u.s.c. and 0-separating map. The set A(v)) is clearly
compact and symmetric. By its genus we understand (as usual) the number

Y(A(¥)) = min{r : 3f : A(¢») — S" odd continuous}.

It is well known that dim A(¢)) > v(A(¢))) (see e.g. [40]). We have the following
extension of (1.10)(ii).

(1.11) THEOREM. If m < n, then, under the above assumptions, v(A(v)) >
n—m.

Proof. In view of (1.10), we may assume whithout any loss of generality that
n —m > 1. Now, suppose that 7(A(¢))) = k < n —m. There is a continuous odd
map f : A() — S¥; let f/: S® — R¥*! be an extension of f onto S™. Consider
a map ¢’ : S* — P(R") given by ¥/(z) = ¢(x) x {f'(z)} € R™ x Rk c R".
This map is u.s.c. and 0O-separating, so, by (1.10)(ii), A(¢") # 0; hence there is
' & Upep, U(l,9"). We claim that 2 € A(y). Suppose that ' ¢ A(v); there
exists a form | € L, such that 2’ € U(l,v). Take a form I’ € L,, such that
UIR™ =1 and R"™™ C ker!’. Then l'(¢'(2")) = l(¢)(2")) > 0 and I'(¢'(—2")) < 0;
hence 2’ € U(I',¢’), a contradiction. Since =’ € A(v), it follows that — f'(z’) =
—f(z") = f(—2') = f'(—a'). Thus there must exist a linear form " € L,,_,,, with
an extension "’ such that =’ € U(I”, '), a contradiction. m
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As before, we now study the compatibility of the above-defined degree with the
one introduced in Chapter II. Assume that a 0-separating map ¢ : c1 X — K(R™),
where X is an open bounded subset of R™, is determined by an n-morphism
w € My(clX,R™) (n=1ifm=1andn < m—1ifm > 2), and that 0 € ¢)(bd X).
According to I1.3, deg(y|X,0) is defined.

(1.12) PROPOSITION. Under the above assumptions,

deg(| X, 0) = deg (¥, 0).

Proof. Let a pair (p,q), where p € V,,(W,cl X), ¢ : W — R™, represent the
morphism ¢ and let f : bd X — R"™ be a homotopy approximation of ¥, and
f*:cl X — R™ its extension onto cl X. Define @ : W — R™ by Q(w) = f*(p(w))
for w € W. By @ we denote the n-morphism represented by the pair (p, Q). Let
L={0} and N={weW : (1 —t)Q(w) + tq(w) = 0 for some t€I}. If M =p(N),
then M Nbd X = (). Therefore the morphisms @1, and 1,1, are h-linked. This,
together with II.(3.5), ends the proof. m

We end this section by showing how to generalize the notion of 0-separating
map and its degree to the infinite-dimensional setting.

Assume now that E is a metrizable and complete locally convex space, and
let ¢ : c1 X — C(E), where X is an open subset of F, be u.s.c. compact and such
that the field ¥ = i — v is O-separating. Let Fix(y)) N bd X = 0.

(1.13) PROPOSITION. For any x € bd X, there are a linear form l, € E' and
a neighbourhood V,, of x such that, for z € V, andy € v(V,Necl X), I, (z—y) > 0.

Proof. Let 2 € bd X. Since = ¢ (x), there is a form [, € E’ such that
lo(x —y) > 0 for y € ¥(x). Suppose that, for any positive integer n, there are
2n €V ={2€ E:d(z,) <n '} and y, € ¥(V, Necl X) such that I,.(z, —y,) <
0. Of course, z,, — = as n — oo, and y,, € ¥(x,) where x,, € V,, Ncl X. By the
compactness of ¢, we may assume that y, — y € E. Since the graph of ¢ is
closed, y € ¥(x). The continuity of [, yields a contradiction. m

(1.14) THEOREM. Under the above assumptions, there exists a compact con-
tinuous map f : bd X — E such that the map F =i — f is a homotopy approxi-
mation of . In particular, Fix(f) = 0.

Proof. For any y € bd X, there is a pair (V};, 1) where V}, is a neighbourhood
of y and [, € E' is such that [,(z—2") > 0 for z € V,,, 2’ € ¥(V;Ncl X). The family
V = {V,} is an open covering of bd X. Consider an open covering W = {W,},c;
which is pointwise starshaped and inscribed in V and a locally finite partition of
unity {f;},;es subordinate to W. Choose z; € ¢(W;) and define f : bd X — E
by

f(x) =) fi(2)z
jed
for z€ bd X. The map f is continuous and compact since f(bd X') C conv(cl X).
From the definition we see that [, (z — f(z)) > 0 and [,(y — z) > 0 where z €
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Y (z) and [, is a form associated with a neighbourhood V,, such that St(z,V)
C Vy. ]

Now, we can easily build the degree deg (¥, 0). Precisely, modifying the proof of
[26, (2.5)] by use of the Dugundji Extension Formula instead of Lemma (2.4) from
[26], we obtain a compact extension f* : clX — E of f provided by (1.14). Then
it is enough to put deg(¥,0) = deg(i — f*,0). The correctness of this definition
can be verified in exactly the same manner as before. It is rather easily seen that
the degree defined has all the good properties. In particular, one can formulate
a result concerning the oddness of the degree of odd fields of spheres and its
consequences.

Let us remark that the procedure described above for compact infinite-dimen-
sional maps extends quite easily to A-set-valued maps. We leave the details to
the reader. We only remark that, in order to adapt the reasoning for O-separating
A-maps, one should assume a bit more about the separation properties of the map
in question. Namely, we should consider maps which are strongly 0-separating; a
map ¢ : X — P(FE), where X is a topological space and E is a locally convex
space, is strongly 0-separating if, for each neighbourhood U of 0 in E, there is a
neighbourhood V' C U such that, for any « € X, either

) Y(X)NV =0, or

(ii) there is a linear form I, € E’ such that

l(y) = sup lz(v) for y € ¥(x).
veV

One can observe at once that any map ¢ : X — P(FE) with convex values is
strongly O-separating.

The only remaining difficulty is to prove that when an A-map is strongly 0-se-
parating, then it has homotopy approximations (which are single-valued A-maps).
The necessary extension result for (single-valued) A-maps can be found in [65].

2. Linear filtrations. AP-maps of Petryshyn. In the last section of this
paper, we present several results concerning linear filtrations, projection schemes,
and we briefly discuss the class of approximation proper (AP) maps which, in the
single-valued case, were introduced by W. V. Petryshyn and, in the convex-valued
case, were studied by P. S. Milojevi¢ [85], [86] (comp. [82]).

As we have seen before, linear filtrations are particularly important in the
approximation approach to degree theory.

Let E be a linear metric space and let £ = {E,}72, be a linear filtration
of E. We say that the filtration approzimates rapidly (comp. [1]) if there is a
translation-invariant metric d in E such that

lim supd(z, E,) = 0.
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(2.1) ExaMPLE. Let E be the space of all real sequences. Obviously, F is
metrizable, locally convex and complete when its topology is generated by the
family of seminorms p,, : (x5)52, — |zn|. Let B, ={x=(zx) : =0 for k>n}.
The filtration &€ = {E,, } is linear, dense and approximates rapidly. Indeed, for the
metric d given by

d(,y) = sup2" (1 + pa(z — ¥)) 'pn(z —y)

where z,y € E, we have d(x, E,) < 27""! for any * € E. Observe that d is
uniformly equivalent to the well-known metric

d(z,y)=> 27"(L+pu(z —y) 'palz — y).

It appears that the existence of rapidly approximating filtrations is a very
rare phenomenon. In fact, in [1] it was shown that the space E (from (2.1)) is
the only, up to isomorphism, infinite-dimensional metrizable space which admits
rapidly approximating filtrations.

As is easy to see, if a filtration £ approximates rapidly, then any continuous
map is an A-map. This fact has an interesting consequence.

(2.2) THEOREM. If E is an infinite-dimensional normed space, then E does
not admit rapidly approximating filtrations.

Proof. The proof is very easy. If such a filtration existed, then no retraction
of the unit ball would exist (see IV.(3.10)). On the other hand, it is well known
that there are maps of the ball into itself without fixed points. Hence, such a
retraction exists. m

The notion of a projection scheme is closely related to that of a linear filtration.
Let £ = {E,}22, be a linear filtration in a normed space E. Assume that we are
given a family P = {P,, : E — E,}52, of continuous linear projections such that

(%) P,x —x asn—oo, foranyzxckE.

Such a pair (€, P) will be called an (internal) projection scheme in E. Obviously,
if (£,P) is a projection scheme, then the filtration £ is dense and regular.
Observe that, if the family P satisfies the condition

(Ta) sup||P,|| < a and €& is dense,

then (x) holds. In this case, we have, for each x € F, ||z — P, z|| < (14+a)d(z, E,,).
Conversely, if E is a Banach space, then, by the Banach—Steinhaus theorem, we
see that (%) implies (7,) for some a.

The problem of the existence of projection schemes is rather complicated (see
[59], [96]). We shall restrict ourselves to one case which is a source of many
examples.
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Assume that E has a Schauder basis {e,, }52 ;. Then the formulae

E,, =span(eq,...,e,),
n
P,(x) = Z(eg,m)ei, r € FE,
i=1

where the linear forms e} € E’ are given by (e, e;) = 0;;, determine a projection
scheme in E for which condition (7,) is satisfied for some « and P, o P,, =
Prin(m,n)- Conversely, if ({E,},{P,}) is a projection scheme in a normed space
E and P, o Py, = Puin(m,n), then E admits a Schauder basis which determines
the given scheme in the way described above.

Similar result can be formulated for more general spaces (i.e. complete metric
— see [87], or ultrabarrelled — [96]), that is, it is possible to construct and
consider projection schemes in those spaces. As a general reference concerning
projection schemes we recommend the survey by Petryshyn [92].

AP-maps (originally A-proper maps) appeared after many modifications of
previous definitions in papers by Petryshyn — comp. [92] (and the rich bibliogra-
phy therein).

(2.3) Assume that X is a normed space with a filtration {X,,}2°; and D C X
such that D = {D,, = DN X,,}52, is a filtration in D. Let a normed space E
be furnished with a projection scheme (£,P) and let F be a class of maps. We
say that a map ¢ : D — P(FE) from the class F is an AP-map if the following
condition is satisfied:

(AP) for any increasing sequence (ny) of positive integers and a bounded se-
quence (x,, ) such that z,, € D,,, if

P, yn, =y €E where y,, € (xy,),

then there exists a subsequence (z, ;) such that z,, , — = € D and
y € ().
AP-morphisms are defined similarly. Precisely, if ¢ € M,,(D, E), we say that ¢
is an AP-m-morphism if ¢ determines a map which is an AP-map.

Observe that the very definition of AP-map is not convenient in the sense
that, in order to verify whether a given map is AP using the definition, one is led
to the solvability of the inclusion y € ¥(x).

Since, in what follows, we shall be primarily concerned with the degree theory
for AP-maps, we shall deal with AP-morphisms. The approach to different types
of AP-maps is similar.

Now, we give several examples of AP-morphisms. Assume that X=F, X,, =
FE,, for a.a. n and that the set D is closed.

(2.4) ExaMPLE. Assume additionally that a projection scheme (&, P) satis-
fies condition (7). If a morphism ¢ € M, (D, E) determines a (-condensing
map, where § is the Hausdorff measure of noncompactness, then i — ¢ is an
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AP-morphism (i, as usual, denotes the inclusion D — FE). This kind of mor-
phisms were already studied in [48]. Recall that, for a bounded set A C F,
B(A) = inf{r > 0:in E there is a finite r-net of A} and a map ¢ is F-condensing
if B(¢(A)) < B(A) for any set A such that cl A is not compact.

To prove that i — ¢ is an AP-morphism, take a bounded sequence (x,, ) such
that x,, € D,,. Let y,, = xn, — zn, where z,, € ¢(x,,) and suppose that
P, Yn, = Tn, — Pn,zn, — y € E. Using the properties of 5 (see e.g. [97]), we
have

B{zn,}) < BHEPurzn}) < B{zn,})
because, for any k, || P,, || < 1 (here it is important that we consider the Hausdorff
measure of noncompactness, and not the Kuratowski measure). Suppose that
{zn, } has no limit points; then 5({z,,}) < 8({zn,}), a contradiction.
Therefore a,, ; — x € D for some subsequence. Since ¢ determines a u.s.c.
map with compact values, (2, m) has a subsequence (denoted by the same sym-
bol) such that 2, , — 2 € p(z). Hence y =z — 2 € z — ¢().

(2.5) EXAMPLE. If a morphism ¢ € ME (D, E), then ¢ is an AP-morphism.
The proof of this fact is obvious.

(2.6) EXAMPLE. If ¢ € M;(E, F) determines a map which is a k-contraction
(k <1),ie. forany x,y € E, o(p(z), v(y)) < k||z — y||, where g is the Hausdorff
distance, and ¢y € MX (D, E), then the morphism @ = 1|D + 3 € M,,(D, E)
determines a k-(-contraction, i.e. for any bounded A C D, B(®(A)) < kB(A).
Hence, if a projection scheme (£, P) satisfies condition () with o < k=1, then
the morphism ¢ — @ is an AP-morphism. If we assume ¢, to be defined only on
D, it is not clear whether the assertion of (2.6) holds.

(2.7) Remark. It is fairly easy to show that if (€, P) is a projection scheme
in a reflexive Banach space F, then the pair ({E/},{P.}), where P! : E' — FE’
is dual to P, and E], = Range(P)), is a projection scheme in E’. Moreover,
sup,, || Byl = sup,, || Pal]-

(2.8) EXxAMPLE. Let E satisfy the assumptions of (2.7). Consider a closed
D C E and a morphism ¢ € M,,(D, E’) which determines a strictly monotone
map, i.e. for any z,2’ € D, y € p(z), y € p(z’), we have

(y =y x—2")| = cllz — 2|

We claim that ¢ is an AP-morphism (provided in E’ we consider the projection
scheme given by (2.7)). To see this, observe that

(a) if y, — y in E’, then Py, — y in E;

(b) if &, — = weakly in F, then P,z — z,, — 0 weakly.

To prove (b), take v € E’ and then (u, P,z — x,) = (u, Pyx) — (u,x,) — 0.

Now, let a sequence (z,, ) be bounded, z,, € D,,. Take y,, € ¢(zr,,) and
suppose that P, y,, — y € E'. Since E is reflexive, we may assume that actually
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ZTn, — T € E weakly. Since D is closed convex, it is wekly closed; hence z € D.
Let y;,, € @(Py,,r). By the assumption,

CHxnk - Pnkx”2 < ‘(ynk - y’;l,k.frnk - Pnkx)’ = ’(Prlzk (ynk - y;k)w%'nk - Pnkx)‘
Since P,z — z and y;,, € @(P,,7), it follows that, in view of the upper se-
micontinuity of ¢, we may assume y,, — y" € ¢(x). Then P; y; — y'. Hence
P, x—x,, — 0in E, therefore x,,, — . Once again, by the upper semicontinuity
of v, y € p(x).

The most natural situation when the above examples arise is when one con-
siders a Hilbert space with a countable orthonormal basis. The projection scheme
built with the aid of this basis satisfies condition (), the space is reflexive and
complete. Moreover, the dual space is isomorphic to itself, hence one may consider
strictly monotone maps with values in the domain.

(2.9) ExampPLE. If H is a Hilbert space with a countable orthonormal basis,
({H,},{P.}) is the projection scheme constructed by means of this basis, @1 €
M;(H,H) is a k-B-contraction, ¢y € M{(H,H) is a compact morphism and
w3 € My(H, H) determines a strictly monotone map, then @ = 1 + @3 + 3 €
M, (H,H) is an AP-1-morphism provided k < ¢ where ¢ is a constant from the
definition of a strictly monotone map.

The above examples show how important is the role played by AP-maps in
nonlinear analysis. However, it should be stressed that these examples are valid
only under rather strong and restrictive hypotheses concerning the structure of
spaces on which the given maps act.

All the examples given above were well-known in the single-valued setting
(comp. [92]).

Now, we shall compare the class of AP-morphisms with that of A-morphisms.
We intend to show that A-maps can be defined and studied in far more general
spaces and under weaker assumptions.

(2.10) THEOREM. Let the assumptions of (2.3) concerning X, {X,}, E,
{E.}, {P.} and D be satisfied. If the scheme (€, P) satisfies condition (m,) and
a morphism ¢ € MZ((D,D),(E,£)) determines a proper map, then ¢ is an
AP-m-morphism.

Proof. Let a sequence (z,,) with z,, € D,, be bounded. If y,, € p(z,,)
and P, yn, — y € E, then limy_,o d(yn, , En,) = 0; hence
Hynk - Pnkynk H < (T + 1)d(ynk7Enk) —0

and therefore, y,,, — y as well. The fact that the map determined by ¢ is proper
entails that the sequence (z,,) has a limit point x. By the upper semicontinuity
of ¢ and the compactness of values of p, we get y € p(x). =

Remark. Observe that an important property of single-valued AP-maps is
that their restrictions to bounded closed subsets are proper. In the set-valued



96 W. Kryszewski

setting, this is not true unless we assume that the map under consideration is
u.s.c. and ls.c.

(2.11) ExamMPLE. We provide an example of an A-map which is not AP
(comp. [70]). Let E=1?, E, = span(ey,...,e,) where ey = (0x;)i=1 €1>. Let P,
be the orthogonal projection onto F,,. For simplicity, we shall build a single-valued
map. Let f(e1) =e1, f(e2) = e2, f(ex) = ex—1 + ey for k > 3. Extend f linearly
onto E. Then f is not AP. To see this, set z, = Vn~1(e1 —ea+ ...+ (—1)"e,).
Then ||z,|| = 1, P, f(z,) — 0. However, ||z, — x| > n~1(n—m) for any n > m.
On the other hand, for any n, f(E,) C E, and, hence, f is an A-map.

Now, we proceed to constructing the degree theory for AP-morphisms. In the
single-valued case, this was done by Browder and Petryshyn [15].

Let X be a normed space with a linear filtration {X,}52,; and let D be
an open and bounded subset of X. Let E be a normed space furnished with a
projection scheme ({E,},{P,}). Assume that dim X,, = dim F,, > m for a.a. n.
Take an AP-morphism ¢ € M,,(cl D, E) such that y & ¢(bd D). Observe that,
for a.a. n, P,y € P,e(bd DN X,,). This follows immediately from the definition
of AP-maps. Therefore, for sufficiently large n, we may define a number s, =
deg(P,¢| Dy, P,y). Following Browder and Petryshyn, we let Z = ZU{+o00, —0o}
(where Z stands for the integers) and define D(p,y) C Z by

(i) an integer s € D(¢p,y) if there is a subsequence s,, — s;
(ii) 00 € D(p,y) if there is a subsequence s,,, — +oo.

However, we prefer another definition. Namely, we put
Deg(p,y) = v((sn)) € G.

This second definition seems to be more aappropriate and carries more informa-
tion. Consider a set-valued map ¢ which, to any sequence (s,,) € [[ -, Z, assigns
a subset of Z such that

(i) s € t((sn)) if s is a limit point of (s, );
(ii) £oo € t((sy)) if (sp) has a subsequence divergent to £oo.

It is easy to see that if s, = z, for a.a. n, Le. (s,) — (2,) € B, Z, then
t((sn)) = t((#n)). Hence, we have a map t : G — Z and then

t(Deg(p,y)) = D(p,y).

We will not go into details as concerns the properties of the defined degree
Deg (or D). These may be the subject of another large paper. Let us only mention
that Deg satisfies all the properties of the degree, while, for D, there are problems
with the additivity property.

The constructed degree theory for AP-maps is especially useful in applications
(comp. [92]). Let us stress once again that the theory of AP-maps, which is hardly
topological, was built and studied mainly from the point of view of broad and
extensive applications.
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