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Introduction

By the fundamental dimension of a compactum X (denoted by Fd(X))
we understand the minimum of dim Y, where Y runs through all compacta
with Sh(X) < Sh(Y). This notion has been introduced by K. Borsuk. In the
theory of shape it corresponds to the notion of dimension.

The aim of the present paper is to compile and organize the results
of my papers [N,], [N,] and [Ns] concerning relationships between funda-
mental dimension and some algebraic and homological properties.

Analogous questions for the homotopy theory and CW complexes were
studied by C.T.C. Wall ([W], p. 63).

The above-mentioned algebraic methods allow us to compute the funda-
mental dimension of the Cartesian product in some cases. These appli-
cations are also presented in this paper. Some of the theorems of this kind
are new and have never been published before. A similar programme for
ordinary dimension was carried out by P.S. Alexandroff, M. Bockstein,
Y. G. Boltyanskii and L. Pontryagin (see [Ko,] and [Ku]).

We assume that the reader is familiar with the theory of shape and
knows the notion of a procategory ([B;], [M-S;], [M-S;], [M-§,],
[Mo] and [Ma]). A knowledge of the basic concepts and facts of the theory
of retracts, the PL topology and the theory of CW complexes ([B;], [R-S]
and (S]) is also assumed.



Chapter I

Elementary topological characterizations of fundamental dimension

One of the principal results of the theory of fundamental dimension
is the formula:

Fd(X) = Min {dim ¥: Sh(X) = Sh(Y)}.

Historically the first proof of this fact was given (unpublished) by W. Hol-
sztynski, who developed an axiomatic approach ([Ho]) to the theory of
shape (in particular, the continuity of the shape functor with respect to
inverse sequences and their limits) for this purpose. He presented the above-
mentioned proof at Professor Borsuk’s seminar, December 1968 — Janua-
ry 1969.

In this chapter we prove some topological characterizations of compacta
with the fundamental dimension < n, which can be regarded as a gener-
alization of the Holsztynski theorem. We obtain also (as a consequence
of these characterizations) the inequality

Fd (X, U X,;) < max (Fd(X,), Fd (X,), Fd (X, n X,)+1)

and a theorem which states that the fundamental dimension of a compactum
X depends only on the fundamental dimensions of its components.

If X is a CW complex, then X™ denotes the n-dimensional skel-
eton of X.

If X and Y are polyhedra and f: X - Y is a map such that
f(X™) c Y™ for n=0,1,2,...,dim X, then f is said to be cellular. This
terminology agrees with and is motivated by the terminology of the theory
of CW complexes.

In this chapter we denote by 7,:°Q = [0,1]x[0,1]x — [0, 1] the
natural projection given by the formula

Tk(xl,xZ, sy xh, xk.{.l, .u) = (xl, xZ, ceey xk)

for every (xy, X5, ..., X, Xpu1,...)€Q.

1. Characterizations of fundamental dimension. Suppose that W is a finite
CW complex and f: X - W is a map. We say (see [N,]) that o(f) < n*
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iff there exists a homotopy ¢: X x [0, 1] — W such that

(1.1) @(x,0) =f(x) for every xe X
and
(1.2) P (Xx{1}) c W®,

If (X, xq), (W, wo) are pointed CW complexes and f: (X, xg) = (W, wp),
then the condition (f) < n implies that there exists a homotopy
¢@: X x[0,1] - W which satisfies (1.1) and (1.2) and fixes x,. We can infer
this fact from the cellular approximation theorem (see [S], p. 404 and [S],
p- 57, Exercise D4).

If X is a compactum and xoe€X and X = {X,, p;*'} (or (X,x)
= {(X\ x4), Pk*'}) is an inverse sequence of compacta such that Sh (l‘iE X)
= Sh (X) (or Sh (1‘12 (X, x)) = Sh (X, xo)), then we say that X (or (X, x))
is associated with X (or with (X, x,)) (see [Mo]).

The following theorem characterizes compacta with fundamental dimen-
sion < n (see [N,]; p. 214 and cf. [D,]; p. 80):

(1.3) THEOREM. Let a pointed compactum (X, xo) be the inverse limit of
an inverse sequence {(X,, x,), pk*!} of finite CW complexes and let n be
a natural number or 0. Then the following conditions are equivalent:

(@) Fd (X) < n.

(b) For every k there exists a k' such that w(p¥) < n.

(c) w(py) < n for every k =1,2,..., where p,: X - X, is the natural
projection.

(d) There exists a pointed compactum (Y, y,) such that dim Y< n and
Sh (X, xo) = Sh (Y, yo).

(e) There exists an inverse sequence {Yy, gi*'} of n-dimensional polyhedra
and simplicial maps associated with X.

) w(f)<n for every map f: X - W from X to a finite CW com-
plex W.

Proof. (a) = (b). There exists an n-dimensional compactum Y such that
Sh (X) < Sh (Y). Since dim Y < n, we infer that there is an inverse sequence
{Y\, qf*'} of n-dimensional polyhedra associated with Y.

Then there exist maps (a,f): {X,,pf"'} = X » Y= {¥, gi*t} and
(B,g): Y = X such that (af, g, fs): X — X is homotopic with the identity
idy of the system X.

This means that for every k there is a natural number k' > af (k) such
that pf = g, fpu Pissy- Obviously we can assume that g,(Yp) < X
Therefore w(pt) < n.

(b) = (d). Condition (d) implies that there exists a sequence h; < h, <
of natural numbers such that
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kit 1,
pk' . (Xkl'+11xk

= (Wir1, Wis1) = (W, w) = (kaxk[)

1)

is homotopic (in the pointed sense) with a map gi*': (W, (, Wisy) = (W, w)
such that gi*'(W.,,) c W". It is clear that Sh (X, x,) = Sh(Y, y,) and

dim Y < n, where (¥, yo) = lim {(W,, w,), ¢i*}.

(d) = (e), (e) = (a), (b) = (c), (f) = (c) and (e) = (f) are obvious.

(c)=(b). Let k be a fixed natural number. Let ¢o*! = pmik+i,
Yoi1 = Xiims1 > Yy = Xppey for every m=1,2,... and let f: X - X{P
be a map such that if if ~ p, then i: X! — X, is the inclusion.

Since the inverse sequence {Y,,,pn*'} is associated with X, we infer
that there exist an index m, and a map g: Y, - X{” such that gg,, = f,
where gy = Pmg+i-

Hence igpm,+x = if > py and w(pFo**) < n. The proof of Theorem (1.3)
is finished.

Remark. The equivalence (a)<>(d) was proved by S. Spiez (Sp]. It is
a sharpenning of the Holsztyfski theorem. This proof of (1.3) is inspired
by the proof of the Holsztynski theorem given by A. Trybulec.

D. A. Edwards and R. Geoghegan have proved (see [E-G], Theorem
(4.2)) the lollowing

(14) TueoreM. If (X, xo) is a pointed polyhedron, then there exists
a pointed polyhedron (Y, y,) such that Sh (X, x,) = Sh (Y, y,) and dim Y
= max (3, Fd (X)).

The compacta lying in the Hilbert cube Q with the fundamental
dimension < n are characterized in the following way:

(1.5) THEOREM. Let X < Q be a compactum. Then the following con-
ditions are equivalent:

(a) Fd (X) < n.

(b) For every neighborhood U of X in Q there exists a homotopy
@: X x[0,1] = U such that

¢(x,0)=x for xeX and dimeXx{1})<n.

Proof, (a) = (b). We can assume that U is a prism in Q, ie. there
exist a positive integer k and a polyhedron W < [0,1] such that
U= "(W) (see [B,], p. 105). It is clear that 4 = W x {0} x {0} x
< U< @ is a strong deformation retract of U and the inclusion map of
X into U is homotopic in U to some map f: X - W with values
belonging to A. Since A is homeomorphic with the polyhedron W, we
infer that w(f) < n. Hence (a) implies (b).

(b) = (a). It is sufficient to show that w(f) < n for every map
J: X > W from X to a polyhedron W. Since We ANR, we infer that
there are a neighborhood U of X in Q and a map f: U —» W such that
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f)=f(x) for xeX.

I:et p: Xx [0,1] - U be a homotopy satisfying (b). It is clear that
f =~ fg~ flyxyog, where g: X —» U is defined by the formula

g(x) = ¢@(x,1) for every xeX.

Since dim g(X) < n, we infer that there is a homotopy joining f locxy
(in W) with a map h: g(X) — W such that h(g(X)) = W®™. This completes
the proof.

Using our characterizations, one can easily obtain the following

(1.6) COROLLARY. Suppose that X = I‘iE{Xk,p’,z“}, where X, X,,...
are compacta and Fd(X,) < n for k = 1,2,... Then Fd (X) < n.

Proof. Let f: X - W be a map from X to a polyhedron W. Since
{X., px*'} is associated with X, we infer that there is an index k, and
a map g: X, » X such that f~ gp, . Since w(g) < n, we conclude that
w(f) € n. The proof of Corollary (1.6) is completed.

2. The fundamental dimension of components of compacta. The following
lemma will be employed:

(2.1) LEMMA. Let X be a compactum lying in the Hilbert cube Q. Then
Fd (X) < n if and only if for every neighborhood U of X there exists
a neighborhood V < U of X such that V is deformable in U to a subset A
of U with dim 4 < n.

Proof. If one can deform X in every neighborhood U of X to a set
A with dim A < n, then Fd (X) < n (see Theorem (1.5)).

Let U be a neighborhood of X such that X is deformable in U to
a n-dimensional set 4 < U and U is a prism in Q. Then A is deformable
in U to a subset of the n-dimensional skeleton B of the base of U and
therefore X is deformable in U to a subset of B.

Since B, U e ANR, we infer that there exists a neighborhood V of X
which is deformable in U to B. This completes the proof.

Let us prove the following

(2.2) THEOREM, A compactum X has a fundamental dimension < n iff all
its components have a fundamental dimension < n.

Proof. Suppose that Fd(X) < n. Then there exists a compactum Y
such that dim Y < n and 'Sh (X) < Sh (Y). Moreover ([B,], p. 215), for every
component X, of X there exist a component Y, of Y such that Sh(X,)
< Sh(Y,). This implies that all components of X have a fundamental
dimension < n.

Suppose that every component of X has a fundamental dimension < n.
We can assume that X < Q.

Consider a neighborhood U of X. Then by Lemma (2.1) for every
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component X, of X there are an open neighborhood v, of X, such that
its boundary is disjoint with X and a homotopy ¢,: V,x[0,1] > U
such that

9,(x,0) = x for every xe¥,

and R
dim ¢, (V, x {1}) < n.

Since X is compact, there is a finite system of indices gy, u,, ...,
such that

-~

V= ﬁluﬁzu...uff#k

is a neighborhood of X. Setting

for i=1,2,..k,

we get a system of open and disjoint sets Vi, V,,..., ¥, such that the set
V' = ‘CJI ¥, is a neighborhood of X.

Setting
@ (x,t) = @, (x,t) for every (x,5)eV;x[0,1],

we get a homotopy ¢’: V'x[0,1] = U.

Let ¥ be a closed neighborhood of X such that V< V' and let
o = ¢'|Vx[0,1].

It follows that VNV, is a closed subset of Q. Hence dim ¢ (V'x {1}) < n
and ¢(x,0) = x for every xeV.

Using Theorem (1.5), we infer that Fd (X) < n and the proof of The-
orem (2.2) is finished.

3. The fundamental dimension of the union of two compacta. Let us prove
the following

(3.1) THEOREM. Let X,, X, be compacta. Then Fd (X,u X,) =
max (Fd (X,), Fd (X,), Fd (X; n X,)+1).

Proof. Taking the nerves of open finite coverings #,,%,,... of
X;uX, such that %,,,, is a refinement of %, for m = 1,2,... and the
sequence {a,} of maximal diameters of the elements of %, converges to
zero, one can prove that there exist inverse sequences {4,uB,,pi*!},
{An, qt* '}, {B,, 2t} and {C,,si*!} associated (respectively) with X, U X,,
X, X, and X, = X, nX, and satisfying the following conditions:

A, B, and C, = A,NnB, are subcomplexes of a finite CW complex

A,uB,
and
+1 +1 __ +1 +1 _ +1 +1 __ +1
Pn" iy = Dn lag.y> a0 = Pn lpy.,s Sn =Pa lc,,, are cellular
maps

for every n =1,2,...
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Let m; = Fd (X)) for i =0, 1, 2.

Then for every natural number n there exist indices n; and n, such
that n, > n; > n and w(s:f) < my and w(g') < m and 0 () < m,.

From the cellular approximation theorem and the homotopy extension
theorem we conclude that there are cellular maps s: C,, - C,, and
p: Ap,vB,, » A, VB, such that

s~s? and s(C,)c C("'°’

n
and
p=py and pl,_=s.
Analogously we infer that there are cellular homotopies ¢,: A, % [0, 1]
— A, and ¢,: B, x[0, 1] — B, such that

¢1(x,0) = q,' (x) for xe 4, and @,(x,0) = r,' (x) for xeB,,

and
01 (A, x{1}) = A7 and  ¢,(B, x{1}) = BI"?.
Setting
@y (x,1) = 9,(p(x),t) for (x,1)eA4,,x[0,1]
and

93 (x, 1) = @z(p(x),1) for (x,7)eB,, x[0,1],

we get cellular homotopies "¢}: 4,,%[0,1] » 4, and ¢5: B,, x[0,1] = B,
such that

¢} (Cpy x [0, 11U 4,, x {1}) = AL
and

¢5(C,, x[0,1JU B,, x {1}) = BY"

where r = max (m,, m,, my+1).
Then there are (see [S], p. 57, Exercise D4) homotopies y,: A,, %[0, 1]
— A4, and ¥, B,, x[0,1] — B, such that

Vi(e, ) = pitp(e) for  (x,0)€ A, x{0}UC,,x[0,1]

and
Valx, 1) = ptp(x) for (x,t)eB,, x{0}uC,,x[0,1]
and
U1 (An, X (1) U g (B, x {1}) = AP U By = (4, U B,)".
Setting

B Vy(x,1) for (x,t)eA,,x[0,1],
l“x’t)'{w,(x,r) for (x,7)eB,,x[0,1],

we get a homotopy ¥: (4,, U B,,)x[0,1] = 4, U B, such that
¥ (4, B,)x {1}) = (4, U B,)".
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Since p is homotopic with p,?, we infer that w(p,’) = w(ptp) <r.
The proof is finished.

Using Theorem (3.1) one can prove the following

(3.2) CorOLLARY. Let X, A be compacta and A c X. Then Fd (X/A)
< max (Fd (X), Fd (4)+1).

Proof. Let B be a continuum with a trivial shape such that Bn X = A4.
Then ([Bs], p. 321) Sh (X/A) = Sh (X/B) = Sh (X uB). Using (3.1) for the
case where X; = X and X, = B, we obtain Fd (X/4) = Fd (X UB) €
max (Fd (X), Fd (4)+1). This proves (3.2).



Chapter 1I

Cohomology groups over local systems and generalized local
systems

The first three sections of this chapter deal with the theory of cohom-
ology groups with coefficients in local systems of abelian groups (or, in other
words, with coefficients in bundles) for finite cell complexes ([Hi-Wy], [S],
[St,] and [St3]), but we do not intend to develop this theory systematically
here. Qur intention is to fix the terminology and to prove some simple
auxiliary facts.

The aim of the last section is to generalize the concept of cohomology
over local systems. This generalization is closely related to the construction
of the cohomology groups given by E. Cech.

We will denote by Z the group of integer numbers.

Let H'(X, A; G) (or H,(X, A; G)) denote, for every pair (X, A) of
compacta and every abelian group G, the n-dimensional Cech cohomology
(or homology) group of (X, A) with coefficients in G.

1. Local systems of groups. We say that we have a local system &
of abelian groups on a space X iff the following conditions are satisfied:
(a) For each point xe€ X, there is given an abelian group ¢ (x).

(b) For every path d: [0, 1] - X from x, to x, there is an isomorphism
L (d): L(xq) » ZL(xo).

(c) & (d,) is the identity automorphism on % (x,) for every degenerate
path dy: [0,1] = X, d, ([0, 1]) = {x,}.

(d) If paths d,,d,: [0,1] - X are equivalent, then ¥ (d,) = £ (d,).

(e) If dy,d,: [0,1] > X are paths and d,(1) = d,(0), then £ (d,d,)
= ¥ (d,)0 % d,).

If #(x) is a free abelian group or % (x) is an infinity cyclic group
for xe X, then % is said to be a local system of firee abelian groups or
a local system of infinity cyclic groups.

Since the homomorphism % (d) depends only on the homotopy class
of d: [0,1] - X, we can write % ([d]) for the homotopy class [d] of 4.
In particular, we will write ¥ (a): £ (x) - & (x) when aen, (X, x).
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(1.1) ExaMPLE. Let n > 2 (or n > 3) and let X be an arcwise connected
space (or let (X, A) be a pair of arcwise connected spaces). If we assign
to every xe X (or xe€ A4) the group =,(X, x) (or =,(X, 4, x)) and to every
path d: [0,1] = X (or d: [0,1] -» A) the homomorphism h,: m, (X, d (1))
- m,(X,d(0) (or hy: m,(X,A4,d(1)) > =n,(X, A,d(0) induced by d, then
we obtain a local system of abelian groups II,(X) (or II,(X,A)) on X
(or on A).

These notations will be used in the sequel.

Suppose that Z is a local system of groups on X and £ is a local
system of groups on Y. By a morphism from X and & to Y and A we
understand a pair (f, {f;}.x) consisting a map f: X - Y and a family of
homomorphisms f,: A (f(x)) = & (x), where xe X, such that f, ot (fd)
= Z(d)of,, for every path d: [0,1] - X from x, to x;.

(1.2) ExampLE. Let A be a local system of groups on Y and let
fi: X—->Y be a map. If we assign to every x€X an abelian group
& (x) = A (f(x)) and to every path d: [0,1] - X a homomorphism & (d)
= X (fd): L(d(1) = A (fAQ1)) = A (fd(0) = £ (d(0), then we obtain a
local system % of groups on X. We say that % is induced on X by f
and A One can easily check that the pair (f, {idyy}wex) is @ morphism
from % to A

If X = Yand f is an inclusion, we write & = X|y.

A local system of groups & on X is said to be simple if the isomorphism
Z (d) depends only on d(0) and 4(1).

The following proposition holds true:

(1.3) PROPOSITION. Suppose that A is a local system of groups on Y and
f: X—>Y is a map which induces a trivial homomorphism f,: n,(X, x,)
— 7, (Y, yo), where xo€X and yo€ Y. Then the local system induced on X
by X and f is simple.

(1.4) ExAMPLE, Let % be a local system of abelian groups on X. We
denote by Z(x) the quotient group of & (x) generated by all % (a)(a)—a,
where aeg(x) and aem;(X,x). One can verify that the isomorphism
£ (d): & (d(1)) - £ (d(0)) induces an isomorphism £ (d): £ (d(1)) » £ (d(0))
for every path d and that % (d,) = &(d,) for all paths d,,d,: [0 11-X
from x, to x,. Then we obtain a simple local system of groups &% on X.
Let .. £ (x) » £ (x) be a canonical projection for every xe X. It is clear
that (idy, { f.}xex) is @ morphism from & to &

Let £, 4, # be local systems of abelian groups on X, Y, Z (respect-
ively), let (f, {fi}xex) be a morphism from £ to A" and let (g, {g,},er) be
a morphism from X to #. Then (¢f, {fidrx}xex) is 2 morphism from
&£ to # which is called the composition of (f, {f,}xex) and (g, {g,}er)-

We say that two morphisms (f, {fi}zex) and (g, {gx}xex), from a local
system % on X to a local system % on Y are homotopic iff there
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exists a morphism (¢, {@u.n}xnexxro.1y) from a local system £ induced on
X x [0, 1] by the Cartesian projection p,: X x[0,1] - X and ¥ such that

¢(x,0)=f(x) and @(x,1) = g(x)
and
fx = 0oy f((p(X, 0)) = Jif(f(-’c)) - Z(x,0)= Z(x)
and
s = Puepy: K (@(x, 1) = A (g(x) > L(x,1) = £(x)

for every xe X.

(1.5) ExampLE. Let % be a local system of abelian groups induced
on X by a map f: X - Y and a local system % on Y and suppose that
g: X —»Yisamap and ¢: Xx[0,1] - Y is a homotopy such that

¢(x,0)=f(x) and ¢(x,1)=g(x) for xeX.

We denote by d.,: [0,1] = X the path defined by the formula
deyn(s) = @(x,st) for every se[0, 1].

Setting
gx = X (dix,): .)i"(g (x)) - f(f (x)).= & (x)
and
qo(x.t) = ‘x/-(d(x.!)): '){(‘p (xa t)) - ‘}{.(.f (X)) = ..‘z”(x),

we obtain morphisms (g, {gx}xex) a0d (@, {@Pz.0}xnex x10,1;) from local sys-
tems % and % induced on X x [0, 1] by the projection p;: X x[0,1] - X
to the local system

In order to prove this fact it is sufficient to prove that paths
¢y, ¢3: [0,1] — Y defined by the formulas

W) = ¢ (d (0), 2ud, (0)) for 0<u<xi,
)= @(dQu—1),d(2u—1)) for 3 <u<1
and
W) = fdiu) = @(d;(2u),0) for O0<u<i,
@0 = (), Qu1)d; (1)) for <u<l

are homotopic for every path d,: [0,1] - X and every map d,: [0,1]
— [0, 1] (we have d(1) = (d,(t), d;(t))e X x[0,1] for every path 4: [0, 1]
— X x [0, 1], where d,: [0,1] - X and d,: [0,1] — [0, 1] are continuous
functions).

Let : [0,1]1x[0,1] = Y and b;: [0,1] — [0,1]x[0,1] fori = 1,2 be
maps given by

Y(s,0) = @(d,(5), tdy(s)) for (s,1)e[0, 1]x[0, 1]
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and
(0, 2u) for 0<u<x<i,
b)) =
u—1,1) for 3i<u<l1
and
by (1) = (2u, 0) for 0<u<i,
2 =31, 2u—1) for i<u<l.

Because ¢, = yb, and ¢, = Yb,, we infer that ¢, and c, are equivalent.

It is known that the relation of the homotopy of morphisms of local
systems is reflexive, symmetric and transitive, and that the homotopy class
of the composition of two morphisms (f, {fx}xex) and (g, {g,},ev) depends
only on their homotopy classes.

Therefore we obtain a category if we consider the homotopy classes
of morphisms of local systems as morphisms and local systems as objects.

2. Cohomology with coefficients in local systems. By a finite n-dimen-
sional cell complex K we understand an n-dimensional compactum |K]|
along with finite families & (i) = {|o}|};=1.2,...s Of i-dimensional subcon-
tinua, where 0 < i < n, satisfying the conditions

(a) |o% is an i-dimensional cell (ie. a homeomorph of the closed
i-simplex).

(b) lof| N K| is the boundary d|cf] of |o¥?| (ie. the subset of |of| which

corresponds to the boundary of the p-simplex) and it is an exact union
q sU)

of (p—1)-cells of &/ (p—1) called faces of |o¢f|, where |K@| = {J U |d}.

i=0 j=1

(c) K™ = |K].

(d} The interiors |of|\@|of| and |o§\O|c§| of |of| and |o%| are disjoint
ifi#jand p=0,1,...,n.

A subcomplex L of K consists a subspace |L| of |K| and subcolections
A (i) = & (i) such that Conditions (a)-(d) are satisfied if we replace |K| by
|L| and ./ (i) by £ (i) and n by dim |L].

(2.1) ExampLE. If K is a finite cell complex, then K'” together with
o (i) (where 0 < i < p) form a subcomplex K of K.

(2.2) REmark. Each cell complex is a finite CW complex and one
easily checks that every simplicial complex is a finite cell complex.

(2.3} ExampLE, If K, and K, are cell complexes, then |K,|x|K,| and
the Cartesian product of cells of K; and K, form a cell complex K; x K,.

We say that a cell complex K’ is a subdivision ([Sty], p. 161) of
a cell complex K iff [K'| = |K| and each cell of K is the union of the
cells of K' which it contains.

(24) REMARK. It is known ([St,], p. 162) that for every cell complex K
there exists a subdivision K’ such that K’ is a simplicial complex.
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When no confusion can arise we shall abbreviate |K| to K and
|K(p)| to K,

In the same way as for simplicial complexes, one can introduce the
notions of an oriented g-cell and an incidence number and construct
a chain complex {C,(K; G):4,} and the groups H,(K;G) and H!(K; G).

Oriented cells will be denoted by o, t,... and non-oriented cells which
are carriers of g, 7,... will be denoted (respectively) by |a], |1, ..

The incidence number of an oriented (g+1)-cell o and its g-dimensional
face 7 will be denoted by [o; 1] = 1.

It is the purpose of this section to introduce cohomology groups with
coefficients in local system of abelian groups ([S], p. 282, [St,], [St3], [Hi-Wy]).

Let K be a finite cell complex with a local system ¥ of abelian groups
on K and let us choose a point x,€|o| for every g-cell |a].

An abelian group CY(K;.¥),0 < g < n=dimK, is the set of all
functions ¢ assigning to each oriented g-cell ¢ an element c¢(¢)e £ (x,) such
that ¢(—o) = —c(o) with addition given by the formula

(c1+¢2)(0) = cy(0)+cy(0).

We set C1(K; L) =0 1if g > n.

Elements of C%(K;.¥) are called g-cochains.

For oriented g-cell o and ge ¥ (x,) we shall denote by y,, a cochain
(called an elementary g-cochain) defined by the formula

—g when o= —r1,
Xog(7) = <9 when o =1,
0 when ¢ # 1, —7.

Any cochain is the sum of elementary cochains.
Hence, if we assign to every elementary g-cochain y,, a (g+1)-cochain
0Xs,, defined by the formulas

0%eg(7) = [1; 6] £ (d)(g) if ¢ is a face of oriented (g+1)-cell 7 and
d: [0, 1] — |7] is a path from x, to Xx,,

and
0%s,5(7) = O for every (g+1)-cell 7 such that ¢ is not a face of r,

then we obtain a homomorphism é,: C*(K; ¥) » C**'(K; ).

We set 4, =0 if g > n.

Let us suppose that E is a contractible subcomplex of K and
ceC!(K; %) and y = n;ty+  +m1€Ci(K; Z), where meZ and t; is an
oriented g-cell of E (and K). Clearly, #|g is a simple system on E. This
means that an element

K
¢(Wxq = Z_-,‘l & (di)c(m:)) € £ (xo)

2 — Disserlationes Mathematicae CLXXXVII
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does not depend on the choice of paths d;: [0, 1] = E from xp to x,
where i =1, 2, ..., k.

The element c(y),, will be called the index of ¢ and x in X
(cf. [Stal, p. 158).

Using this convention, we can write (cf. [St3], p. 158)

(25) (6¢) (@) = ¢ (60,

Let Z°(K;¥)=Kerd, and B*"'(K;¥)=Img, for ¢ >0 and
B°(K; &) = 0.

The groups BY(K;.%) and Z7(K; %) are called (respectively) the group
af g-coboundaries and the group of g-cocycles.

Since 84,0, = 0, we infer that Z*(K; &) o B*(K; &).

We define the g-dimensional cohomology group of K with coefficients
in &% by the formula

HY(K; %) = Z%(K; £)/BI(K; ¥).

It is known that H"(K; %) does not depend on the decomposition
of K into cells and the choice of x,€|a].

If cocycles ¢; and ¢, represent the same element of H%(K;.#), then
we say that ¢; and ¢, are cohomologous and we write ¢; ~ o,.

Let K, and K, be cell complexes and let f: K, - K, be a continuous
function satisfying the following conditions:

(2.6) f(KP)y< K  for every p=0,1,2,...

(27) If |o| is a cell of K,, then the smallest subcomplex E, of K,
containing f (|o]) is contractible.

Then f is said to be admissible.

(2.8) ReMark. If f: K; = K, is a simplicial map from a polyhedron
K, to a polyhedron K,, then f is admissible. The Cartesian product of
admissible maps is an admissible map. If K’ is a subdivision of K, then
idx): |K[ = |K'] = (K| is admissible.

Let (f, {fi}zex) be a morphism from a local system %, on K, to
a local system %, on K, such that f satisfies (2.6) and (2.7) (ie. f is
admissible). Then for every ¢ = 0, 1,2, ... there exists ([St3], p. 159) a chain
transformation h,: {C,(K;; Z)} = {C,(K3; Z)} such that h, carries a vertex
into a vertex and h;(¢)e C,(E,; Z) (we can regard C,(E,; Z) as a subgroup
of C,(K3; Z)).

Let ceC?(K,; &;) and 1t be an oriented g-cell of K. Then
g = c(h (), wp €L (f(x.) and [ (9) = g.€ &, (x).

Setting fyc(r) = g,, we obtain a homomorphism f,: C?(K,; &)
- CY(K,; &)).

It is known that &,f; = f,.d,.
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Therefore f, induces @ homomorphism f*: HY(K,; £,) - HY(K,; ¥,)
which does not depend on the choice of h; and the decompositions K,
and K, into cells.

Moreover, it is well known’ that one can extend this definition of /*
onto an arbitrary morphism (f, { f,}xexl) of local systems and that for
every n = 0 there exists a contravariant functor from the category of local
systems of groups on cell complexes and the homotopy classes of morphisms
of local systems to the category of abelian groups and homomorphisms
which assign to every local system % on K the group H"(K; &) and
to every homotopy class of morphisms (f, {f,}.x) from .#, on K, to %,
on K, a homomorphism f*: H"(K,; &£;) - H"(K,; &,).

(2.9) REMARK. The above-mentioned functor coincides with the functor
of the ordinary cohomology in the case where all systems are simple
(if & is a simple system and xeK, then HY(K; #(x)) = HY(K; %) for
q=0,1,2,..).

The following proposition will be very useful:

(2.10) PrOPOSITION. Suppose that a local system X is induced on a cell
complex K by an admissible map f: K — L and a local system & on a cell
complex L and w(f)<n. Then a homomorphism f*: H*(L; %) — H*(K; X")
induced by f is trivial for every n < gq.

Proof. Using Remark (2.4) and the simplicial-approximéltion theorem,
we find that without loss of generality one can assume that K and L
are polyhedra and that there exists a simplicial map g: K - L such that
g ~ f and g(K) = I, Then g induces (see Example (1.5)) a homomorphism
gy HY(L; &) — HY(K; ) such that g} = f*. Since g(K) c ', we con-
clude from the definition of g} that g¥ = 0 if g > n. The proof is finished.

3. The Kinneth formula, Let .%¥;, and %, be local systems of groups
on cell complexes K, and K, (respectively). Then we denote by ¥ ,®.%2,
a local system of groups on K, x K, defined by the formulas

L10L (X1, x3) = L1 (x1)QZL 5 (x3)
and

L1@L3(a)=Z,(p,)®ZL,(p29),

where (x,, x,)eK; xK,, a: [0,1] - K, xK, is a path and p;: Ky x K, = K;
is the Cartesian projection for i = 1,2. If (f, { fi}sek,) and (g, {gy},ek,) are
morphisms from a local system % on K, to a local system %’ on K
and from a local system 4 on K, to a local system X' on K} (respect-
ively), then (f, {fi}zek,)® (9, {g)}yex,) = (f x g, {fx®g,}) is a morphism from
LRA to L'@A"

It is well known that on the category of cell complexes and admissible
maps there exists a natural chain equivalence of the functor {C,(K,x K;; Z)}
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with the functor {C,(K,;Z)}®{C,(K,;Z)}. The image of a chain
i ®c,€C,(Ky; Z)®C,(Ky; Z) under this equivalence is denoted by
ey X €Chyp(KyxKy; Z). If o is an oriented p-cell of Ky and 1 Is an
oriented g-cell of K,, then o x 1€ C,pyy(K; X K;; Z) is a chain concentrated
on the cell |o} x |t}. Therefore, one can regard oxt as an oriented (p+g)-
cell of K, x K, with the carrier |o| x|t|.

The following formula will be employed:

(3.1 d(ex1) = doxt+(—1)Poxdr,

where ¢ is an oriented p-cell of K, and < is an oriented g-cell of K,.
We must extend these results to cochain complexes {C%(K;; ¥ }®
® {CP(K,; #3)} and {C'(K, xK;; £ 1@ %)}
Suppose that ¢; e C°(K;; #4) and ¢, e C*(K,; &,) and let us denote
by ¢, x¢, a cochain of C?*9(K,x K,; ¥ ®%,) given by the formula

K, and 7 is an oriented g-cell of K,,
0 if = ox1t, where dim |o| # p.

¢, (6)®cy(t) if y = oxrt, where ¢ is an oriented p-cell of
i xert) = {

Using repeatedly (2.5) and (3.1), we can prove that d(c; x cy)(ox1)
= ¢ (O)®cy (T)+(—1)Pci (0)®bcy (1) for every p-cell ¢ and g-cell t (cf.
[St3], p. 170).

Hence

O(cy X cy) = 0¢y X ey +(—1)Pcyxbc,,
and we can identify the tensor product of the cochains complexes
{C'(K,; &,)} and {C*(K,; ¥,)} with the cochain complex {C%(K;x K,;
Z,®%,)}. This “identification” has a functorial.character (with respect to
the category of admissible morphisms of local systems and cell complexes).

The Kiinneth formula for cochain complexes ([S], p. 237, Theorem 2)
and the above facts imply the following h

(3.2) THEOREM. If &, is a local system of groups on a cell complex

Ki for i=1,2 and &, is a system of free abelian groups, then there is
a functorial short exact sequence

0— Z HY(K,; £)®H" (Ky; ¥,) > H"(K;xK;; £1®%,)

ptqg=n

- Y Tor (HY(K,; &,), H*(Ky; &3)) — 0.

ptg=n+1

4. Generalized local systems. Let X be a continuum and let {X,, pk*!}
be an inverse sequence of connected finite cell complexes and admissible
maps such that

Sh (X) = Sh (lim {X,, pf*'})
‘—

and assume that for every k = 1,2,... on X, we have a local system of
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abelian groups %,. If for every k the local system .%,., is induced on
Xi+1 by the map pi*': X, = X, and the local system %,, then the
pair & = ({X,, pi*'}, L) is called a generalized local system of abelian
groups on X.

If &, is a system of free abelian groups on X, (this implies that
% is a system of free groups on X, for k = 1,2,..), then & is called
a generalized local system of free abelian groups on X.

If ¥ is a local system on a connected cell complex, then we identify.
% with a generalized local system ({X,idy}, ¥).

If £ = ({Xx, pk™'}, &) is a generalized local system of abelian groups
on a continuum X, the map pf*!: X,,, = X, induces a homomorphism
(™% H'(Xy; Z) = H" (Xp+q; Ly+1) and it is easily seen that {H"(X,;
L, okt )*} is a direct sequence of abelian groups. Its direct limit will be
denoted by H"(X; &) and will be called an n-dimensional cohomology group
of X with coefficients in & .

If £, is a simple local system on X, for almost all k, then H"(X; &)
is canonically isomorphic with the ordinary Cech group H"(X; % (xo)),
where xge X.

Therefore, we can regard the cohomology groups of X with coefficients
in generalized local systems as a natural generalization of the Cech co-
homology groups.

Let ({(Xe, pi*'}, L0 = £ and ({Y. gk '}, #) = A be generalized lo-
cal systems of abelian groups on continua X and Y (respectively).

Then ({X,x Y%, pi™' xgi*'}, Zx®@H ) = @A is a generalized local
system of groups on X x Y.

If we additionally assume that X is a generalized local system of

free abelian groups, then we have a short functorial exact sequence

0 ) HY(Xy ZLI®H (Y, Ay) —» HP (X, x Yi; £k ® X3)

ptq=n
- Y Tor (H(Xy; £, H (Y ) >0
ptg=n+1

for every k =1,2,...

Because the tensor product and the torsion product commute with the
direct limit, we have the following

(4.1) THEOREM. Let ({X,, pk™'}, &0 = & and ({Yi, qi™'}, A ) = A be

generalized local systems of abelian groups on X and Y (respectively). If
A is a generalized local system of free groups, then we obtain the following

exact sequence:
0> Y H'(X; LSYQHIY: X) > H'(XxY; £@X)

ptg=n
- Y Tor(H (X; &), Hi(Y; X))~ 0.

ptg=n+1



Chapter III

Homological characterizations of fundamental dimension

This chapter contains the main theorems of our paper, which state
(roughly speaking) that Fd (X) is equal to the smallest integer number n
such that X is acyclic in the sense of cohomology over generalized local
systems of abelian groups on X.

In the case where Fd (X) > 2 the proof of this fact is based on the
obstruction theory and it is presented in the first four sections.

In fact, we give two independent proofs for the case Fd (X) = 1. The
first is contained in this chapter. The second proof is longer and more
complicated, but at the same time richer, since we investigate additional
algebraic properties of H'(X; &) # 0. To pick out it the reader should
read Lemma (5.7) and Section 2 of the next Chapter, avoiding (5.1) and
Section 6.

The problem of finding an algebraic characterization of continua with
the fundamental dimension equal to 2 has been solved only for some special
cases and it is presented in Sections 7 and 8.

We introduce also some class of continua & containing all orientable
closed manifolds and we prove that Fd (X xY) = Fd (X)+Fd (Y) if Ye#
and Fd (X) # 2 or Fd (X) = 2 and X is not approximatively 2-connected.

This yields a partial answer to Borsuk’s problem ([B,] and [Bs],
p. 350) whether Fd (X xS") = Fd (X)+n for X # .

For all CW complexes X, Y and a map f: (X, xq) = (Y, yo) (xo€X
and yo€Y) we will denote by X, X™, X" X(X),Z(f), f» and f:(s = 2)
(respectively) the universal covering space of X, the n-skeleton of X, the
Cartesian power X xXx X x  x X, the suspension of X, the suspension

1 imes
of f and the homomorphisms f: 7;(X, xo) = 7, (Y, yo) and f3: m. (X, Xo)
- 7,(Y, yo) induced by f.
In this and the next chapters Z,Z, and Q denote (respectively) the

group of integer numbers, the cyclic group of finite order p and the group
of rational numbers.



II1. Homological characterizations of fundamental dimension 23

1. Deformability of maps and the number w(f). Let Y, Y, ANR be
.continua such that Yo Y, and assume that K is a finite polyhedron and
X is a compactum.
A map f: K —» Y is said to be n-normal relative to Yy, ((Hu,], p. 107
and [Hu,], p. 202) iff /(K" V) < Y.
We say also that a map f: X — Yis n-deformable into Y, ([Hu,], p. 211)
iff there exist a (n+1)-normal map &: W— Y from a polyhedron W to Y
and a map o: X — W such that fa >~ f. In the case where X is a poly-
hedron n-deformability into Y, of a map g: X — Y is equivalent to the
existence of a map h: X —» Y (n+1)-normal relative to Yy, which is homo-
topic with g.
Let us prove the following

(1.1) PROPOSITION. Let-{X,, pi*} be an inverse sequence of polyhedra
associated with a continuum X and let f: X - Y be a map from X to
YeANR and Yo Yo,e ANR. Then f is n-deformable into Y, iff there exist
a natural number k and a map n: X, — Y, (n+1)-normal relative to Y, and
such that np, ~ f.

Proof. Suppose that f is n-deformable into Y,. This means that there
exist a polyhedron W and continuous functions «: X - Wand (: W— Y
such that & (W™) c Y, and &a ~ f.

FElementary properties of inverse sequences of polyhedra imply that
there are a natural number k and a PL map f: X, = W such that
Bpi ~ « and B(X{") = W™

This implies that n ~ £B satisfies the required conditions. The proof
of Proposition (1.1) is finished.

The following proposition will be very useful:

(1.2) PROPOSITION, Suppose that X is a movable continuum and f: X = Y
is a map from X to a polyhedron Y. If n is a natural number such that
f is m-deformable into Y™ for every m = 1,2,..., then w(f) < n.

Proof. We can assume that X is the inverse limit of an inverse
sequence {X,, pk*!} of polyhedra such that

(1.3) For every k > 2 there exists a map r: X, —» X, satisfying p}r =~ p}
and there exists a map f;: X — Y satisfying fip; = p.

Let dim X, = m.
The assumptions and Proposition (1.1) imply that there are k > 2 and
a continuous function g: X, — X, which is homotopic with p} and satisfies
the following condition:
fig(X{M) = Y
We have

fip'f rpy =~ f = fiqrp,.
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We can also assume that the map r: X, = X, (see (1.3)) is a PL map
and r(X{) = r(X,) = X"
We obtain
frarpa(X) = f1q(Xf") = YO
and
w(f) < n.

This completes the proof of our proposition.

Using Theorem (1.3) of Chapter I and Proposition (1.1), one can prove
that the following theorem holds:

(1.4) PROPOSITION, Suppose that X is a continuum with Fd (X) < oo and
fS: X > Yis a map, where Y is a polyhedron. If n is a natural number
such that f is m-deformable into Y™ for every m.=1,2,..., then w(f) < n.

2. Obstructions to deformability. Suppose that a map f: K —» Y from
a polyhedron K to a continbum Y € ANR is n-normal relative to a subcon-
tinuum Y,€ANR of Y, where n> 3. Then II,(Y,Y,) and a map
g: K=Y - Y,, which is defined by

gix)=f(x) for xeK@r™ 1,

induce a local system ) of abelian groups on K~ 1.
Since n > 3, we see that there exists a local system of abelian groups
Z(f,n) on K such that

Z(f. n)lx(n—l) =X

For every g-simplex o of K, we choose a point x,€|o| in such a way
that x, belongs to the boundary 0|o] of || for ¢ > 1 (cf. Section 2 of
Chapter II).

If we assign to every oriented n-simplex ¢ of K the unique element
(f, 6} of the group =,(Y, Y,/ (x,)) determined by the partial map

fIIGI: (O', aa:xd) - (K YOsf (xo'))a

we obtain an n-cochain ¢"(f) of K with coefficients in 2 (f, n) (cf. Exercise
E, Chapter VI of [Hu,] and [Hu,], p. 203). These notations will be used
in the sequel.

The following theorem will be very useful.

(2.1) THEOREM. Let n > 3 and Y, Y€ ANR be two continua and Y > Y,.
For every n-normal map f: K — Y the cochain ¢"(f) is a cocycle of K and
its cohomology class [c"(f)] in H"(K; &£ (f,n)) is equal to O iff there exists
a homotopy ¢: Kx[0,1] = Y such that

0(x,0)=f(x) for (x,)eKx{0}UK"»x[0,1]
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and
P (K x{1}) < Y,.

Proof The proof of this theorem is a straightforward modification
of the proofs of analogous facts for the case where the pair (Y, Y,) is
n-simple (Exercise E-7, Chapter VI of [Hu,], [Hu,] and [Hu,], p. 203).

One can check that the following proposition holds:

(2.2) PROPOSITION. Suppose that a map f: K — Y from a polyhedron K
to a continuum Y € ANR is n-normal relative to its subcontinuum Y,e ANR
and that g. L— K is a simplicial map of a polyhedron L. Then a local
system £ (fg,n) is induced by g and £ (f,n) and g*([c"(N)]) = [c" (/)]
e H"(L; £ (fg,n)) where g* is induced by g.

3. Coefficients of cyclicity and Z-continua, If X is a non-empty com-
pactum, thenr we say that a coefficient of cyclicity of X with respect to
an abelian group G (denoted by c¢g (X)) is equal to n (where n is an integer
number) if H"(X; G) = 0 for all m > n and H"(X; G) # 0. Moreover, we
set cG(@)= —1 and cz(X) = oo if X # @ and for every m there is an
n =2 m with H*(X; G) # 0.

In the seqyel the coefficient of cyclicity of X with respect to the group
of integer numbers Z is denoted by c(X).

Remark. Let #; denote the group of real numbers modulo 1. It is
well known ([H-W], p. 137 and p. 124) that for every compactum X
the group H,(X; #,) is the character group of H"(X; Z). This implies
that max (m; H™(X; Z) # 0) = max (m; H,(X; #,) # 0) = c(X).

Remark. N. Steenrod has proved ([St,], p. 690) that for each abelian
group G and every compactum X the group H,(X; G) is the direct sum
of two groups, one determined uniquely by G and H,(X; £,), the other
by H,,;(X; #,). These groups are trivial if H,,,(X; #,) = H,(X; #)
= 0. Therefore for every compactum X and each abelian group G and
every natural number m > ¢(X) the group H, (X; G) is trivial

Remark. From the universal-coefficient formula for the Cech cohomo-
logy ([S], p. 336) we infer that for every compactum X and every
m > c(X) the group H™(X; G) is trivial for all G.

In this section we denote by Q the group of rational numbers and
for every prime natural number p we denote by R, the group of rational
numbers which can be represent in the form m/n, where m and n are
integer numbers and p does not divide n. Let us also put Q, = Q/R, for
every prime number p.

If G is an abelian group, then we denote by & (G) the collection of
abelian groups defined by the following conditions:

(@) Qeo(G) iff G contains an element of infinite order.
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(b) If p is a prime number, then Z,e0(G) iff G contains an element
g of order p* (where k is a natural number) such that g is not divisible by p.

(€) @,€0(G) iff G contains an element of order p.

(d) R,ec(G) iff there is an element a of G such that for every
integer number n the number p"*! does not divide p"a.

) If H+# Q,0,,Z,,R,, then H does not belong to ¢(G) (p is the
prime number).

In the next chapter we need the following three propositions:

(3.1) PROPOSITION, For. every compactum X and every abelian group G
the equality cg(X) = max {cy(X)} holds true.

(3.2) ProPoOSITION, If X is a compactum and p is a prime number, then

co,(X) < ¢z,(X) < cg,(X)+1,
co (X) < cg, (X),

< max (g (X)), cp, (X)~1),

cr,(X) < max (g (X), ¢, (X)+1).

(3.3) PROPOSITION, Let X, Y be compacta and let p be a prime number.
Then
e, (XX Y) = ¢ (X)+¢5,(Y),
cg (X x Y) = co(X)+co(Y),
Cg,(X xY) = max (cq , X+, (Y), ez, (X x Y)— 1),

Cr,, (X)+cR Y) if Cg, (X) = "Cg, (X) or Cg, (Y)= CR, (Y),
cgr (X'xY) {max (cQ (Xx Y)+1, cQ(Xx Y)) 1f ch(X) < cRP(X)
and ch(Y) < ¢cg, (Y).

It is known (cf. [N;], p. 75) that if we replace in (3.1), (3.2) and
(3.3) ¢, by dim, (where 4 = G,H,Q,Z,,R,, Q,), then we get theorems
which hold true ([Ko], p. 219 and p. 231 or [Ku], p. 12 and p. 14 and
p. 15). Moreover, studying [Ko] or [Ku], one can observe that the proofs
of those theorems contain the proofs of Propositions (3.1), (3.2) and (3.3).
Therefore we omit them.

Using the exact Mayer-Vietoris cohomology sequence, one can prove
the following

(3.4) ProrosITION, If X, Y are compacta and G is an abelian group and
Cg (Xﬁ Y) < max (CG(X), CG(Y)), then Cg (XU Y) = max (CG (X), Cg(Y))

A continuum X with 0 # Fd(X) =n < oo belongs to a class F
(in other words X is a #-continuum) iff cg(X)=n for every abelian
group G # 0 (cf. [N;]).

From the universal-coefficient theorem for homology and cohomology
one can conclude that the following proposition holds:
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(3.5) ProrosITION. If XeANR is an n-dimensional continuum and
H,(X; Z)# 0, then Xe &

In particular & contains all closed orientable manifolds.

Using the Kiinneth formula or Proposition (3.4), one can obtain the
following propositions:

(3.6) ProPOSITION. If X, Ye %, then XxYeF

(3.7) ProrosiTiON. If Xe# and Y is a continuum such that
0<KFd(XnY),Fd(Y) < Fd (X), then XuYe#F

Remark. Proposition (3.1) implies that if X is a continuum with
n=Fd(X) < o and the groups H"(X; Q),H"(X; Z,),H"(X; Q,) and
H"(X; R,) are non-trivial for every prime number p, then Xe# This
fact together with the theorem stating ([H-W], p. 137) that for every
countable group G and its character group G* the group H,(X; G*) is
the character group of H"(X;G) and with the Pontriagin duality ([P],
p. 259) implies that if X is a n-dimensional continuum and H,(X; G) # 0
for every G # 0, then X e &

If X # @ is a continuum, then let us denote by c[X] the maximum
of numbers n (finite or infinite) such that there is a generalized local
system of coefficients £ on X such that H"(X; &) # 0. We set also
c[@] = —1. The number c¢[X] will be called a generalized coefficient of
cyclicity (cf. [N4], p. 1025).

We will use the following

(3.8) ProPOSITION, If X is a continuum and Ye%, then c[XxY]
=z c[X]+Fd (Y).

Proof Let & = ({X,, pk*'}, #,) be a generahzed local system of
abelian groups on X such that

H"(X; )+ 0 where m=c[X]

and let n = Fd(Y).
The universal coefficients theorem for Cech cohomology and Theorem
(4.1) of Chapter II imply that

H'*'"(XxY; 2®Z) ~ H'(X; Y@H"(Y; Z) ~ H"(Y; H"(X; £)) # 0.

Therefore ¢c[X x Y] > m+n and the proof of (3.8) is finished.

From Proposition (1.9) of Chapter II and Remark (2.9) we conclude
that the following proposition holds:

(3.9) PROPOSITION, For every approximatively 1-connected continuum, we
have c[X] = c(X).

Using Proposition (2.10) of Chapter II and Theorem (1.3) of Chapter I,
one can prove the following

(3.10) ProposiTION. If X is a continuum, then c[X] < Fd (X).
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Remark. It is clear that c(X) and c¢[X] are shape invariants. In
Section 8 we shall prove that there exists a sequence of polyhedra X, such
that ¢(X,) = 0 and ¢[X,] = n for every n =1, 2, ..

4. Continua with fundamental dimension > 3. Let us prove the following

(4.1) THEOREM. Iet f: X — Y be a map from a continuum X to a poly-
hedron Y. If n = c¢[X] < o0 and ng = max (2, n), then f is m-deformable
into Y®O for every m = 1,2, ...

Proof. Let ¥, = Y"0 and {X,; pf*!} be an inverse sequence of poly-
hedra and simplicial maps associated with X. Then there exist a natural
number k(no) and a cellular map fyny): Ximg — Y such that fyp Pngy = f-

Since fym, is cellular, we have fy,,, (X"0) = ¥% and f is m-normal
relative to Y, for every m < np+1.

In order to prove that our theorem holds it is sufficient to show that

(42) if m> ny, and we have a map fypm: Xywm — Y which is m-normal
relative to Y, and fim Puey = f. then there exist a natural number
kim+1) = k(m)and a map fym+1): Xem+1y =Y (m+1)-normal relative
to Yo such that fyus ) Pegm+ny = f-

Setting Y, = Xk(m)+k y and g™ —P’i%:ﬁ $ Y = Xugmk = Ximy+k-1
= Y,, we obtain an inverse sequence {Y, g +1} associated with X.

Let &, = & (fumm) and let &, be a local system of groups induced
on Y, by &, and the map ¢%: ¥, - Y,.

Then £.= ({%.qk*'}, &£,) is a generalized local system of abelian
groups on X.

Consider now the element [¢™(fy)] of H™(Yy; Z(fy, m) = H™(Y;; &)).
Since H"(X; &) = 0, this element represent the zero of H™(X; %) and
there exists a natural number ko such that (q%°)* (L™ (fem)]) = 0.

Since q1 is simplicial and fi is m-normal, we infer that fi., '{ is
m-normal relative to Y. Proposition (2.2) implies that &£, = & (/, (,,,,ql ; m)
and that’ q1°)*([c (fetm) ) is represented by the cocycle ¢™(fym4,°) in the
group H™ (Y3 Eko) = H"(Yy: Z( fk(,,,,ql ; m)). From Theorem (2.1) we
infer that fim ¢;° is homotopic with a map fym+y): Yoo = Ximy+rg-1 = Y

which is (m+ 1)-normal.

It is clear that fipm+1)Pam+1y = f-

This completes the proof of (4.2) and our theorem.

It follows from the analysis of the proof of Theorem (4.1) (see Prop-
osition (1.8) and Theorem (1.3) of Chapter I) that the following two
theorems hold:

(4.3) THEOREM. Suppose that X is a continuum with 3 < n = Fd (X)
< oo and {X,, pt*'} is a sequence of polyhedra and simplicial maps associ-
ated with X. Then there exist a natural number k, and a generalized local
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system of grouPs & =({Y%. g7 "'}, &) on Y such that H'(X; &) #.0 and

Gt = pk+k0 Xivkg+1 = Yk+l = Yo = Xyyg for every k =1,2,.

and

(44) THEOREM. If X is a continuum with Fd (X) < oo, then c[X]
€ Fd (X) < max (2, c[X]).

Combining Proposition (1.2) with Theorems (1.3) of Chapter I and
(4.1), we obtain

(4.5) THEOREM. If X is a movable continuum and Fd (X) = oo, then
c[X] = o0.

Theorem (4.5) and Proposition (3.8) imply that the following theorem
holds:

(4.6) THEOREM. Suppose that Ye F and X is a continuum with Fd (X)
> 2, Then Fd (X x Y) = Fd (X)+Fd (Y).

A consequence of (4.6) is the corollary:

(4.7) CoOROLLARY. Suppose that X is a continuum with Fd (X) < o
and Ye# Then

Fd (X xY)=Fd(Y)+Fd (X xS§% -3
if FA(XxY) > 3 and

Fd(XxY) = Fd(X)+Fd(Y)
if there exists a Yoe & such that Fd (X x Y;) = Fd (X)+Fd (Y;) =
Proof. Let Ye%# and Fd(X xY) > 3. From (4.6) we conclude that
Fd(Y)+Fd(X x 8% = Fd((X x$*)x ¥) = Fd((X x Y)x$§%) = Fd(X x ¥)+3
and

Fd (X x Y) = Fd (Y)+Fd (X x §¥)—3.

This completes the proof of the first part of (4.7).

Let us assume that Y, Y, are Z#-continua such that Fd (X)+Fd (Yp)
=Fd(XxYy) >3 and Fd (X xY) < Fd.(X)+Fd (Y). From Theorem (4.6)
we infer that

Fd (X XY, x Y) = Fd (X)+Fd (Y)+Fd (Y).
On the other hand, we have
Fd (X x Y, xY) < Fd (X xY)+Fd (Y;) < Fd (X)+Fd (Y,)+Fd (Y).
The proof of our corollary is finished.

5. Two algebraic lemmas. If G is a multiplicative group, then the
integral group ring Z(G) of G is the set of all finite formal sums ) n;g;,
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meZ and g,€ G, with addition and multiplication given by

2 mg.--l-z mig; = Z (i +m;)g;

(X ma) (X m;g) = 3 (um)gig;.
We will employ the following lemma:
(5.1) LemMMA, Let G be a non-trivial multiplicative group and 0 # z
=Nn,gy+n19,+ +mg€Z(G). Then (la—1le)z # 0 for every element
ae G with the order > k, where e is the unit of G.

and

Proof. Without loss of generality we may assume that
(52) m # 0 and g; # g, for all i,j =1,2,..., k such that i # j.

Let us suppose that our lemma does not hold.
This means that there is an ae G satisfying the following condition:

(53) a*#e and nygi+nig;+ gy = njag,tn,ag,+  +neagy
=natg,+na*g,+ +matg, =nag+nag+ +ma‘g,
for s=1,2,..., k.

From (5.2) and (5.3) we infer that for every s = 1,2, ..., k there exists
a function x,: {1,2,...,k} - {1,2,..., k} such that

(54) NiGi = Mg a* Do li) and  x,()) # %(j)
for i,j=1,2,...,k and i # j.

If %,(1) = 1, then n,g, = n,4°g, and g, = a®g, and &° = e. Therefore
(5.5) (1) # 1 for every s = 1,2,.... k.

Let us observe also that

u(D) # %,() for s,p=1,2,...,k such that s # p.

Indeed, from s> p and x(i) = x,(i)) we conclude that n;g, =
=M i) @ Ggt) = My @° Guyy and s°77 = e.

Therefore 1€ {x; (1), #, (1), ..., % (1)} in contradiction to (54) and (5.5).
Thus the proof of Lemma (5.1) is completed.

If (W,w) is a pointed topological space, then Z(rn, (W, w)) is denoted
by A (W, w).

It is well known that for every connected polyhedron W and every
we W the group m, (W, w) = IT,(w) is a left A (W, w)-module, where

za = ny I (a)) (@) +ny My (a)(@)+  +n 1T (a) ()

for aell,(w) and z = nya;+ny,a,+ +naeA(W,w) and k > 1.
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We recall [L] that if M is a left R-module and if there exists
a B « M such that for every me M, we have

(56) m=ryb,+ +ryb,, where r;eR and bjeBfori=1,2,....,k

and such that Presentation (5.6) is unique, then M is said to be a free
R-module and B is said to be a basis for M.
Let (X, xo)lj; (Y, y0) = X x{vo}u{xo}x¥Y <= Xx Y for all pointed com-

pacta (X, xo) and (Y, yq).
We shall also use the following

(57) LeMMA. Let k = 2 and (Y, yo) = (X, o)t (S*, s5), where (X, x,)

is a pointed connected CW complex with m; (X, xo) = O for everyi= 2,3, ...,k
Thern (Y, yo) is a free left A(Y, yo)-module and the basis of (Y, y,)
consists of one element ¢e m (Y, yy).

Proof. Let p: (X, x) = (X, xo) be a universal covering projection for
(X, xo). It is easy to check that a map q: (¥,y) = (X x{so} up~'(xo) x S¥,
(x, s0)) = (Y, yo) given by the formula

) = (p(¥), s0) for x = (y,s0)eX x{so},
=09 for X = (y.50)€p~" (o) x S*

is a universal covering projection for (Y, y,).

Using the fact that q’;: 7. (Y, ¥o) = 7 (Y, yo) is an isomorphism, one
can easily verify that for every gem, (Y, y,) there exists an element
nja;+ +ma of Z(n, (Y, yo)) such that

g = (n1a1+ +n1a,)£

where ¢ is an element of m, (Y, y,) which is induced by a map a: (S¥ so)
— (Y, yo) defined by the formula

a(s) = (xq,5) for every se S~

It is clear that z,e # z,¢ for all z;,z,€A(Y, yo) such that z, # z,. The
proof is finished.

6. Continua with fundamental dimension equal to 1. Let us prove the
following

(6.1) THEOREM, If Fd (X) = 1 and Y e F, then Fd(X x Y) = Fd (Y)+1.

The proof of Theorem (6.1) is based on the following lemma, the
proof of which may be left to the reader (cf. [Ns]).

(6.2) LEMMA, Let (K, k¢), (W, wo) be finite pointed connected CW com-
plexes, soeS* and f: (W, wo) — (K xS?, (ko, So)) be a map. The following
conditions are equivalent:
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(@) w(f) <2,
(b) there exists a homotopy ¢: Wx[0,1] - K xS? such that

o(x,t) =f(x) for every (x,t)e Wx {0} u{wo}x[0, 1]

and
@ (Wx {1}) = K®x {50} U {ko} x §%.

Proof of Theorem (6.1). It is sufficient to show that Fd (X x §*) = 3
(see Corollary (4.6)).

For simplicity, we will assume that (X, x) = lim {(Xi, %), pit'} where
(Xi, x;) is a finite connected polyhedron with dim X, = 1.

Let us suppose that Fd (X x§%) = 2.

From Theorem (1.3) of Chapter I and Lemma (6.2) we conclude that
for every k there exist a k' > k and a homotopy ¢: (X, xS?%x[0,1]
— X, xS? such that

oy, t) = (pk x),8) for (y,1) = ((x,5), 1) € (X x 8% x {0} U {(x, 50)} x [0, 1]
and

e (Y1 x{1}) = Xpx{so} L {x}x5* = (X,, xk),;};(sz, so) = (Y2, y2)

and such that (p}), m,(Xw,Xy)— 7, (Xk, %) is a2 non-trivial homomor-
phism, where (Y;, y;) = (Xy % S2, (x;, 50)).

Let ¢, em, (Y;, y;) be a generator of n,(Y;, y;) and let &, be a A(Y,, y,)-
generator of 7, (Y,, y,) (see Lemma (5.7)).

Setting

Q(xa S) = go((xs 5)91) fOI' (xss)EY11

we obtain a map g: (Y, y;) = (Y2, y,).

It is clear that the homomorphism g, : =, (Y, y,) = 7;(¥s, y;) is non-
trivial.

We have

g (e = b+ +mbye,

where 0 £ n by +  +mbye A(Ys, y,).

Let us denote by ¢ an element of 7 (Y;, y,) such that a = g4 (c) is
a non-trivial element of =, (Y3, y,).

Since 7, (Y,, y,) is isomorphic with a free group =, (X,, x,), we con-
clude that g, (c) = ¢° is a non-trivial element of =,(Y,,y,) for every
s=1,2,..

Lemma (5.1) implies that

(le—la)(nl b1+ +nkbk) ?é 0
(e 1s the umit of =, (Y;, y,)).
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It follows that

niby+ +mby# niaby+ +n.ab,
and

qi(e) = (mby+  +mb)e, # (npab+  +meaby)e,.
On the other hand,

g3 (&) = g2 (Leey) = (1g4 (0)) g2 (e1) = lag? (e;)
= ('11 gw Q)b+ +mgy (©)by) e,
= (n,ab;+ +mneab))e,.

Thus the proof is finished.

7. Continua with fundamental dimension equal to 2. In this section
we denote by H,(X) the n-dimensional singular homology group of X with
integer coefficients and by (f),: H,(X)— H,(Y) the homomorphism which
is induced by f: X - Y. '

Let (X, xg),(Y,yq) be connected pointed CW complexes and let
p: (X,a0) = (X, x0), q: (¥, bo) = (Y, yo) be universal covering projections.
Then for every map f: (X, xo) = (Y, yo) we denote by J': (X, ao) = (¥, bo)
the (unique) lifting of fp: (X, ap) = (Y, yo)-

Let I, be a category whose objects are connected pointed CW com-
plexes and whose morphisms are homotopy classes (in the pointed sense)
of maps. It is well known that the tilde ~ induces a functor from I, to
§D30. This functor assigns to every object (W,w,) of T, its universal
covering space (W, w) and to every morphism [f] of I, represented by
a map f: (W, wy) = (V, 1) the homotopy class [f] of f: (W, w)— (¥, ).

As an immediate consequence of this fact we obtain the following

(7.1) LemMA, If X = {X,,pi*'} and Y= (Y, qi*'} are sequences of

polyhedra and Sh (lim X) Sh (lim ¥), then H = {H,(%,), G&* ) and {H, (%),

(@&* ')} = G are isomorphic progroups for every n =0,1,2,...

Let us prove the following (see [Ns])

(7.2) THEOREM, If (X, xo) is not an approximatively 2-connected pointed
continuum and if Fd (X) = 2, then Fd (X xY) = Fd (X)+Fd (Y) for every
Ye#

Proof. Without loss of generality we may assume that (X, x,) is the
inverse limit of an inverse sequence of 2-dimensional polyhedra {(X,, xy),

k+1
Pk }

Let y,: (X4, a) = (X, x,) be a universal covering projection for every
k=1,2,..

We know that (X x §2, (%o, 5)) = lim (X x 82, (xi, So)), PET ! xid o}

3 - Dissertationes Mathematicae CLXXXVII
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and that
Pr X idszi (Xk x 82, (a, So)) - (Xk x 82, (%, So))

is a universal covering projection for every k = 1,2, ...
It is clear that for every k = 1,2,... we have

(?k)i Fl)i = (P'I:+1)2(7k+l)i and 6% 'i“)i = @)2095

where 8%: n, (X, a;) » H,(X,) is the Hurewicz homomorphism.
This means that the pair a = (idy, 65) is a morphism from a progroup

{72 (X1, x), (0K )2} to a progroup H' = {Hy (X)), (ﬁ*\‘)z} where N denotes
the set of natural numbers.

Since 8%: n,(X,, @) » H,(X,) is an isomorphism, we conclude « is an
isomorphism of progroups and H' is not trivial.

The Kiinneth theorem for singular homology ([S], p. 235) implies that
the progroups {H, (X, x 5%, (pi*!xids;)s} = H" and H' are isomorphic.

Therefore

(7.3) H"” is not a trivial progroup.

The hypothesis that Fd (X x §%) < 3 implies that X x §? has the same
shape as the inverse limit of an inverse sequence {Y, gk*'} of 3-dimen-
sional polyhedra. From Lemma (3.4) we conclude that the progroups H”

and H" = {H,(Y), m are isomorphic.
Since dimY, <3 and H,(Y) =0, we infer that H” and H" are

trivial progroups, in contradiction to (7.3). Thus the proof of (7.2) is finished.

8. The main results. Let us prove the following

(8.1) THEOREM. Let X be a continuum with Fd (X) < oo. Then the
Sollowing conditions are equivalent

(a) Fd (X x Y) = Fd (X)+Fd (Y) for every Ye %,

(b) Fd (X x 8% = Fd (X)+3,

() Fd (X) = ¢[X].

Proof. (a) = (b). Obvious.

(b) = (a) (see Corollary (4.7)).

(¢) = (b) (see Proposition (3.8)).

(b)=>(c) We can assume that X = lim {X,, p*'}, where X, is a poly-
hedron and dim X, = Fd(X) = dim X = n.

It follows from Theorem (4.3) that we may additionaly assume that

there exists a generalized local system of coefficients ¥ = ({kaSS, pEtt x
xidgs}, #) on X xS? such that o

(8.2) H (X x 8% £) # 0.
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Let speS? and a: X, — X, xS® be a map defined by the formula
o (x) = (x,s0) for every xe X,.

Let us denote by X', a local system on X, induced by «, and .%,.
It is clear that 4 = ({X,,pi*'},f)) is a generalized local system

of abelian groups on X.

Since S* is simple-connected, we infer that # ®% and & are ca-
nonically equivalent, where 2 is a simple local system of infinite cyclic
groups on S3.

Theorem (4.1) of Chapter II and (8.2) imply that

H" (X x 8% &) =~ H"(X; A)QH(S*; %)
= H'(X; £)®Z ~ H"(X; £) # 0.

The proof of Theorem (8.1) is finished.

The following theorem is an immediate consequence of Theorems (4.6),
(6.1), (7.2) and (8.1).

(8.3) THEOREM. Let X be a continuum with Fd (X) < . Then c|[X]
< Fd(X) < max 2,¢c[X]). If FdAX)# 2 or Fd(X)=2 and X is not
approximatively 2-connected, then Fd (X) = ¢[X] and Fd (X xY) = Fd (X)+
+Fd (Y) for every Ye &

(84) Remark. R. Swan has proved ([Sw], see also [Sta]) that if (X, ko)
is a connected CW complex (necessarily finite) such that =;(K,k;) =0
= H(K; &) for every i > 2 and every local system & on K, then
7y (K, ko) is a free group. Using this theorem, one can prove that if
(X, xq) is a pointed continuum having the shape of a CW complex, then
Fd(X) =c[X] and Fd (X xY) = Fd (X)+Fd (Y) for YeZ

(8.5) REMARK. In the above-mentioned theorem the assumption that
Fd (X) < o may be replaced by the assumption that X is movable
(cf. (4.5)).

If X is approximatively 1-connected, then c¢[X] = c(X) (see Prop-
osition (3.9)).

If X is a 2-dimensional approximatively l-connected and 2-connected
continuum, then X has a trivial shape. Therefore we get the following

(8.6) THEOREM. If X is an approximatively 1-connected continuum with
Fd(X) < o0, then Fd(X)=c(X) and Fd(XxY)= Fd(X)+Fd(Y) for
every YeF
and

(8.7) THEOREM. If X is movable approximatively 1-connected continuum
and Fd (X) = o0, then c(X) = oo.

Remark., Theorem (8.7) and the first assertion of (8.6) were proved
in [N,] and subsequently generalized (Theorems (8.3) and (8.1)) by the
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author (see [N,] and [Ns]) and independently by J. Dydak (generalization
of (8.5) to the case of topological spaces).

(8.8) REMARK. The hypothesis of finite-dimensionality or movability in
Theorems (8.3), (4.5), (8.6) and (8.7) cannot be omitted.

Indeed, let X be an acyclic approximatively 1-connected continuum
described by Kahn in [Ka]. Then Fd (X) = o and c¢(X) = ¢[X] = 0.

(8.9) REMARK. For every natural number n there exists a polyhedron
X, such that Fd (X,) = ¢[X,] 2 »n and c¢(X,) = 0. Hence, assertions (8.6)
and (8.7) are false if one omits the assumption that X is approximatively
l-connected. The following proof of this fact was communicated to the
author by J. Hollingsworth.

Let G denote an open 3-simplex of a triangulation of a Poincaré
sphere P (ie. of a homology 3-sphere P with finite and non-trivial =, (P)
and X = P\G. It is known that P = §* ([He]). Therefore H,,(Y"; Z) # 0
is a free abelian group for every natural number n, where Y= X. If
there exists a k > 3 such that Fd (X") < k for n = 1,2, ..., then for every
natural number n there exists (see Theorem (1.4) of Chapter I) a poly-
hedron W, such that Sh(W,) = Sh (X" and dim W, < k. Hence W, has
the same homotopy type as Y" and dim W, < k. We obtain a contradiction
if n > k. Therefore X, = X" satisfies the required conditions.

Remark. It was proved by J. Keesling ([K], p. 355) that Fd(X) = ¢(X)
if X is a compact connected abelian topological group.

Remark. Since the compactum X is approximatively n-connected
(Fd (X) < n) iff each of its components is approximatively n-connected
(each of its components has the fundamental dimension <.n), we conclude
that the assumption of connectivity in (8.6) is not essential, i.e. Fd (X) = c(X)
for every approximatively 1-connected compactum X with Fd (X) < oo.

We say that a continuum X belongs to U iff Fd (X) = c[X].



Chapter IV

Applications of the homological characterizations of fundamental
dimension to some special problems

Homological characterizations of fundamental dimension are useful tools
in computing the fundamental dimension of the Cartesian product. In
particular, we prove in this chapter that Fd (X xY) = Fd (X)+Fd (Y) if
Yel and Y is a closed PL n-manifold or Fd (Y) =1 and that there
exists a sequence of polyhedra {X,}., such that X, is the suspension
of the projective plane and Fd (X;xX) = Fd(X,xX,x..)=Fd(X)
=dim X; = 3 where i,j=1,2,... and i # j.

Using the main results of the last chapter, we show also that the
fundamental dimension of the suspension of a compactum X depends only
on the Cech cohomology of X (for the case where Fd(X) < oo or X is
movable) and that for every natural number n > 0 there are a polyhedron
X and its subpolyhedron A such that Fd(X) > n and dim A+1 =2
= Fd (X/A).

These investigations were inspired by the following problems of Borsuk
([B.] and [Bs], p. 350):

(1) Is it true that Fd (X xY) 2 Fd (X)+1 for all non-empty compacta
X and Y such that Fd (Y) > 1?

(2) Is it true that Fd (X xY) = Fd (X)+Fd (Y) for all polyhedra X and
Y such that Fd (X) # 0 # Fd (Y)?

(3) Let Y be compacta and let f: X =Y be a map. Is it ‘true that

‘Fd(X) < Fd(Y)+Fd(A), where 4 is the closure: of the union of all
sets ™' (y) such that yeY and f~!(y) contains at least two points?

1. The fundamental dimension of the Cartesian product of a closed
manifold and a continuum. It is well known ([St,], p. 620 and [St3], p. 201)
that if M is a closed non-orientable PL n-manifold, then there exists
a local system .# of cyclic infinite groups on M such that H"(M; .#) = Z.

From Theorem (4.1) of Chapter II we conclude that

H™" (X x M; L®.4) ~ H'(X; £YQH"(M; M) # 0
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for every generalized local system of coefficients ({X,, pi*'}, ) = & on
a continuum X such that

H™(X; #£)#0 and m=c[X].

Combining this fact with Theorem (3.8) of Chapter III, we obtain

(1.1) THEOREM. If M is a closed n-manifold, then c[X x M] = c[X]+n
for every continuum X
and

(1.2) TaeoreM. Fd (X x M) = Fd (X)+n for every continuum X el and
every closed n-manifold M.

(1.3) REMARK. The assumption that M is a closed n-manifold is essential.
For every n > 2 there is an $"-like continuum Y such that Fd (X (P?)x Y)
< Fd (Y)+Fd (Z(P*) = n+3, where 2 (P?) is the suspension of the projec-
tive plane P2

Indeed, if n > 2 and Y= lim {Y, pk™1} (where pit!l: Yy =S" > ¥,
= §" is any map of degree 2), then every element of H"(Y;Z) is divi-
sible by 2 ([M-S;], p. 55) and

H"(Yx Z(P%); Z) = H"(Y; Z)®H? (2 (P¥); Z) = H"(Y; Z)®Z; = 0

and Fd (Z(P*)x Y) < n+3 (see Theorem (3.3) of Chapter II).
~ In Section 3 we will prove that there is a polyhedron W such that
Fd (Wx X (P?) = 3 = dim W= dim X (P?).

2. The fundamental dimension of the Cartesian product of a curve and
a continuum. The main result of this section is the following theorem:

(2.1) THEOREM. If Y is a continuum, then ¢c[X x Y] = c[Y]+1 for every
continuum X with Fd (X) = 1.

First we shall introduce some special notations, which will be used in
the proof of this theorem.

If X is a connected 1-dimensional polyhedron, then 2" denotes a local
system of free abelian groups on X induced by the inclusion X into Y and
IT,(Y), where xoe X and (Y, yo) = (X, xo)g;(S",so) (the isomorphism class

of Z does not depend on the choice of x).

We know (see. Lemma (5.7) of Chapter III) that % (x) is a free
A(X, x)-module for every xeX and its A(X, x)-basis consists of one el-
ement. If ¢ is a A(X, x)-generator of ‘Z'(x), then &', = {Z (@) ()}werr,xvy- It
is clear that & (x) is freely generated by Z, (in the abelian sense).

Suppose that (W;, w,) and (W,, w,) = @ (S}, s;) are bouquets of circles.
i=1

A map f: (W, w,) - (W,, w,) is said to be fine iff f ! (w,) is a finite set
and for every component 4 of W, \f~!(w,) there exists an index i < n such
that f|, is a homeomorphism onto S\{w,}.



IV. Applications of the homological characterizations 39

We will also assume that the reader is familiar with Example (1.4) of
Chapter IIL

The length I(g) of an clement g # e of a group G (e is the unity of
G) freely generated by A4 # @ is the minimum of such numbers » that
g =aMal® g™ where 6()) = +1 and ageA for every i=1,2,...,n.
The length of e is 0.

We shall need the following

(2.2) LEMMA. Suppose that (X, xo) is a connected 1-dimensional poly-
hedron and & is a local system of free abelian groups on S' induced by ¥
and a map f: (S, s0) = (X, xo). Let & be a A(X, x,)-generator of I (xo)
and let A be the set of the “™™ classes in ¥ (so) of elements of X,. Elements
I (ay)(e) and ¥ (a,)(e) of ¥, represent the same element of A iff a; and a,
belong to the same right coset of m,(X, xo) with respect to its subgroup
Im f,

Proof. Let p: &, — A be the canonical projection and let »x: A - &,
be a right inverse of p. It is clear that A generates .#(s,) and that the
functions p: 4, =+ A and g = pl,4: #(4) > A induce epimorphisms p,:
X (xg) > Z(50) and gu: G — £ (s0), where G is a subgroup of Z (s,) freely
generated by x(A).

Let us observe that for every ae & (x,) we have

k
(23) aeKerp, o Kergy iff a = 3 (£ (cai—1)(€)— £ (c20) (),

where ¢5;_, = b;cy; and byelmyf, for every i = 1,2,..., k.

Since & (c5;—;)(e) and Z (cy;)(e) represent the same element of A, we
infer that Ker g, = {e}.

This means that g, is an isomorphism and #(sy) is freely gener-
ated by A.

From (2.3) we deduce that Z'(a,)(e) and % (a,)(e) represent the same
element of A iff the following equality holds (in A (X, xo)):

2k
(24) la,—1la, = Y (—1)'*ic;, where cy_; = b;c;; and beImf, for
=1
every i = 1,2,..., k.

If (2.4) holds, then there exists a permutation u of the set {1,2,..., k}
such that
Clp(l)—l = a, and Copy = G2 and Couti) = 62;4(1'+ 1)—1 for i = 1,2,...,k—1-

Since c3u-1,> Cauy @R Cpua4+1y-; represent the same right coset of
my (X, xo) with respect to Im f,, we infer that all ¢; represent the same
coset. The proof is finished.
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The following lemma holds true:

(2.5) LeMMA. If X is a continuum and Fd (X) = dim X = 1, then there
exist a finite bouquet of circles (W, wo) and an essential map f: X - W
such that g(X) = W for every map g: X — W homotopic with f.

Now we are ready to prove the main theorem.

Proof of Theorem (2.1). Let X, denote the circle in E* consisting
of all points (x,,x,) such that x}+(x,—1/n)?* = 1/n?, where n =1,2,..,

Without loss of generality we can assume that X is the inverse limit
of an inverse sequence {W,, pi*'} such that

nk+1 e
Pt (W, (0,0) = ( .91 X;,0,0) - (_L=J1 X, 0,0) = (W, (0,0))

is a simplicial map with respect to triangulations 7, of (W, (0,0)) and
Ters Of Wiy, (0,0) and that

(2.6) pkt! is fine.

Lemma (2.5) and elementary properties of inverse sequences imply that
we may additionally assume that

(2.7) for every k =1,2,... and for every map q': X, - W; homotopic
with g = pily,: X, » W; we have ¢'(X,) > X;.

Let Z, be a local system of free abelian groups on W, induced by
ph: We—» W, = Wand 1 on W,
&L = ({W., pit'}, £) is a generalized local system of groups on X,
We will study its properties and will prove that

(2:8) H* 'Y XxY, @A) #0

for every generalized local system of coefficients X = ({¥;, qi*'}, o) on
a continuum Y such that

(2.9) H(Y; X)#0 and c[Y]=n.

In order to prove (2.8) it is enough to show that there exist
aec HY(W;; #,) and Be H*(Y,; A ,) such that

0 # P)* (®E)* (P e H (W, LYRH"(Y,; H,) for every k= 1,2, ...

The counter clockwise orientation on E? will be called positive.

Let £ be a A(W, (0, 0))-generator of ¥, (0,0) and let ¢, be a 1-simplex
of |y, with the first vertex (0,0) = x,, such that g, induces positive
orientation on X,.

We will denote by a; a generator of m, (X, (0,0)) ~ Z which is induced
by the positive orientation of the circle X.
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One can consider that =, (W, (0, 0)) is freely generated by a,, a,, ..., a,
for every natural number k.

Suppose that k is a natural number.

From (2.6) and (2.7) we deduce that the set of all l-simplexes J,ly,
which induce positive orientation on X, and which are mapped by p% onto
+ 0, is the union of three disjoint sets {c,, 7,,..., 0.} # O, {6}, 6%, ..., 0%}
and {0}, 0%, ..., 0;} satisfying the following conditions:

k

(2.10) A path ptd: [0,1]— W, from y, = p5d(0) to y, represents a non-
trivial element of =, (W, y,) for every path 4: [0,1] —» X, from
d(0)e|oi| to d(1)eloyl, where i,j=1,2,...,m and i # j.

(2.11) pi(o)) = —pi(ol) for every i=1,2,..,5
(2.12) For every i =1,2,...,s there exists a path d: [0,1] - X, with
pi(d ) = pA(d(1)) = yo from d(Q)eo; to d(l)eai such that the

path p*d: [0,1] —» W, is homotopic with the degenerate path
e: [0,1] » Wy, e([0, 1]) = {yo}.

Every l-cochain of C'(X,; %) or C!(X,; &) is a cocycle, where
=2 1|x1-

If ' and ¢” are l-simplexes of J |y, having a common vertex and
if ¢’ and ¢" induce the same orientation on X,, then for every path
d: [0,1] = |o'|ule”| from x,-to x, and for every ze .#(x,) we have
Koz ™~ X' wiayy 0 CH(X 5 2).

Hence, [%-] = [to-vane] (in H' (X,; &) for all 1-simplexes o' and ¢
of 7lx, and every path d: [0,1] - X; such that ¢’ and ¢” induce the
same orientation on X, and d(0) = x, and d(1) = x,,..

One can select x, €lo| and choose path d;: [0,1] — X, from x,, to
X such that

(2.13) pi(x,) = x,, for every i=1,2,...,m
and

(2.14) 0 = I(gy) < l(g) # l(g) < L{(p})4 (ay)) for all i,j=2,3,...,m, where
i # jand g;en; (W, x,,) is represented by the path p¥d;: [0, 1]~ W,.

Conditions (2.10), (2.11), (2.12) and (2.13) imply that
(215 g ([Keg.e)) = Z 8 (i) [toye] = Z 8(i}(Xa,.;;] Where g*: H'(Wy; &)

g Hl (Xl, g) iS lndLICCd by q = pIIX1 .X1 o d Wl and 6([) Jo
= p4(0) and ¢ = L (d) () = L (g) () for every i =1,2,.

Condition (2.14) implies that for every i > 2 the right coset of g; with
respect to Im g, and the right coset of g, (i.e. Im g4) are different.
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Combining (2.15) with Lemma (2.2) we infer that h([¥,,.]) = o gen-
erates a direct summand G of H'(X,; %)= G®H and «, = h( Z [x,,l.q])eH,
i=2

where h: HY(X,; &) —» H'(X,; &) is a homomorphism induced by id,(l
and ~

Suppose that X = ({%,qi"'}, ") is a generalized local system of
groups on a continuum Y satisfying (2.9).

Let f be an element of H"(Y;; ;) which represents a non-trivial
element of H"(Y; %) and a = [x,,.] € H' (W;; &,).

Let us denote by jx,: X; — W, the inclusion.

We have

hg* () ®(g5)* (B) = ha*®(g%)* (a® B)
= (o t+a)® B eH (X ; £)® H"(W,; X)),

where B’ = (g})* ().
Since f' = 0 and e¢®p’ # 0, we infer that

hg* ()®(q1)* (B) = h®(idw )* (¢* ()® ) # O
and '

0 # g*(@)®(q1)* (B).
Therefore
g* ()®(g1)* (A) = (x,)* PD*()®(g5)* (B) # 0
and

P4)* ()®@(g4)* (B) # 0.

The proof of Theorem (2.1) is finished.

As an immediate consequence of (2.1) we get the following

(2.16) CoroLLARY. Suppose that Yel and X,,X,,..., X, are continua
such that Fd (X)) =1 for i=1,2,...,n. Then Fd (Yx X, XX, X x X,)
= Fd (Y)+n.

It is known ([C-Ch] and [M-S,]) that there is a curve C, non-
movable and acyclic (in the sense of Cech homology and cohomology).

Corollary (2.16) answers Question (6.8) of [N,], namely whether
Fd (C") = n for every natural number n.

3. An example of a finite-dimensional continuum with an infinite family
of shape factors and the fundamental dimension of the Cartesian product of
polyhedra. In this section H"(X) denotes the n-dimensional Cech cohomo-
logy group of X with coefficients in the group of integer numbers.

Let 2 < p, < p, < p3 <  be a sequence of prime numbers and let

m denote the matching of an n-dimensional cubs and its boundary S by
a simplicial map a: S -+ § with deg = p,,, where n > 3.
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It is clear that Qp, is a simply connected polyhedron and that

(3.1) H"(Qn) = Z,, and H'(Q;) = 0 for every natural number i < n.
Let

X, = ',‘,le’;,zx xQ;‘,k
and

X = 0p,®0;, x...
By easy induction (using (3.1) and the Kiinneth formula) we can show that

H'(X) = Z,®Z,,®..®Z, and H (X)) =0fori>n.

Since X is homeomorphic with the inverse limit of an inverse sequence
{ Xy, p¥* '} (where pp*': X, 4q — X, is a projection map from X,.; = X, X
x Q5 to the first factor), we deduce (from the continuity property for the
Cech cohomology) that

(3.2) H(X)=0fori>n and H*X) # 0.

Since a countable product of movable compacta is a movable com-
pactum, (3.2) and Theorem (8.7) of Chapter III imply that X is a movable
continuum and Fd (X) = n.

From the Holsztynski theorem we deduce that there exists a movable
continuum Y such that dim Y= n and Sh (X) = Sh (Y).

It is easy to check that Sh(X;) # Sh(X;) and Sh (X} is a factor of
Sh(Y)fori,j=1,2,...,i#].

Since Sh (X) = Sh (X;) and Fd (X) = n, we infer that Fd (X)) = n.

Thus we obtain the following ([N,], p. 71 and [N;])

(3.3) THEOREM, For every n > 3 there exist a movable n-dimensional
continuum Y with an infinite family of factors of Sh(Y) and a sequence of
polyhedra {Q%}5%, such that Fd (QfxQ}) = Fd (Q}) = dim Qf = n for all i,
=1,2,...,i # j. The polyhedron Q} has the same homotopy type as the
suspension of the projective plane.

4. The fundamental dimension of the union of two compacta and of the
quotient space. It is known (see Remark (8.9) of Chapter III) that for every
n=1,2,... there exists a polyhedron X such that Fd (X) = ¢[X] > n and
c(X) = 0. Let A be the cone with the base X, It is clear that X U A
is a simply connected polyhedron. Using Theorem (8.6) and Proposition
(3.4) of Chapter III, we obtain the following

(4.1) THEOREM. For every natural number n there exist connected poly-
hedra X, A and Y= XUA such that Fd(X) > n and dim (X N A)
= Fd (A)+2 =dim 4 = 2 > Fd (Y).

This theorem implies the following
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(4.2) THEOREM. There are a movable continuum X and a movable
compactum A such that Fd (X) = oo and Fd (A)+1 =dim (X nA4) =1 and
Fd (XU A) < 2.

Proof. Let X,, 4, and Y, = X, U A, be such polyhedra that Fd (X,) > n

dim (X, " A4,) = Fd (4,)+2 = dim 4, = 2 > Fd(¥) for n=1,2,..

We can assume that aq,e X, = Y, Qfor n=1,2,...

Let X,,A, and Y/ = X, UA, = QxQx  be the sets consisting of
all points {x,} such that x; =a; for i#n and x,eX,, 4, and Y,
(respectively) and

X=( X, and A= { 4,.
n=1 n=1

Since X u A is homeomorphic with the inverse limit of finite bouquets
of Y, and Fd (Y,) £ 2, we infer from Theorem (4.5) of Chapter III that
Fd(XuY)<2.

It is clear that Sh (X).> Sh(X,) and Fd (X) = 0.

This completes the proof of Theorem (4.2).

Let n be a natural number and let X, 4 and Y= XU A be polyhedra
satisfying the conditions of the thesis of Theorem (4.1). We have
Sh (X/X n A) = Sh (Y/4) = Sh (Y) and we get

(4.3) COROLLARY. For every natural number n there exist a polyhedron X
and its subpolyhedron A such that Fd (X) = n and dim A+ 1 = Fd (X/4) = 2.
and

(4.4) COROLLARY, There are a movable compactum X and a map
fi: X > Yo X onto a compactum Y such that Fd (X) = co and Fd (Y)
< 2 and the closure of the union of all sets f~'(y), where yeY and
S~ () contains at least two points, has dimension equal to 1.

Remark. Corollary (4.4) answers Problem (7.4) of Chapter XII of [B1].
The following remarkable theorem has been proved by J. Dydak ([D,]).

(4.5) THEOREM. Let A, X and Y be compacta such that A = X and the
shaping S(i): A > X induced by the inclusion i: A— X is trivial. If
f: X - Yis a map of X onto d compactum Y and f~*(f(x)) = {x} for
every xe X\ A, then Fd (Y) = Fd (X).

5. The fundamental dimension of the suspension of a compactum. Let X
be a continuum. Then there is an inverse sequence {X,,pi*'}, where X,
is a connected polyhedron for every k = 1,2,... such that X is homeo-
morphic to lim {X,, pi*'}. This implies that X(X) is homeomorphic to
l(iLn{Z(X,‘),E (px*1)}. It is clear that X(X,) is a simply connected poly-
hedron for every k=1, 2,...

Hence we obtain
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(5.1) LemMMA. If X is a continuum, then X(X) is an approximatively
1-connected continuum.

It is known (see Theorem (3.2) of Chapter I) that if X is a compactum
and A is a closed subset of X, then

(5.2) Fd (X/A) < max (Fd (X), Fd (4)+1).

From (5.2) we infer (by easy induction) that the following lemma holds.
(5.3) LEMMA. Let X # @ be a compactum and let Ay, A,,..., A, be
non-empty disjoint closed subsets of X. If Y denotes the hyperspace of the

upper semicontinuous decomposition of X into the sets Ay, A,, ..., A, and the
n

single points of X\ Ai, then Fd(Y) < max (Fd (X),Fd (4,)+1,...
., Fd (4,)+1). =
Now let us prove the following

(5.4) THEOREM. For every compactum X # Q with a finite fundamental
dimension

c(X)+1 when c(X) > 0,
(5.5) Fd(ZX) =170 when ¢(X) = 0 and X is connected,
1 when c(X) = 0 and X is not a continuum.

Proof. It is known that

(5.6) For every compactum X and each abelian group G the groups
H"(X; G) and H"*!(Z(X); G) are isomorphic if n > 1.
Let us suppose that X is a continuum. Since X2 (X) is approximatively
1-connected (see (5.1)), we infer (see (5.6)) that

Fd(Z(X) = c(Z(X) =c(X)+1 if c(X)>0
and
Fd(Z(X) =c(Z(X) =0 if c(X)=0.

Let us suppose that X is not connected.
Consider the hyperspace Y of the upper semicontinuous decomposition
of Xx[—1,1] into the classes of the equivalence relation ~ defined by

(x,8) ~ (y,s) iff s=1¢t=1 and x, y belong to the same component of
X or s=1t= —1 and x,y belong to the same component of X or
(x,1) = (»,9).

It is clear that the components of Y are homeomorphic with the
suspensions of components of X and that X(X) is homeomorphic with the
hyperspace W of the decomposition of Y into the sets 4; = p(X x{—1}),
A, = p(X x{1}) and the single points of Y\(4; U 4,), where p: X x[—1,1]
— Y is the natural projection.
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The number c(Y) is equal to the maximum of ¢(Y,), where Y, e J(Y)
runs through all components of Y.

Therefore c¢(Y) = Fd (Y) (see Theorem (2.2) of Chapter III).

Since dim (A4, U 4,) = 0, we infer (see (5.3)) that

c(W) < Fd (W) < max (Fd (Y), 1) = max (c(Y), 1) = max (c(W), 1)
= max (c(X)+1, 1).

Hence Fd (X) = c¢(X)+1 for every compactum X with Fd (X) < o0
and c(X) > 0.

If ¢(X) =0 and X is not a continuum, then every component of Y
has a trivial shape and W has the same shape as the suspension of
O-dimensional compactum [J(Y). Therefore ¢(Z(X)) =c(W)=1 and
Fd(Z(X)) = 1.

This completes the proof of Theorem (5.4).

K. Borsuk has proved ([B;], p. 156) that the suspension X (X) of
a movable compactum X is movable. This fact, Theorem (4.5) of Chapter
IIT and Lemma (5.1) imply at once the following

(5.7) THEOREM. Let X # O be a movable continuum. Then

e +1 when ¢(X) > 0,
Fd (Z(x) = {O. when c(X) = 0.

Remark. The assumption of movability in Theorem (5.7) is essential.
Let X be the Kahn continuum (see Remark (8.8) of Chapter III). Then
Fd (Z(X)) = o0 and c(X) = 0.

We also have the following

(5.8) THEOREM. There exists a movable continuum X such that Fd (X)
= © and Fd (Z(X)) = 0.

Proof. Let X, be a polyhedron such that ¢(X,) =0 and Fd(X,) > n
for n=1,2, (see Remark (8.9) of Chapter III) and

X= XIXXZX

Then Fd (X) = o0 and c¢(X) = 0. Since X is movable, we conclude
that Fd (2 (X)) = 0. The proof of Theorem (5.8) is finished.

6. The fundamental dimension of the Cartesian product of approximati-
vely 1-connected compacta. In this section we adopt the notations of Section
3 of Chapter III and [Ku]. One knows ([Ku], p. 24 and [Ko]) that for
every fixed prime number p there is a continuum FQ,, and a simple
closed curve B, = FQ,, (denoted in [Ku] by X_) such that

H? (FQp/B,; Ry) # 0
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and

H*(FQ,/B,;G) =0 when G=0,Z,Z,Z,R,Q, Q, and
g is a prime number # p.

Let A, = Z(FQ,2/B,). From Lemma (5.1) we infer that 4, is an appro-
ximatively 1-connected continuum such that

cRP(A,,) = Fd (4,) = c(4,) = 3

and

cG(A) <3 when G=0Q,Z,Z,,Z,,R,;,Q,,Q, and p # q.

Let us prove the following
(6.1) THEOREM. For every approximatively 1-connected continuum X with
Fd (X) < oo the following conditions are equivalent:
i) Xe#,
(i) Fd (X x Y) = Fd (X)+Fd (Y) for every approximatively 1-connected
continuum Y # Q.
(i) Fd (X x A,) = Fd (X)+3 for every prime number p.

Proof. (i) = (ii). Let Y be an approximatively 1-connected continuum
and Fd(Y) < co. From Theorem (8.6) and (3.1) of Chapter III we
infer that ¢(X) = max {cRp(X)}, ¢(Y) = max {cRp(Y)}, c(XxY)y=Fd(XxY)
= max {CRp (XxY). If ch(X) = ¢g,(X) = ¢(X) = Fd (X) for every prime
number p, then cg, (X xY) = cg,(X)+cg,(Y) and max {cRp(Xx Y)}
= max {cRp(X)+cRP(Y)} = max {Fd (X)+Fd (Y)} = Fd (X)+Fd (Y).

It is clear that (ii) implies (iii).

(iif) = (ii). From Proposition (3.3) of Chapter III we infer that
cRp(Xx A,) = Fd (X)+3 for every p # q. Therefore cRp(XxA,,) = Fd (X)+3.
This implies that cg, (X) = cg, (X ) = Fd (X) = ¢(X). Propositions (3.1), (3.2)
and (3.3) of Chapter III imply that ¢5(X) = ¢(X) = Fd (X) for every G # O.

We also have the following

(6.2) THEOREM. Let X be an approximatively 1-connected continuum with
Fd (X) < oo. Then

n Fd (X) if  there exists a prime number p such that
¢(X) = max (¢q (X), czp(X)),

n(Fd (X)—1)+1 if c(X) # max (co(X), czp(X)) for every
prime number p.

Fd (X" =

Proof. By easy induction (using Propositions (3.1), (3.2) and (3.3) of
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Chapter III) we obtain

¢z, (X") = nez, (X),
o (X") = ncg (X)),
cg,(X") = max (anP(X), nez, X)-1),

e (X") = ”CRP(X) if CQ,,(X) = CRP(X)’
Rp max (ch(X")+1,cQ (X")) if C‘QP(X) < cRp(X).

If there is a such prime number p that ¢(X) = max (¢g(X), ¢z (X)),
then max (cZ (X™), co( X")) = nc(X) = ¢ (X") and therefore Fd (X).= n Fd (X).

If c(X) > max (o (X), ¢z, (X)) for every prime number p, then
cr, (X") < n(cR (X)—1) when cR (X) < c(X) and cg,(X") = n(cR X)—-1)+1
when ¢, (X) = c(X). Hence c(X") = n(c(X)— 1)+1

The proof of Theorem (6.2) is finished.

7. The fundamental dimension of a subset of manifold. A connected
n-manifold M is said to be regular ([N;], p. 219) provided for every
continuum X & M there exists a sequence No = M o N; o N, o N3 o
of compact connected submanifolds with boundary of M such that

X= n Nl:'
k=1

M. Brown and B. Cassler have shown (see [T,], p. 94) that if N is
a compact and connected n-manifold with boundary B # @, then there is
a map g: B— R,dimR < n—1, such that the mapping cylinder C, of ¢
is homeomorphic to M.

Therefore we have the following

(7.1) LEMMA, Let N be a connected compact n-manifold with boundary
B # O. Then Fd(N) € n—1.

This lemma and Theorem (1.6) of Chapter I imply that the following
lemma holds:

(7.2) LemMA, If M is a regular n-manifold and compactum X & M,
then Fd (X) € n-—

If M is a connected PL manifold and X & M is a continuum, then
for every neighborhood U of X, U « M, there are a connected polyhedral
neighborhood W of X and a regular neighborhood P < U of W and we
infer that M is a regular manifold. Thus we get the following

(7.3) PROPOSITION, Let M be a connected PL manifold and let X & M
be a compactum. Then Fd (X) € n—1.

It is known ([T,], p. 70) that an n-manifold M without boundary is
a handlebody if n > 6. Using this theorem, M. Stan’ko has shown (unpu-
blished) that every closed n-manifold is regular for n > 6. The idea of his
proof is as follows: For every n-manifold M,n > 6, and every open
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neighborhood U of a continuum X$% M, U is a n-manifold and admits
a handlebody decomposition. Taking those handles which meets X', we obtain
a compact submanifold N < U of M. N is a neighborhood of X in M.

The results of Stan’ko implies the following

(7.4) ProPOSITION. If M is a closed n-manifold and n # 4,5, then
Fd (X) < n for every compactum X & M.

Let M be a topological n-manifold and let X & M be a compactum

such that Fd (X) = n, where n=4 or 5 Then )()(S“%MXS6 and
Fd (X x§%) < n+5.

On the other hand, Theorem (8.3) of Chapter III implies that
Fd (X x S®) = n+6.

We get the following

(7.5) THEOREM. If M is a closed n-manifold and a compactum X is
a proper subset of M, then Fd (X) < n.
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Final remarks and problems

Our knowledge concerning fundamental dimension is incomplete. Many
problems are left unsolved in the present paper. In particular we fail
(except the cases where X has a polyhedral shape or X is approximatively
i-connected and i = 1 or i = 2) to give sufficient algebraical conditions for
a continuum X to have the fundamental dimension equal to 2.

(1) PROBLEM. Is it true that c¢[X] = 2 for every continuum X with
Fd (X) = 2?

Some questions concerning the fundamental dimension of the Cartesian
product of continua also remain open. They are connected with Problem (1).

Let us prove the following

(2) PrOPOSITION. Let X be a continuum with Fd (X) = 2 > ¢[X]. Then
the following conditions are satisfied:

(@) Fd (X™) < n+1 for every natural number =2 (in particular
Fd (X x X) = 2),

(b) Fd (X x Y) = 2 for every continuum Y with Fd (Y) = 1,

(¢) Fd (X x M) < n+2 for every closed PL n-manifold M,

(d) Fd( X xY) < Fd (X)+Fd (Y) for every YeZF

Proof. Let us suppose that Fd (X") > n, where n > 2. Then (see
Theorem (8.3) of Chapter III)

Fd (X" x (S%)) > 4n+1.
On the other hand (see Theorem (8.1) of Chapter III),
Fd (X" x (%)) = Fd ((X x §%") < 4n.

Hence (a) is satisfied.
Let Fd (X xY) = 3 for Y with Fd (Y) = 1. Then

Fd(XxS) =2 and Fd(XxS'xY)<3.

On the other hand,
Fd(XxYxS') =4

and (b) must be satisfied.
The proof of (c) is analogous to that of (b).
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Condition (d) is a consequence of Theorem (8.1) of Chapter III.
The proof is finished.

Remark. If we restrict ourselves to an approximatively 1-connected
continuum X , then Fd (X") is equal to n Fd (X) or Fd (X") = n(Fd (X)—1)+1
(cf. Section 6 of the last chapter). Therefore Fd (X") = 2n or Fd (X") = n+1
if X is an approximatively 1-connected continuum and Fd (X) = 2.

Let us formulate the following problem:

(3) ProBLEM. Is it true that Fd (X") > n for every continuum X with
Fd (X) = 2?

(4) PrOBLEM. Is it true that Fd (X xY) = FA(Y)+2 if X is a continuum
with Fd(X) = 2 and Y e #?

(5) ProBLEM. Is it true that FA (X xY) =3 if X and Y are continua
and Fd (Y)+1 = Fd (X) = 2?

(6) PrROBLEM. Is it true that Fd (X x M) = n+2 for every continuum X
with Fd (X) = 2 and every closed PL n-manifold M?

The affirmative answer to any of these problems would give also the
affirmative answer to Problem (1).

Added in proof. Recently S. Spiez has solved Problem (1) and has proved that there
is a continuum X with Fd (X) = 2 and ¢[X] = 1 (see S. Spiez. An example of a continuum
X with Fd (X x§') = Fd (X) = 2, to appear in Bull. Acad. Polon. Sci.).

It is also known that if Fd (X) < « and ¢[X] = 0, then Fd (X) = 0 (A. Kadlaf and
S. Spiez, Remark on the fundamental dimension of Cartesian product of metric compacta, to
appear in Bull. Acad. Polon. Sci.).
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