[1] A. B. Antonevich, On operators generated by linear extensions of diffeomorphisms, Dokl. Akad. Nauk SSSR 243 (1978), 825-828. English transl. in Soviet Math. Dokl. 19 (1978).
[2] A. B. Antonevich, On two methods for investigation the invertibility of operators from C*-algebras generated by dynamical systems, Mat. Sb. 124 (1984), no. 5, 3-23. English transl. in Math. USSR Sb. 52 (1985).
[3] A. B. Antonevich, Linear Functional Equations: The Operator Approach, University Press, Minsk, 1988 (in Russian).
[4] V. D. Aslanov and Yu. I. Karlovich, One-sided invertibility of functional operators in reflexive Orlicz spaces, Dokl. Akad. Nauk AzSSR 45 (1989), no. 11-12, 3-7 (in Russian).
[5] R. G. Babadzhanyan and V. S. Rabinovich, On a factorization of almost periodic operator-valued functions, in: Differential, Integral Equations and Complex Analysis, Elista, 1986, 13-22 (in Russian).
[6] D. W. Boyd, Indices for the Orlicz spaces, Pacific J. Math. 38 (1971), no. 2, 315-323.
[7] A. O. Gel'fond, The Calculus of Finite Differences, 3rd ed., Nauka, Moscow, 1967 (in Russian).
[8] I. Ts. Gokhberg and I. A. Fel'dman, Convolution Equations and Projection Methods for Their Solution, Nauka, Moscow, 1971. English transl., Amer. Math. Soc., Providence, R.I., 1974.
[9] F. P. Greenleaf, Invariant Means on Topological Groups and Their Applications, Van Nostrand Reinhold, New York, 1969.
[10] Yu. I. Karlovich, On the invertibility of functional operators with non-Carleman shift in Hölder spaces, Differentsial'nye Uravneniya 20 (1984), 2165-2169 (in Russian).
[11] Yu. I. Karlovich, The local-trajectory method of studying invertibility in C*-algebras of operators with discrete groups of shifts, Dokl. Akad. Nauk SSSR 299 (1988), 546-550. English transl. in Soviet Math. Dokl. 37 (1988), 407-412.
[12] Yu. I. Karlovich, On algebras of singular integral operators with discrete groups of shifts in $L_p$-spaces, Dokl. Akad. Nauk SSSR 304 (1989), 274-280. English transl. in Soviet Math. Dokl. 39 (1989), 48-53.
[13] Yu. I. Karlovich, Riemann and Haseman vector boundary value problems with oscillating coefficients, Dokl. Rasshir. Zased. Semin. IPM im. I. N. Vekua, Tbilisi 5 (1990), no. 1, 86-89 (in Russian).
[14] Yu. I. Karlovich, C*-algebras of nonlocal quaternionic convolution type operators, in: Clifford Algebras and their Applications in Mathematical Physics: Proc. of the Third Conference held at Deinze, Belgium, 1993, Kluwer Acad. Publ., Dordrecht, 1993, 109-118.
[15] Yu. I. Karlovich and V. G. Kravchenko, A Noether theory for a singular integral operator with a shift having periodic points, Dokl. Akad. Nauk SSSR 231 (1976), 277-280. English transl. in Soviet Math. Dokl. 17 (1976), 1547-1551.
[16] Yu. I. Karlovich and V. G. Kravchenko, On systems of functional and integro-functional equations with a non-Carleman shift, Dokl. Akad. Nauk SSSR 236 (1977), 1064-1067. English transl. in Soviet Math. Dokl. 18 (1977), 1319-1322.
[17] Yu. I. Karlovich and V. G. Kravchenko, On an algebra of singular integral operators with non-Carleman shift, Dokl. Akad. Nauk SSSR 239 (1978), 38-41. English transl. in Soviet Math. Dokl. 19 (1978), 267-271.
[18] Yu. I. Karlovich and V. G. Kravchenko, On some new results in the Noether theory of singular integral operators with non-Carleman shift, in: Sovrem. Probl. Teor. Funk., Baku, 1980, 145-150 (in Russian).
[19] Yu. I. Karlovich and V. G. Kravchenko, Systems of singular integral equations with a shift, Mat. Sb. 116 (1981), no. 1, 87-110. English transl. in Math. USSR Sb. 44 (1983), no. 1, 75-95.
[20] Yu. I. Karlovich and V. G. Kravchenko, An algebra of singular integral operators with piecewise-continuous coefficients and a piecewise-smooth shift on a composite contour, Izv. Akad. Nauk SSSR Ser. Mat. 47 (1983), 1030-1077. English transl. in Math. USSR Izv. 23 (1984), no. 2, 307-352.
[21] Yu. I. Karlovich, V. G. Kravchenko and G. S. Litvinchuk, The invertibility of functional operators on Banach spaces, in: Funktsional-Differ. Uravn., Perm, 1990, 18-58 (in Russian).
[22]Yu. I. Karlovich, V. G. Kravchenko and G. S. Litvinchuk, On Noethericity and Mikhlin symbols of operators of the type of singular integral operators with shift, Z. Anal. Anwend. 9 (1990), 15-32 (in Russian).
[23] Yu. I. Karlovich, Yu. D. Latushkin and R. Mardiev, On one-sided invertibility of functional operators and n(d)-normality of singular integral operators with a shift, Odessa, 1984, 29 p. Manuscript no. 8361-84, deposited at VINITI (in Russian).
[24] Yu. I. Karlovich, Yu. D. Latushkin and R. Mardiev, Criterion for n(d)-normality of singular integral operators with non-Carleman shift, in: Funktsional-Differ. Uravn., Perm, 1985, 45-50 (in Russian).
[25] Yu. I. Karlovich and G. S. Litvinchuk, Algebras of singular integral operators with discrete groups of shifts, in: Sovrem. Probl. Mat. Fiz., Tbilisi 2 (1987), 57-64 (in Russian).
[26] Yu. I. Karlovich and G. S. Litvinchuk, On some classes of semi-Noetherian operators, Izv. Vyssh. Uchebn. Zaved. Mat. (1990), no. 2, 3-16 (in Russian).
[27] Yu. I. Karlovich and R. Mardiev, On one-sided invertibility of functional operators with non-Carleman shift in Hölder spaces, Izv. Vyssh. Uchebn. Zaved. Mat. (1987), no. 3, 77-80 (in Russian).
[28] Yu. I. Karlovich and R. Mardiev, One-sided invertibility of functional operators and the n(d)-normality of singular integral operators with translation in Hölder spaces, Differentsial'nye Uravneniya 24 (1988), 488-499. English transl. in Differential Equations 24 (1988), no. 3, 350-359.
[29] Yu. I. Karlovich and R. Mardiev, On one-sided invertibility of functional operators and n(d)-normality of singular integral operators with a shift having periodic points in Hölder spaces, Samarkand, 1988, 56 p. Manuscript no. 822-Uz88, deposited at UzNIINTI (in Russian).
[30] Yu. I. Karlovich and R. Mardiev, On n(d)-normality of singular integral operators with a shift in Hölder spaces, Dokl. Akad. Nauk UzSSR (1990), no. 4, 10-12 (in Russian).
[31] Yu. I. Karlovich and I. M. Spitkovskiĭ, On the Noetherian property of certain singular integral operators with matrix coefficients of class SAP and systems of convolution equations on a finite interval connected with them, Dokl. Akad. Nauk SSSR 269 (1983), 531-535. English transl. in Soviet Math. Dokl. 27 (1983), 358-363.
[32] Yu. I. Karlovich and I. M. Spitkovskiĭ, Factorization problem for almost periodic matrix-functions and Fredholm theory of Toeplitz operators with semi-almost periodic matrix symbols, in: Lecture Notes in Math. 1043, Springer, 1984, 279-282.
[33] Yu. I. Karlovich and I. M. Spitkovskiĭ, Factorization of almost periodic matrix-valued functions and (semi) Fredholmness of certain classes of convolution type equations, Odessa, 1985, 138 p. Manuscript no. 4421-85, deposited at VINITI (in Russian).
[34] Yu. I. Karlovich and I. M. Spitkovskiĭ, On the theory of systems of convolution type equations with semi-almost-periodic symbols in spaces of Bessel potentials, Dokl. Akad. Nauk SSSR 286 (1986), 799-803. English transl. in Soviet Math. Dokl. 33 (1986), 180-184.
[35] Yu. I. Karlovich and I. M. Spitkovskiĭ, Factorization of almost periodic matrix-valued functions and the Noether theory for certain classes of equations of convolution type, Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989), 276-308. English transl. in Math. USSR Izv. 34 (1990), 281-316.
[36] M. A. Krasnosel'skiĭ and Ya. B. Rutitskiĭ, Convex Functions and Orlicz Spaces, Fizmatgiz, Moscow, 1958 (in Russian).
[37] V. G. Kravchenko, On a singular integral operator with a shift, Dokl. Akad. Nauk SSSR 215 (1974), 1301-1304. English transl. in Soviet Math. Dokl. 15 (1974), 690-694.
[38] V. G. Kravchenko, On a functional equation with a shift in the space of continuous functions, Mat. Zametki 22 (1977), no. 2, 303-311 (in Russian).
[39] V. G. Kurbatov, Linear Differential-Difference Equations, University Press, Voronezh, 1990 (in Russian).
[40] Yu. D. Latushkin and A. M. Stepin, Weighted composition operators, spectral theory of linear extensions and multiplicative ergodic theorem, Mat. Sb. 181 (1990), no. 6, 723-742 (in Russian).
[41] Yu. D. Latushkin and A. M. Stepin, Weighted composition operators and linear extensions of dynamical systems, Uspekhi Mat. Nauk 46 (1991), no. 2, 85-143. English transl. in Russian Math. Surveys 46 (1992), 95-165.
[42] A. V. Lebedev, The invertibility of elements in the C*-algebras qenerated by dynamical systems, Uspekhi Mat. Nauk 34 (1979), no. 4, 199-200. English transl. in Russian Math. Surveys 34 (1979).
[43] R. Mardiev, A criterion for the semi-Noetherian property of one class of singular integral operators with a non-Carleman shift, Dokl. Akad. Nauk UzSSR (1985), no. 2, 5-7 (in Russian).
[44] R. Mardiev, A criterion for n(d)-normality of singular integral operators with a shift having periodic points in Lebesgue spaces, Samarkand, 1988, 41 p. Manuscript no. 821-Uz88, deposited at UzNIINTI (in Russian).
[45] A. G. Myasnikov and L. I. Sazonov, On singular integral operators with non-Carleman shift, Dokl. Akad. Nauk SSSR 237 (1977), 1289-1292. English transl. in Soviet Math. Dokl. 18 (1977).
[46] A. G. Myasnikov and L. I. Sazonov, Singular integral operators with a non-Carleman shift, Izv. Vyssh. Uchebn. Zaved. Matematika (1980), no. 3 (214), 22-31. English transl. in Soviet Math. (Iz.VUZ) 24 (1980).
[47] A. G. Myasnikov and L. I. Sazonov, On singular operators with a non-Carleman shift and their symbols, Dokl. Akad. Nauk SSSR 254 (1980), 1076-1080. English transl. in Soviet Math. Dokl. 22 (1980).
[48] N. G. Samko, Singular integral operators with discontinuous coefficients on generalized Hölder spaces, Ph. D. dissertation, Rostov-on-Don, 1991 (in Russian).
[49] V. N. Semenyuta, On singular operator equations with shift on a circle, Dokl. Akad. Nauk SSSR 237 (1977), 1301-1302. English transl. in Soviet Math. Dokl. 18 (1977), 1572-1574.
[50] I. M. Spitkovskiĭ, Factorization of several classes of semi-almost periodic matrix functions and applications to systems of convolution equations, Izv. Vyssh. Uchebn. Zaved. Matematika (1983), no. 4, 88-94. English transl. in Soviet Math. (Iz.VUZ) 27 (1983), 383-388.
[51] I. M. Spitkovskiĭ, On the factorization of almost periodic matrix functions, Mat. Zametki 45 (1989), no. 6, 74-82. English transl. in Math. Notes 45 (1989), no. 5-6, 482-488.
[52] I. M. Spitkovskiĭ and P. M. Tishin, Factorization of new classes of almost periodic matrix functions, Dokl. Rasshir. Zased. Semin. IPM im. I. N. Vekua, Tbilisi, 3 (1989), no. 1, 170-173 (in Russian).