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Introduction

In the present paper(') we study the limit laws arising from affine
modification of certain multi-parameter normed sums of independent
Banach space valued random variables. We describe these limit laws in
terms of their multi-dimensional decomposability algebraic structures and
obtain the Urbanik representation theorems for the characteristic functionals.

The classical limit problem of characterizing of limit laws of normed
sums of real-valued random variables was proposed by A. Ya. Khinchin
in 1936 and solved by P. Lévy in [6] (p. 195) (see also M. Loéve [7],
p. 319). The attempt to extend the theory to the multi-dimensional linear
space case developed by H. Shape [13] has resulted in several recent
papers of K. Urbanik (see [16], [17]). Namely, he introduced a concept
of decomposability semigroup D (u) associated with a probability measure u
on a Banach space and characterized all full Lévy’s measures p in terms
of D(u). Moreover, applying the extreme points method he obtained a repre-
sentation for the characteristic functionals of Lévy’s measures on X.

The purpose of this paper is to generalize the Lévy—Khinchin-Urbanik
problem. to the case where the summands are indexed by a countable
lattice and take values in a Banach space. The technique developed in [17]
by K. Urbanik will be widely exploited.

The Author would like to express his sincere gratitude to Professor
K. Urbanik for many helpful discussions.

1. Notation and preliminaries

This paper is concerned with probability measures defined on Borel
subsets of a real separable Banach space X with the norm | || and the
topological dual space X*. For a probability measure g on X its
characteristic functional is defined by the formula

Ay = Jf‘em iy, x)p(dx) (yeX*)

(*) This paper was written during the author’s stay at the University of Wroclaw
(Poland) in the academic year 1976/77.°
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where ¢, ) denotes the dual pairing between X and X*. A, sequence {u}
of probability measures on. X is said to converge to a probability measure p
if for every bounded continuous real-valued function f on X

[ fdu;— [fdp.
X X

A probability measure u on X is called full if its support is not contained
in any proper hyperplane of X. Further, by é,, x€ X, we shall denote the
unit mass at x.

Let B(X) denote the algebra of all continuous linear operators on X
with the norm topology. The unit and zero elements of B(X) will be
denoted by I and O respectively. An element P of B(X) is called a projector
if P> =P. Given a subset F of B(X) let Sem (F) denote the “closed
multiplicative semigroup of operators spanned by F.

The concept of decomposability semigroup D(u) of linear operators
associated with a probability measure x4 on X was introduced in [16]
and [17] by K. Urbanik. Namely, D(p) consists of all operators A from
B(X) for which the equality

(L.1) b= Auxpy

holds for a certain probability measure p, on X. Here x denotes the
convolution of measures and Ay denotes a probability measure defined by
the formula

AR(E) = p(A™* (E))

for all Borel subsets E of X. Since Au(y) = a(A4*y), ye X*, we can write (1.1)
in the form

(1.2) By) = B(A* Y a(y)  (yeX™).

In the sequel we shall need a generalization of the concept of decom-
posability semigroups. Let d be a fixed positive integer and A,, A,,..., 44
be some operators from B(X). Then a probability measure u on X is said
to be (A,,A,,..., A;)-decomposable if there exist probability measures
Bags Bay,dgs ooos Bay,dg,.,ay SUCh that p= Ay pu*py, pa, = Ay pa % fag,ays -
o BagAg Ay T AJPAI,AZ.....Ad-l*ﬂAl,Az.....Ad- It is evident that if f(y)
# 0 for every ye X* and u is (A4, A,,..., A;)-decomposable then the
Measures 4, Ha,, 45>~ are uniquely determined. Further, let Ay, 4,,..
be an infinite sequence of operators from B(X). Then a probability measure
p on X is said to be {A,, A,,...)-decomposable if there exist probability
Measures fiu ., ha, 4,, Such that pu= Ay u*p, , pg = Ag o *Bajay, -
Let us introduce the notation:

DU(p) = {C(A,, A3, ..., A); A;eB(X), j=1,2,...,d and pu is (A, Ag,...
..., Agy-decomposable} and
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D*(p) = {4, 4;,..>: A4;eB(X), j=1,2,... and p is {Ay, 4,....
decomposable}.

It is clear that for every probability measure u on X the sets D?(u),
d=1,2,..., 0, are non-empty and closed under the product weak* operator
topology. In the sequel every set D4(u), d = 1,2, ..., will be called a d-di-
mensional decomposability algebraic structure associated -with a probability
measure 4 on X. For d =1 D%y) = D(u) is a semigroup under multi-
plication of operators. One may expect that D?(u), d > 2, should be
a semigroup under multiplication of corresponding coordinates. Unfortunately
this fails to be true if the measure u is not concentrated at a single
point of X. The loss of semigroup properties of D?(u) for the case d > 2
seems to be the main dificulty to use the method developed in [17] by
K. Urbanik.

Let F be a subset of B(X). We say that a probability measure p
on X is d-times, d =1,2,..., (resp. completely) F-decomposable if the
Cartesian product F x F x x F (d-times) (resp. F x F x ...) is contained in
D?(u) (resp. D™ (u)). For the further convenience if u is completely F-decom-
posable we shall write that g is oo-times F-decomposable. In particular,
for F = {cI: 0 < ¢ < 1} the concept of multiply F-decomposable probability
measures coincides with the concept of multiply self-decomposable probability
measures introduced in [8].

Now we shall establish some simple properties of the multi-dimensional
decomposability algebraic structures associated with probability measures
on X.

ProrosiTion 1.1. Let F,,F,,... be a sequence of subsets of B(X)
with the property that for any i # j, AeF; and Be F; we have AB = BA.
Suppose that the Cartesian product F, x F,x xF;, d=1,2, (resp.
F{xF,x ..) is contained in D?(u) (resp. D®(p)). Then

Sem (F,)xSem (F,)x  xSem (F,) = D?(u)
(resp. Sem (Fy) x Sem (F,) x < D™ (u)).

Proof. It suffices to prove the proposition for the case d < co. Further,
since D?(u) is closed in the norm product topology of B(X)x B(X)x
x B(X) (d times) and by a simple induction it suffices to prove that
il (AP, A5, ..., Agd, i= 1,2, belong to FyxF,x  xF, then the element
(AWM AP, 4,, ..., A)) belongs to D?(p).
Accordingly, let Ha®y D 45 oes BaD 4y,
ability measures that y = AY TEyTROR

. (i =1,2) be such prob-

a) = A LoD *PAD s s BaP Ay,

= 1 (0 i = 1,2).
Agpa®d, 4y, ay_ *BaPaya, (0=1.2)
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Then we have the equation
Ayp = AP AP pa AP pyo
and consequently,
po= AP AP px pyn) 4

where the measure p,(n,@ is defined as uA(IZ)*A‘f’ ualh). Moreover, we
have

RaDAD = Az La@ * paid) g, « AP Az )+ AP pach 4

= 1) 4(2 1) (2
A, KA Q) * a1 482D, 4,

where the measure p () 4, is defined as py2) 4, + AP pad),4,. This means
that (4N AP, 4,) belongs to D?(u). Proceeding successively, by induction,
it follows that (A AP, A,, ..., A;> € D4(u). The proposition is thus proved.

ProrosiTiON 1.2, Let Py, P,,..., P, be some projectors in B(X) with
the property that P;P; = P;P; = 0 for all indexes i # j. Given a number
v=1,2,...,d let A, Ay, ..., A", ..., A; (i=1,2,...,7) be such operators
that for every i = 1,2,...,r Ay, Aj,..., AY, ..., Ay, commute one another and
Jor each choice of 1<j, <ja< <j,<d we have {A;,Aj,,..., A;)
e D*(u), where by A, we denote an arbitrary operator from the set {P;, AY:
j=1,2,..,r}. Put Byj=A; for j=1,2,...,d and j# v and put B,

= :;1 P, AD. Then for any 1 < j3 <j, < < j;<d we have (B;,B,,, ...
ey Bj.‘)ED’(ﬂ)-

Proof. Let j, <j, < < j; be a fixed subsequence of the sequence
{1,2,...,d}. Without loss of generality we may assume that {j,, js,..., s}

r
={1,2;...,d} and v=1 Put B= 3} P, A{. Since APeD(u) we have
the decompositions i=1

U= A‘Pu*m(li) (i=1,2,..,n.

Moreover by the proof of Proposition 1.2 [17] we have

K= Buwpug

where the measure ug is defined by the formula

(1.3) pp = * Pipgvx(I— 3 P)u
- i=1

i=1
r

where the symbol * denotes the convolution of relevant measures. Further,
i=1
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we have the decompositions

Hal) = Az a0 4 (i = 1, 2, vy r),
1 1 172
and

b= Ay pspiy,.
Consequently, by virtue of (1.3) it follows that

Up = Az Up* Hp 4,

where the measure pg 4, is defined by the formula
bpa, = 1*1 Pipa®p a)»(I— '21 P pta,-
- l=

Finally, by induction, it follows that (B, A4,,..., A;) belongs to D?(y)
which completes the proof of the proposition.

2. Statement of the problem

Let N4 d=1,2,..., denote the lattice of all d-vectors with natural
components and with the natural ordering <. For n = (n!,n?...,n%)e N¢
we shall write n - oo whenever n', n?,...,n > o5 simultaneously.

In the sequel, we shall use the letters n, m, k, h to denote the vectors
of N9 and use the letters i, j, 7, v, u, d, t, s to denote real or natural numbers.

We say that a collection of probability measures u,, (n, ke N%, k < k,,
k,e N% k, = oo whenever n -+ o0 and d = 1,2,...) on a Banach space X is
uniformly infintesimal if for every subsequence {i,, I, ...,1,} of the sequence
{1,2,...,d} such that i; < i, < < i; and for every neighbourhood U of 0
in X

lim min * w(U) =1
neo g <ilr iy 156/ <)) '
r=1,2,..,5 Jell,2,... di\fi 05000l

where k = (k*, k%, ..., k%) and k, = (K., kZ,..., k). l

It is evident.that the collection {u,x}, n, k€ N4 is uniformly infinitesimal
if and only if for every subsequence {ij,1i,,...,is} of {1,2,...,d} with
iy <i; < < i, and for every choice of k', 1 < h’ < k', neN? and
r=1,2,...,s,

* Hnx = Op-
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Moreover, we have the following proposition:

ProposiTION 2.1. For every d = 1,2,... the class of all probability
measures u on X for which there exists a uniformly infinitesimal collection
{pns}s n, ke N* and k < k,, such that kfk Hox — PGS 1 — o0 coincides with

the class of all infinitely divisible probability measures on X.
Proof. Suppose that {u,,}, n, ke N be a uniformly infinitesimal
collection of probability measures on X such that

¥ p.,—> Q4 as n— .
<k,
We shall prove that p is infinitely divisible.
Put, for t, s =1,2,...
Vis = * Hitot, ..o,k

k< (880051 (d times)
kl=s

where s, = k}, . ,. By the uniform infinitesimality condition of {u,} it
follows that the triangular array {v,;} (¢,s =1,2,...,s <s,) is uniformly
infinitesimal too. Moreover,

vy = * - as t = .

sSs, T kS sy Hiag,..nk = H
Consequently, u is infinitely divisible.

Conversely, given an infinitely divisible probability measure pz on X
define a collection {y,,} (n, ke N by

1
Uk = #nlnz...n

whenever n = (n',n? ...,n%) and keN’ It hints at the collection {i,}
(n, ke N*; k < n) is uniformly infinitesimal and moreover,

d

* = p for every ne N
k<n

Thus the proposition is proved.

In terms of random variables, the problem we study can be formulated
as follows:

ProeLEM I Suppose that {¢,}, ne N9, d =1,2,..., is a random field
of X-valued random variables with distributions {u,}, {x,}, ne N is a vector
field in X and A,, A4,, is a sequence of operators from B(X) such that

(1) Ay, A;, are invertible and commute one another,

(L2) Sem({4,A4;':s=1,2,...,r; r=1,2,...}) is compact (in the norm
topology of B(X)),
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(I.3) the probability measures {A4,u}, where k, neN’% k <n and
A =A4,4, A4 if n= (n*,n% ..., n%, form a uniformly infinitesimal
collection and the distribution of

An Z §k+xn
k<n
converges to a probability measure p as n — oc0; What can be said about
the limit measure u?

ProBLEM II. Suppose that A4, 4,,... is a sequence of operators from
B(X) with the properties (I.1) and (I.2) and u is a probability measure on X
such that for every d = 1, 2,... there exist a random field {¢,}, ne N% of
independent X-valued random variables with distributions {u,} and a vector
field {x,}, ne N% in X such that (1.3) holds. What ‘can be said about the
limit measure p?

Let us denote by Ny(X), d = 1,2, ..., the set of all limit measures in
the Problem I and by N, (X) the set of all limit measures in the Problem II.
Our further aim is to give a description of full measures belonging to
N;X), d=1,2,...,00. In the case d =1 K. Urbanik [17] solved the
Problem I without the assumption that the operators commute one another.
It is interesting how to solve the Problem I for d > 2 omitting the extra
condition that A4, A,,... commute one another.

We note that for full measures in Ny(X), d = 1,2,...,00, on finite-
dimensional spaces the compactness condition (I1.2) can be omitted ([16],
Proposition 3.3). The same is true for non-denegerate measures on a Banach
space X when A,, A,, ... are multiples of I. In this case, the limit measures
in the Problems I and II are multiply self-decomposable ones. We refer
the reader to [5] and [8] for an account of multiply self-decomposable
probability measures on Banach spaces.

3. Norming sequences

We say that a sequence A,, A,,... of operators from B(X) with the
properties (I.1) and (1.2) is a norming sequence corresponding to a probability
measure u in Ny(X), d = 1,2,..., if there exist sequences {u,}, ne N4 and
{x,}, ne N% of probability measures on X with the property (L3) and
elements of X respectively, such that

An k’:n Hy * 5x,,

converges to p as n — co. Here A, = A,1 A,2... A if n = (n*, n%, ..., n% e N
Further, a sequence 4,, 4,,... of operators from B(X) with the properties
(I.1) and (1.2) is a norming sequence corresponding to a measure u in N, (X)
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if it is a norming sequence corresponding to the measure u treated as an
element of N,(X) for every d = 1,2, ....

ProprosiTiON 3.1. For every norming sequence {A;}, j=1,2,... cor
responding to a full measure u from Ny(X),d = 1,2,..., ©, we have A;—0.

Proof. It suffices to prove the proposition for the case d < c0. Suppose
that A,v,*0d, - u where y is full, v, = k:<k By n€N? and A, = Aj1 Ay2 ... Ay

if n=(n',n?...,n)eN"’ By the condition (I12) Sem ({4;: j=1,2,...}) is
compact. Let A be an arbitrary cluster point of the sequence {4;} and 4; — 4
as j, = o0. Since for each n, n < (j,, jry---» Jv)»

; = A4 ¢ * *x0
A(J,-.J,..--.Jr) vU,--Jr.u-.J’) * 630"1’“",.]') .’r v" * A-’r kS(/,-J,v-w-Jr] #k er'jr- “-tjr)
and 3 i=(.2..4d
such that af<k!

and
Aj e — 8o  for every ke N? when j, » 0,

we have the equation
(3.1) pu=Av,xp (neNY.

Further, by the condition (1.2), Sem ({44; ': r = 1,2,...}) is compact. Let B
be a cluster point of the sequence {AA; '}. Passing if necessary.to a sub-
sequence we may assume without loss of generality that AA,:‘ — B.
Consequently,

(3.2) A = BA.
By (3.1) we have the equation
—_ d g4—d( 4d
(3.3) u=4A A-'r (Aj’ YUpdpeond) * 5‘(1,..],.....],)) % [ % 5"0’"]'"".]')
where u,.,,...;0 = —Axy,; ., Since the sequence {5,:0" S M} is con-

ditionally compact ([12], Chapter III, Theorem 2.1), we may assume without
loss of generality that 6,,0, P 04. Then (3.3) implies
yriprceady
p=DBluxuxd,
A\
Consequently, [B*u(y)l = 1 for every ye X*. Thus By = 6, for a certain

x € X ([3], Proposition 2.3). But this is possible for a full measure u if and
only if B =0 and x = 0. Now by (3.2) we get

A=B'A4=0

and hence 4; —» 0 which completes the proof of the proposition.

Lemma 3.1 Let {A}}, j = 1,2,..., be a norming sequence corresponding
to a measure neN,(X), d = 1,2, ... (resp. d = ). Let F denote the set of
all cluster points of sequences A,'A;:I with i, < j,,r=1,2,... and i, - o0.
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Then we have
FxFx ..xFc D)

(d limes)

(resp. FxFx < D®(u).

Proof. It suffices to prove the lemma for the case d < co. Let n,, m, e N%,
r=1,2,...,suchthatn, < m,andn, - 0. Let C;, i = 1, 2, ...,d, be a cluster
point of the sequence {Am,- An‘,l}, i=1,2,....d. Suppose that 4,v,*3, — u,

where v, = k:" Pur Ay = A1 Ay2 ... A,a whenever n = (n!,n?, ..., n%. Then

(3.4)
— -1
Amr er * 5_‘"! = Am;} An: (A"]_ A

r r

1
1.2 a * Oy 1 )+ of

d
(ryomy..om) (n,vmy ... m?)

v
Am‘,’

2 cee
My

where o) = 4, * M * 51) for some points xj,’ € X. Further, we have
r

r kSm,
k1>nr1
(3.5) CIJ;” = A 2A-_21 (A. lA 2.4 3 .. A d * ﬂk*(sx(l) )*cof.z)
m, n, m n m my ", <kl (m:.nrz.mr.....mg)
k2$nf
3.3
k S_m’
W<md

r

where o) = 4, * ) e+ 0,2 for some xi) e X. Proceeding successively,
n <k r
r
n3'<k2

kaﬁ:ms

de d
k \m'

we get a probability measure o such that

(3.6)
ol = AmdAn-dl (A 1A, Ags144 * Hi# Oy 1 2 i1 d)*cuﬁ"’.
r r m, m, m, By n:<kl ("'r'V‘r""‘"'r '"r)
n3:<k2
demf

For the simplicity of the notation we may assume that the sequences
{09},21.,,.. (= 1,2,...,d) being conditionally compact ([12], Chapter III,
Theorem 2.1) converge to some probability measures oY (j = 1,2,...,d),
respectively and for every i = 1,2,...,d
C,=lim A , A5
M’ nf

r—o
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Letting r — oo we get, by virtue of (3.4), (3.5) and (3.6), the following
equations:

p=C puroV, o' = C,oVx0?, ..., 0¥V = Ci0¥ "V x0?

which show that (C,, C;, ..., Cs> € D4(u). The lemma is thus proved.

Given a probability measure 4 on X by A(u) we shall denote the
subset of D(u) consisting of all operators A with the property that
u= Auxd, for a certain xe X. It is clear that A(u) is a closed subsemi-
group of D(u) and Ie A(u).

LeMMA 3.2. For every norming sequence {A;} (j = 1,2,...) corresponding
to a full measure u in Ny(X) d=1,2,..., 0)

(3.7 A(u) n Sem (F)

where F is the set defined in Lemma 3.1, is a compact group containing all
cluster points of the sequence {A;+, A7'} (j =1,2,...).

Proof. It suffices to prove the lemma for the case d < oo. The
compactness of the set (3.7) is clear. Suppose that A4 is a cluster point
of the sequence {A4,,; 4; '} and 4, ,, A;' = A. From the equation

A

L+ 1,02, ond) Yinl 4 1,02,...00 ¥ 5"(;11 +1.n2,...,n9)

A _11 (An L 5::") * A 2

1 E
n“+1 n (n*+1,n .....n]k1_ 1

where v, = k:k uy(ne N% and u, are some points of X, we get, by virtue
=n

of (I.3), p = Auxd,. Thus Ae A(u) and consequently, A belongs to the
set (3.7).

Suppose now that B is an element of the set (3.7). Consider the
monothetic compact semigroup Sem ({B}). By virtue of Numakura Theorem
([11], Theorem 3.1.1) the cluster points of the sequence {B’} form a group G.
Moreover, G is the minimal ideal of Sem ({B}) and Sem ({B}) contains
exactly one idempotent P, namely the unit of G. Hence it follows that G
contains an element C with the property that

BC =CB=P.

Of course P and C belong to the set (3.7). Thus y = Pusé, for a certain
point xeX. Since u is full and P is an idempotent, the last formula
yields PX = X. Thus P = I and consequently, C = B~! which completes the
proof of the lemma.
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ProposITION 3.2. To every full measure pe Ny(X) d = 1,2,..., ©) there
corresponds a norming sequence {B;}, j = 1, 2, ..., With the property that

(3.8) By, Bj! > 1.

Proof. It suffices to prove the proposition for the case d < oo. Let
Ay, A;, be an arbitrary norming sequence corresponding to a full measure
pe Ny(X). Put
G = A(u)nSem (F)

where the set F is defined in Lemma 3.1. By Lemma 3.2 G is a compact
group containing all cluster points of the sequence {4;., A7 '}. Consequently,
we can choose a sequence {C;} (j = 1,2,...) of elements of G with the
property

(39) Cj_l_Aj.'.lA}_l -0 as j—’ 0.

Putting B, = 4, and B; = C;C,...C;_14; (j=2,3,..) we infer that
By, B,,... are invertible and moreover, Sem ({B;B *:r=1,2,..,]j;
j=1,2,...}) being a closed subsemigroup of Sem ({4;4,*:r=1,2,...,j;
j=1,2,...}) is compact. Further, by assumption, A,u; — &, for every
choice of {j,}, j, < n, neN? and 4, = A1 A,2... A if n = (nt, n? ... 19
Since the sequence {C,C, C;}, j=1,2,..., is conditionally compact the
last relation yields B,u; — 8, where B, = B,1B,2... By if n = (n',n% ...
..., n®)e N, Thus condition (1.3) is fulfilled. Moreover, the conditional com-
pactness of the sequence {C,C, C;}, j=1,2,..., implies the conditional
compactness of the sequence {B,v,xd, }, where for n = (n',n? ..., n%
d
with n/ 22 (j=1,2,...,d) u,= [[ (C;Cs Cpi_y)x, and v, = kf .
j=1 <n
From the relation A4,v,*d, — p it follows that each cluster point of
{B,vy»4,,} is of the form Cu, where C is a cluster point of the sequence
d

{TI1(CiCy Cuy)}, n=(Yn? ..,nY)eN® with ! 22, j=1,2,...,d
j=1

But Ce G and, consequently, p = Cp*éuc for a certain ve.e X. Hence it
follows that we can choose elements v,, ne N% in X in such a way that

B,v,*8, — as n = (nt, n% ..., n% = oo,
n Un

Thus By, B,,... is a norming sequence corresponding to u.
To prove the condition (3.8) we observe that the norms of elements
of the compact set G are bounded in common, say by a constant b. Thus

"Bj+1 Bj_l =1 = |IC, C, Cj(Aj+1 AJ_I—CJ) CJ_—ll Cj_—lz C1—1||
< b2 || Aje A7 =CiY
which, by (3.9), implies (3.8). The proposition is thus proved.
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4. A characterization of full measures belonging to N,(X)

Let 4 be a full probability measure in N,(X), d =1,2,...,00. By
Proposition 3.2 we choose a norming sequence {4}, j = 1,2, ..., correspond-
ing to p with the property A;,,; Af' — I. We fix this norming sequence
for the remainder of this section. Define the set F as in Lemma 3.1 and
put S = Sem (F). Let P be a projector belonging to S and

Sp = {AeS: AP = PA = A}.

It is clear that S, is a compact subsemigroup of S. Further, by G, we
denote the subset of S, consisting of those operators A for which

Pu = Auxé, for a certain xe X.

LeEMMA 4.1. Gp is a compact group with the unit P.

Proof It is easy to check that Gp is.a closed subsemigroup of S,
which implies the compactness of Gp. By the definition of G, the projector
P is the unit of Gp. Let A€ Gp. Then the monothetic semigroup Sem (A)
is compact and, by Numakura Theorem ([11], Theorem 3.1.1), contains
a projector Q and an operator B with the property

4.1) AB = BA = Q.

Of course PQ = QP = Q and Pu = Qux=J, for a certain xe X. Since u is
full the last formula yields PX = QX. Consequently, P = Q and, in view
of (4.1), Gp is a group.

LemMMA 4.2. If AeSp and PeSem (A), then Ae Gp.

Proof. Let A" — P for a subsequence {k,} of {1,2,...}. Of course,
without loss of generality, we may assume that k, > 2 and the sequence
{A*~1} is convergent to an operator B. Then we have AB = P and for
some probability measures v and A

4.2) p=Auxv,
(4.3) U= Bu*,l,

because 4, Be D(p). From (4.3) we get Ay = Pux AA. Hence and from (4.2)
we obtain the equation y = Pu+ AAs»v. Consequently, Pu = Pus AA» Pv or
in terms of the characteristic functionals

N N\ -\
Pu(y) = Pu(y) AA(y) Pv(y) (yeX™).
N\
Thus |Pu(y)l = 1 in a neighbourhood of 0 in X* which implies Pv = §,

for a certain xe X ([3], Proposition 2.3). Now taking into account (4.2)
we have Pu = Auxd, which completes the proof of the lemma.
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Lemma 4.3. For every non-zero projector P belonging to S the semigroup
Sp contains a one-parameter semigroup PexptV (t 2 0, VeB(X) with PV
= VP = V). Moreover, Sp contains a projector Q with the properties P # Q
and
lim (P—Q)exptV = 0.
1~
Proof By Lemma 4.1 the group Gp is compact. Put
a,, = min {|P—A,A ' H||: He Gp}.
Obviously,
(4.4) a,,=0 m=1,2,..)
and by Proposition 3.1,
(4.5) limag,=[Pl21 (=1,2,..).
Since the semigroup Sem ({4, 4;': s =1,2,...,r; r = 1,2,...}) is compact,

all its elements have the norm bounded in common by a constant b.
Consequently, for t < u

Gu+y < min {|[P—A4, 47 H| + |(Ay+1 A7 ' =D A A7 H||: H e Gp}
< @y +bll Ay, AT =T
and
a,, < min {|P— A4y A7 H| + [(Aus 1 A7 ' =D A, A7 HY|: H e Gp}
€ Qa1 +b || Ay AT -
which imply that

(4.6) lim max |a, ,4+;—a,,] = 0.

u—~cw 151<

Given a number c¢ satisfying the condition 0 < ¢ < 1 we can find,
by virtue of (4.4) and (4.5), an index u, = t such that G < cand g, +1 2 €
(t =1,2,..). From (4.6) it follows that g, , — c. Further, by the conditional
compactness of the sequence {4, A7 '} and the compactness of Gp we can
choose a cluster point 4. of {4, 47 '} and D.e Gp such that

|IP~D,A.|| = c=min {|P—AH|: HeGp}.
By Lemma 3.1 4.€S. Consequently, setting B, = D, A. we have B,eSp and
4.7 |[P=B.|| = ¢ = min {||P—B.H|: H e G}
which yields
(4.8)

Dissertationes: Mathematicie CLXXXVL
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Put
b,. = min {||[P~B.H|: He Gp} (t=1,2,...).
By (4.7) we have
4.9) b, .= c.

Consider the semigroup Sem ({B.}). By Numakura Theorem ([11],
Theorem 3.1.1) it contains a projector P,. Of course

(4.10) lim sup b, > min {||P—P. H|: He Gp}.
oo
Since P.eSp, P—P, is also a projector and, by Lemma 4.2, P, # P. Thus
(4.11) [P—P| = 1.
Put

a=inf {|P=P.H|: HeGp, 0 < ¢ < 1}.

We shall show that a > 0. Contrary to this let us assume that a = 0.
Then by the compactness of S, and Gp, we can find an element D of G,
and a cluster point R of {P,: 0 < ¢ < 1} with the property P = DR. Since
R is also a projector and R € Sp, we have R = PR = DR = P. Consequently,
P is a cluster point of {P.: 0 < ¢ < 1} which contradicts (4.11). Thus a > 0
and, by (4.10),

(4.12) lim supb,. > a>0 for every ¢ 0 < ¢ < 1).

t—=wx

Further, taking into account that all elements of the compact semigroup §
have norm bounded by a constant b, we have, in view of (4.7),

bi+1.c < min {|[P-B.H|| + ||(B;—B* ) H|: He Gp} < by +be.

and
bi.. < min {|P-B*' H||+ ||(B*'—B)H|: He Gp} <€ b4, . +bc

which imply that
(4.13) lim sup |b4;.—b| =0.

€0 y=1,2,..,

Let ¢, = 0. Given a number d satisfying the condition 0 < d < a, we can
find, by virtue of (49) and (4.12), an integer ¢, such that b, ., < d and
by+1.6, = d. From (413) it follows that b, . — d. The sequence {Bfs} is
conditionally compact. Let E, be its cluster point. Then

(4.14) min {|P-E;H||: HeG,} =d (0 < d < a)
and, consequently,

(4.15) E,¢Gp (0<d<a)
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The set {E;: 0 < d < a} is also conditionally compact. Let E, be its cluster
point when d — 0. Then by (4.14) and the compactness of Gp, P = HyE,
for a certain H, of the group G,. Since Eg € Sp, this implies that E, € Gp.
Consequently, by Numakura Theorem ([11], Theorem 3.1.1), there exists
a positive integer g such that

IP—E}| < 3.
Taking a positive number d, with the property
IE§—E3 Il < }
we put
(4.16) W= Ej .
Then
@.17) IP-Wi <4

and, by the definition of the operators E,,
(4.18) Bi— W

where r;e{1,2,...} and r, » co. From (4.7) and (4.17) it follows that the
operators B, and W can be represented in an exponcnatial form

(4.19) B, = PexpU, W=PexpV

where U;, VeB(X), PV =VP =V, PU, = UV =U, (i = 1,2),
(4.20) WV =VW

and, by (4.18),

(4.21) U=V

Let ¢t be an arbitrary positive real number. Then, by (4.19) and (4.21),
B! - Pexp tV,

where the square brackets denote the integral part. Since B, €Sp we infer
that the one-parameter semigroup {PexptV] (¢t = 0) is contained in S,.
Consider the semigroup Sem ({W}). By the Numakura Theorem ([11]. The-
orem 3.1.1) it contains a projector Q. By (4.16) Q eSem ({E, }). By (4.15) and
Lemma 4.2 we have the inequality P # Q. Obviously, Q €S, and the set
{(P—Q)exptV: t > 0} is conditionally compact. Let H be its cluster point
when t — co. Then for a sequence {t,} tending to-co we have

(4.22) lim (P—Q)expt, V = H.

Passing to a subsequence if necessary we may assume without loss of
generality that both sequences {Pexp [;,]V} and {Pexp(t,—[t])V} are
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convergent to H, and H, respectively. By (4.19) H; is a cluster point of
the sequence {W'}. Consequently, QH,; = H,Q = H,. Thus (P~Q)H, =0,
because H, € Sp. Furthermore, by (4.22), H = (P—Q)H, H, which implies
H = 0. Thus we have proved that

lim (P—Q)exptV =10
t—ow

which completes the proof of the lemma.

The following theorem gives a characterization of full measures belonging
to Ny(X)(d = 1, 2, ..., ) in terms of their multi-dimentional decomposability
algebraic structures.

., THEOREM 4.1. A full probability measure p on X belongs to the set
Ny(X) (d=1,2,...) (resp.d = o) if and only if there exists a one-
parameter semigroup T,:= exp tV (t 2 0) with Ve B(X) and ‘lila T, = 0 such

that p is d-times (resp. completely) {T,},» o-decomposable.
Proof. It suffices to prove the theorem for the case d < 0.

The necessity. Suppose that p is a full measure from the set N,(X)
(d=1,2,..). By Proposition 3.2 we choose a norming sequence {A4;},
j=1,2,..., corresponding to p with the property that A4;.; A7 ' — I. By
Lemma 3.2 I e§. By consecutive application of Lemma 4.3 we get a system
of projectors Po =1, Py, ..., P, and a system of operators Vi, V,,..., V, with the
following properties: Spj contains the one-parameter semigroup P;exp V.,
(t20), PjVjy,= Vi+1Pj= Vjsy, Pj+1ESPj: Py Vs = i+1Pjr1, Pj# Pjyy
and lim (P;—Pj, )exptV;4y =0 (j=0,1,2,...,r—1). Moreover, by the

t— o
compactness of § we may assume that P, = 0. Further, the condition
P,eSp ylelds PP, =P, P;=P; j=1,2,...,17). Put Q;=P;, =P
= P)(I— PJ_,) and U = Sem ({S,I—-P;: j = 1,2, ...,r}). By Proposition 1.3
we have the inclusion

(4.23) UxUx ... xUeD'(y).

(d times)

It is clear that Q;eU (j=1,2,...,7), Z Q;=1, Q;V;=V,Q; and the

one-parameter semigroup Q;exptV; (r = 0) is contained in U. Moreover,
’lin; Z Q;exptV; = 0.
i=1

Now by (4. 23) and by Proposition 1.2 we infer that for any
d
L, la, .oty 2 0 Z Q;expt, V), Z Q,expt, V}, Z Qjexpt, V;> e DY(p).

j=1

Setting V = Z Q,V; we have exptV = Z Q;exp tV;. Then the one-

j+1



4, A characterizations of full measures belonging to N,(X) 21

parameter semjgroup T; = exp tV satisfies the condition lim 7, = 0 and,

= wm

moreover, the measure u is d-times {T}-decomposable.

The sufficiency. Let T, = exp tV {t > 0) be a one-parameter semigroup
such that lim 7, = 0 and p is d-times {7T;}-decomposable. Setting, for

t—x

|
i=12, B;= expT V, we have the formula

(4.24) L=Bapxdy =12 ...
Put
i1
Aj=exp ). TV G=1,2,..)
i=1
and
ATlp for n'=1,
(4.25) By ={ s ,
AtA, for n' =2,3,..
n n
Since for any.n = (n',n?,...,n*)e N* (B (,B,,..., B> D*(n) and by (4.24)
we have B ;e D(4 ). Consequently, by (4.25), B ;& D(u ) and hence there

exists a probability measure A, , such that

(4.26) B = B, *lnl,n2°
Put, for n',n* = 1,2,...,

4.27) Lig = {Al'”,.l for n*=1,

non AL Ay 2 for n? > 1

By the same reason as above we infer that for every n®*=1,2,...
B eD(,unl'nz). Proceeding successively, we get 2 systems of prollaabzlhty
MeASUIES fh 1, M1 255 Myt 2 and 4 1, )“ni.nz""”lnl.nl.....nd (n*, n%, ..
..,hd=1,2,..) with the properties that for every r =1,2,...,d—1

(4.28) Bt g2 oar = B,,r+1 Bt p2 o *’1,,1',,2“_.’,,r+1
and
A_IA 1.2 , for n’+1 = 1,
(4.29) Hi 2 e+l { 1_ BTl ,
e " nr-ll-llnl‘nz'__unr+1 for n > 1.

Now, by (4.25), (4.28) and (4.29), we have
p=A14,.. A, ¥ (n = (n', n?, ..., n%).

It remains to prove that the collection of probability measures {A,u}
(n,keN, k <nand A = A ;A ,... A, whenever n = (n!, n% ....nYYe N9 is
uniformly infinitesimal. We shall prove this by induction.
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Let iy < i, < < i, be a subsequence of {1,2,...,d}. Then by virtue
of (4.25), (4.28) and (4.29) we have

(4.30) * A.. H, = Ani1 Ay, Ay, Fdy ida, ... kls
1<k/snt
JE1, 20Ny g, )

whenever n = (n', n?, ...,n% and k = (k!, k2, ..., k9).
For s =1 it is known (see the proof of Theorem 4.1 [17]) that
Aty = 8y for each choice of K< n't, Suppose that for any choice

. o > ) ‘
of k' <n'l k2 <n? .. k"<n"(r=1,2,...,5—1) we have

A"ll A"iZH.Anir‘ukil‘k(Z i —’5 .

From (4.28) and (4.29) we get the equations
A iy {1,,1'2 v At LWL L |
- "r
=Ap A ApA b A ) Ade g K> )
and

Aig Ay ... A Myt iz,

= Byiy+1 4,1 A2 4"1,, Byt iz e AitAn.. Ay /{kil‘kiznmkir.{.l .
Consequently, by the induction assumption and by the fact that the sequence
{4+ A;i,l“} is conditionally compact A iy 41, Aty s Ja drer = &

for each choice of k't < n'l, k'2 < n'2, ..., k"*! < n"*! Thus the condition
(1.3) is also fulfilled which completes the proof of the theorem.

5. A characterization of multiply {T;}-decomposable
probability measures on X

It is well-known ([14], [15], [2]) that every infinitely divisible probability
measure g on X has a unique representation

(5.1) p=g*e(M)

where ¢ is a symmetric Gaussian measure and (M) is a generalized Poisson
measure on X. In terms of the characteristic functional we have the formulas

(5.2) 8(y) = exp {—4<y, Ry} (yeX*)

R being a covariance operator i.e. a compact operator from X* into X such
that (y,, Ry,)> = {y,, Ry;) (symmetry) and {y,Ry) > 0 (non-negativity)
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([4], [18]) and
(5.3) (M) (y) = exp {i{y, xo) + [ K(x ) M@0}

for a certain xoe X. The kernel K is defined by the formula

K(x,y) = expiy, x)—1—i{y, x) 1y (x)

where 1y denotes the indicator of a compact subset W of X. Furthermore,
the measure M being a generalized Poisson exponent has a finite mass
outside every neighbourhood of 0 in X.

Let R(X) denote the set of all covariance operators of symmetric
Gaussian measures on X and M (X) denote the set of all generalized Poisson
exponents on X. Recall that if R, is a symmetric non-negative operator
from X* into X and R, —R, is non-negative for a certain operator R, € R(X),
then also R, eR(X) ([18], p. 151). Moreover, M (X) is a cone, ie. if
MeM(X) and M 2 N > 0, then N, M—N e M (X).

Given an operator Ve B(X) with the property that T,:= exptV — 0
as t - oo we shall denote by L,(X,V) d=1,2,...,00) the set of all
d-times { T} -decomposable probability measures on X. In particular, L, (X, V)
denotes the set of all completely {T;}-decomposable probability measures
on X. It is evident that

LiyX,V)e Ly, (X, V) L,(X,V) foreveryd=1,2,...

LEMMA 5.1. Suppose that p = gx&(M) where o is a symmetric Gaussian
measure with the covariance operator R and MeM(X). If (A,,A,,...
..oy Agd € D?(u) and

Ho= Ay kg,

Hay,Ay.....45 = Ajsy Hay Ag,.a;*Hay,ay,..454, G=1,2,...,d-1)

where the measures pa,, Pa,.Ags-- Haj Ay...4q OF€ infinitely divisible, then
(Ay, Az, ..., AD e D?(0) and {Ay, A, ..., A;) € D*(€(M)). Moreover, if
Bay,dg,..d; = o;%€(M;) (j =1,2,...,d) is the Tortrat representation of the
measure Ja, a,
formula

Aj then the covariance operator R; of o, is given by the

J
(54) R;=R+ Y (-1y Yy A A, | A RAL AL .. AT
r=1

i
1S4 <ip <. <ip S r
and the generalized Poisson exponent M; is given by the formula
J N\
(5.5) M;=M+ ) (-1 Y A A A M.
r=1

1€ig<ig <. <ip&j
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Proof (by induction). If d = 1 the lemma reduces to Urbanik’s lemma
([17], Lemma 5.1). Suppose that our lemma is true for d > 1. Further,
let <AI:A2=""Ad+1>EDd+1(”') and “Alr “AI-AZ""’ /“‘Al.Az,....Ad.,.l are infi-
nitely divisible. We' shall prove that for every j=1,2,...,d+1 equations
(5.4) and (5.5) hold.

By the induction assumption for every j=1,2,...,d R; and M; are
given by (5.4) and (5.5) respectively. On the other hand,

Pt
R4

By Ag.ndg = Adr10a*Cav1* €(Agrr Mat+Myyy).

Consequently, by the uniqueness of the Tortrat representation, g,
= Az+104%0a+; and My = A;,, My+ M, which together with (5.4) and
(5.5) (for j = d) imply that the equations (5.4) and (5.5) hold also for
j=d+1. The lemma is thus proyed.

THEOREM 5.1. Let VeB(X) and T :=exptV —0 as t—> co. Then
a probability measure p on X is d-times {T,}-decomposable (d = 1,2, ..., o)
if and only if u=gxe(M), where ¢ is a symmetric Gaussian measure
with the covariance operator R and Me M(X) such that for every
ji=12,..4d,

(5.6) (=1 (V/R+VIT'RV*+  +VRV*U D4RV 20

and
(5.7)

J
M+ Z (=1y 7:;1+tf2+---+firM =20 foralltt,,...,.t; 20
r=1

1€ <Iy<...<i §]

Proof. It is enough to prove the theorem for d < co. Let pe Ly(X, V)
and 1,,1,,...,% > 0. Then there exist probability measures g, ,
vovs My tg,..0ty SUCh that

PEREE

p=T uxpy,,
I‘Lll.lz.....tj = T;j+l""1"2“""]*#‘l"z""-'j+l U = 1: 2’ "-’d—l)‘

Since Ly(X, V)< L (X,V)(d = 1,2,..., o0) and by Corollary 4.2 [17] the
probability measures g, fh . ..., thyiy. . ; are infinitely divisible. Let

ﬂ' = Q*E(M) and .u'!l.lz.....lj = Qll.lz,...,tj*E(Mtl.tz....,lj)

be their Tortrat representations, where g, o,,,.,, ..., ; =1,2,...,d) are some

symmetric Gaussian measures on X with the covariance operators R;,
R, .1,...., respectively and M, M, .1y.... ;€ M(X). By virtue of Lemma 5.1
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we get the equations

(5.8)
J
Rtl.lz,....lj = R+ rgl (_l)r 1$i1<i22<... <1,<) T!‘,-l +l;2+..‘ +tirR7;rl+t!2+... +tlr
and
J
(59) Mtl.tz.....!j = M+ Z (_l)r Z ’I;{l+ti2+...+!i'M’

r=1l 1Sy <ig< .. <i &

Hence it follows that the relation (5.7) holds. Further, by equation (5.8)
and taking into account the expansion in a neighbourhood of 0

Rijig; = (=Wt ty...t;(VVR+VIT'RV*+  +VRV*-D L RV*)+
+ol(ty, ta, ..., t))

it follows that (5.6) holds.

Conversely, suppose that (5.6) and (5.7) hold for every j = 1,2,...,d.
Given t,,t5,...,t; = 0 define Ri ..., and M 1p,. according to the
formulas (5.8) and (5.9). By an easy induction it follows that M, ... ;€M (X)
G=12,...,d) and

(M) = T, 8(M)«2(M, ),
E(Mtl.lz,...,tj) = T;j+1 g(Mtl.lz ..... !j)*E(Mtl.lz.....!j+1) (j = li 2’ sney d_l)'
Consequently, <T;,T,

tgr+-> Ty €D(E(M)). It remains to prove that

Tiys Toys s T € D%(g). Accordingly, it suffices to prove that Rq-!zu--.u =0
for every j =1,2,...,d and for all ¢,,t,,...,t; = 0.

For j=1 we have R, >0 ([17], Theorem 5.1). Suppose that

R ;= 0 (t4,t3,...,t; > 0). By the definition of R [; We have the

t1482se0nnl 1900200000
formula
— — *
Rl1.l2.....rj+1 = Rtl.tz....,tj 7;j+1Rt1.lz.....rj T;j'i-l

which, by Theorem 5.1 [17], implies that R
the theorem is proved.

Let {T;} be the same as in Theorem 5.1. For every d = 1,2,... let
R;(X, V) denote a subset of R(X) consisting of all covariance operators R
of the form

t1igeentygy 2= 00 Thus by induction

(5.10) R= ¢ 1T,0T*dt
0

for a certain symmetric non-negative operator Q from X* into X. It is
evident that

Ris1 (X, V)ER,(X,V) ([@d=1,2,..)
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Further, we put
(5.11) R,(X,V)= (1 Ry(X,V)
d=1

THEOREM 5.2, The class of all covariance operators of d-times {T;}-decom-
posable Gaussian measures on X coincides with Ry(X,V) d=1,2,..., ).

Proof. Let d < oo and R be a covariance operator of d-times {7;}-decom-
posable Gaussian measure ¢ on X. Given t,t,5,...,t3 = 0 define the
covariance operators R, ., .. J by the formula (5.8). For every yeX*

define the functions f,(t;, t2, ..., ) (j = 1,2, ...,d) by
fy(tl.’ tl) asey tj) = <.V»Rr1.12.....:j y)'
It is evident that

i
oty, 0ty, ..., Oty

=Y Ty rtgt 4y (WY (VIREVIZIRV* 4+ + VRVFOTUL RV x

fy(tl: t27 vy tj)

XT +ip+ +rj,V>-
Consequently,
1112 Y
Sty tay ooy ty) = g 6[ (J; Y Toyvsg st +5;Q5 Tty s 45y D dsydsy .. ds;
where by Q; we denote the operator
(=1Y/(VIR+VITIRV*+  +VRYM-DLRY™),

Letting t;,¢5,...,t; » oo and taking into account the fact that T, - 0 as
t - oo we get the equation

W @O
Ry = 6[ 6“ 6‘. <y, T 45+ +.1ij7;=:+.12+... +:J-J’>d51dsz ds;

which, by a simple changing the variables, implies that

<y’ R}'> =

l o0
T <y,g oI QT dty).

Putting j =d and Q =
equation

1
@ Q, into this formula we have the

[- ]
R = [ ¢ 'T,QT;*dr.
0

It is clear, by Theorem 5.1, that Q is a symmetric non-negative operator
from X* into X. Thus we conclude that Re R;(X, V).
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Conversely, let R € R4(X, V). Then there exists a symmetric non-negative
operator @ from X* into X such that the equation (5.10) holds. Let us
write (5.10) in an equivalent form

@

@
610 R=[1 [Ty on@ Tiege.sndsidsy ..ds,

o'_.-.B

where Q' = (d—1)!Q. Then for any j=1,2,...,d and t;,t;,...,¢; > 0 we
get the formula

J
R'l-‘zv----'j:= R+ Z (_1)r Z T;,-l+q2+ R‘T;‘l+x‘2 -y

r=1 1€ig<ipg<... <i, &}
w

tj ©
= I j E‘; 6[ £7§1+sz+...+,dQ’ 7;:+s2+...+s4d51d32 . dsy,

(l—]) times

which, by the assumption that Q 'is symmetric and non-negative implies
Ri(.i3..y 2 0. But, by the proof of Theorem 5.1, the last inequality is

equivalent to the condition (5.6). Hence and by Theorem 5.1 R is a covari-
ance operator of a d-times {T;}-decomposable Gaussian measure on X. Thus
the theorem is proved for the case d < c0. The case d = oo is quite clear
which completes the proof of the theorem.

6. A reduction of the problem

In [17] K. Urbanik has introduced a concept of weight functions on
a real separable Banach space X. Roughly speaking, a weight function
on X is every real-valued function ¢ on X such that

(@) 9(0) = 0 and #(x) > 0 for all x # 0,

(b) ®@(x) converges to a positive limit as [x| — oo,

‘() ®(x) € a|x|* for a certain positive constant &« and for all xeX,
(d) jcb (x) M (dx) < oo for every M e M (X),

(e) if M;e M(X), 8(M;) —» p and j@(x)M,(dx)—»O then u =6, for
a certain xe X.

It is known ([17], Proposition 5.2) that for every real separable Banach
space X there exists a weight function on X.
Given a subset E of X we put

t(E) = {T;x: xe E, —o0 <t < o},

where {T;} is a semigroup as described in Theorem 5.1.

Lemma 6.1 (cf. [17], Lemma 5.4). For every Me M (X) there exists
a sequence {E;} of compact subset of X such that 0¢ E;, t(E)nt(E) = @
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ifisj(,j=1,2,..)and M = Y M; where M, is the restriction of M
to T(E). =1

We note that if MeM,;(X,V) (d=1,2,...,00) then for every {T;}-
invariant subset U of X, ie. such a subset that t(U) = U, the restriction
of M to U, denoted by M|y belongs to M,(X, V) too. Consequently, from
Lemma 6.1 we get the following corollary:

COROLLARY 6.1, Let MeM,;(X,V) d=1,2,...,). Then there exists
a decomposition M = Y M;, where Mje My(X,V) (j=1,2,...) M; are
j=1

concentrated on disjont sets 1(E;), 0¢ E;, and E; are compact.

This corollary reduces our problem of examing measures M e M, (X, V)
(d=1,2,..., ) to the case of measures concentrated on 7(E) where E is
compact and O¢E. We denote this class of measures by L,(E, V)
d=1,2,...,0). Following K. Urbanik [17] we shall find a suitable
compactification of t(E) and determine the extreme points of a certain
convex set formed by probability measures on this compactification..

Accordingly, let [ —co, co] be the usual compactification of the real line
and let E be a compact subset of X such that 0¢ E. Then E X [— o0, o0]
endowed with the product topology becomes a compact space. We define
an equivalence relation in E x [ — o0, o0] as follows: (x,, t;) ~ (x5, t;) Where
X,,Xx,€E and t,,t, e [— o0, 0], if and only if there exists a real number s
such that T, x, = x, and ¢, = t;—s. It is known [17] that ~ is continuous.
Hence the quotient space E x [~ 0, o0]/~ denoted by T(E) is compact. The
element of T(E), ie. the coset containing (x,t) will be denoted by [x, ¢].
Each element of 7(E) is of the form T,x, where xeE and t is a real
number. In general this representation is not unique. But T %1 = T, %2
if and only if (x,,¢,) ~ (x;,t;). Thus the mapping T,x — [x,t] is an
embedding of 7(E) into a dense subset of T(E). In other words, 7T(E) is
a compactification of 7(E). In the sequel we 'shall identify the elements
Tix of t(E) and the corresponding elements [x,t] of T(E). Further, we

extend the functions T, (—o0 < s < o) and || | from ©(E) onto T(E) by
continuity, ie. we put T.[x, —o0] =[x, -], T.[x,o] =[x, o],
I[x, —00]] = o0, [|[[x, ]| =0 for all xe E. Then we have the formula

L[x,t] = [x, t+s].

Let & be a weight [unction on X. By Lemma 5.3 [17] and the condition
(b) @ is bounded from below on every set {x: |x| > r} nt(E) with r > 0.
Further, & can be extended to T(E) by assuming ¢é([x, c0]) =0 and
P([x. —o0]) = |-l||i§lr ®(z). Let N be a finite Borel measure on 7T(E). Put

N (du)
®d (u)

(6.1) My (U) = Lf,
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for every subset U of 7(E) with the property inf {||ul|: ue U} > 0. This
formula defines a o-finite measure My on the set {ueT(E): [lu|] > 0}. Let
H (E,V) (d =1,2,...) denote the class of all finite measures N on 7(E)
for which the corresponding measures My fulfil the condition

J
(6.2) My+ 2:1 (—1)y

-’1-;‘1+“2+"' +t; MN ; 0

1Siy<ig<... <, &j tr

for every j = 1,2,...,d and for all t,,¢,,...,t; = 0. Moreover, we put

ch(E’ V) = JDJ, Hd(E’ V)

It is easy to check that the sets H,(E,V) d =1, 2, ..., ) are closed
and convex. Let us consider the measures M from L,(E, V) as measures
on T(E). Set

(6.3) NMU) = | & (u) M (du)
LY

for every Borel subset U of 7(E). It is evident that M e L,(E, V) if and
only if NYeH,(E,V) (d =1,2,...,0). By I,(E, V) we shall denote the
subset of H,(E, V) consisting of probability measures. Clearly, I,(E, V)
d=1,2,..., ) is convex and compact. Further, for every Borel subset E,
of E the sets t(E;), {[x, —o0]: x€E,} and {[x, ©]: xeE,} are {T}-
invariant. Hence if Ne H;(E, V), the restriction of N to any of these sets
is again in H,(E, V). This implies that every extreme point of I,(E, V)
d=1,2,...,00) must be concentrated on orbits of elements of T(E), ie.
on one of the following sets: t({x}), {[x, — 0]} and {[x, 0]} where x€E.
Obviously, all measures J,, zeT(E)\t(E) are extreme points of I;(E, V).
Then the problem of examing the measures M from L,(E, V) is reduced
to finding extreme points of sets I,(E, V) (d = 1,2, ..., 00) concentrated on
7({x}), where x€E.

7. Multiply monotone functions

A real-valued function g defined on the real line is called d-times
monotone (d = 1,2,...) if the following conditions are satisfied:

(i) g is left-continuous and lim g(t) = 0,
t—m

(ii) for any t,,t;,...,t; > 0 and a, be(— o0, o) with a < b we have the
inequality

4 gb)z 4 gl

rl.lz.....ld ll.rz.....ld
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where A is a difference operator defined on the real functions g
T1+8240000lg

inductively as follows:

4  g)—gl—-t) ifd=>2,
A g(S) — {!1,t2,....!d_1
"t3eetd 9(5)—g(s—1:) if d =1

(ty,t2,...,23 > 0 and ~o0 < s < 0).
Further, if for every d = 1,2,... a function g is d-times monotone,
then it is called completely monotone.

PrOPOSITION 7.1. Let g a d-times monotone function on the real line
(d = 1,2,...). Then there exists a unique non-negative left-continuous monotone
non-decreasing function q such that for every te(— oo, )

t Ud—1 UYd-2 uy

(7.1) goy=§ [ | _j' qu)dudu,du, ... dus_ .

— =—ao - ]

Proof. It is evident that every d-times monotone function g on the
real line is convex non-negative and monotone non-decreasing. Consequently,
there exists a unique non-negative left-continuous monotone non-decreasing
function g, such that for every te(— oo, o)

40 = | a6

It is easy to check that if d > 1 then the function g, is (d—1)-times
monotone. Hence and by an easy induction it follows that there exists
a unique non-negative left-continuous monotone non-decreasing function g
such that (7.1) holds, The proposition is thus proved.

PROPOSITION 7.2, Let g be a completely monotone function on the real
line. Then there exists a unique completely monotone function q such that
for every te(— o0, )

i

(7.2) g0) = | ql)du.
— @

Proof. By the definition of completely monotone functions it follows
that the function g is convex non-negative monotone non-decreasing.
Consequently, there exists a unique non-negative left-continuous monotone
non-decreasing function g such that for every te(— oo, o0) equation (7.2)
holds. It is clear that

lim q(t) =0

t~>—m
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and, moreover, for any d =1,2,...,ty,15,...,2, > 0 and a,be(— o0, o)
with a < b

b
J 4 alds= 4 gb)- 4 gl@>0.
a [1.02,000iyg 10020000y ta 11482 0e0e0tg

Consequently, A  g(s) = 0 for every se(— oo, o0) which shows that the
1141250000ty

function g is completely monotone. Thus the proposition is proved.

8. The Urbanik representation for d-times {7;}-decomposable
(d=1,2,..) probability measures on X

Consider a compact subset E of X such that 0¢ E and an arbitrary
probability measure N concentrated on 7({x}) (x € E). Setting

(8.1) gy (b) = My({[x,1]: t < b})

we infer, by (6.2), that N eI,(E, V) if and only if for any t,¢,,...,t4 >0
and a< b

(8.2) 4 gn (b)— 4  gn(a)

[1e02)0000lyg 112,001
d
= MN(U)+ E (_1)? 2 7;11+'lz+"'+ti MN(U) > 0
r=1 1€ <ig< ... <i <d ’

where U = {[x,t]: a <t < b}. In other words, NeI,(E, V) if and only if
the function gy defined by the formula (8.1) is d-times monotone. Further,
by Proposition 7.1, there exists a unique non-negative left-continuous mon-
otone non-decreasing function gy such that for every te(—o0, 00)

t Hd—-1 Hg-2 Wy

(8.3) gv@®O= [ | __f gy (W dudu,du, ... du,_,.

-0 —@® ~o®

which, by virtue of (6.1) and (8.1), implies that
b
(8.4) N({[x,t]: a<t<b}) = {&(x,t])gk(t)de

where the function g¥ is defined by the formula

t Yg-2 uy
85) gt { [ | ay(u)duduydu,...dus_, whenever d > 2,
O. gN = ~© - -

gn (8 whenever d = 1.
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Consequently, we have

8.6 T o(x, et = 1.

Conversely, every non-negative monotone non-decreasing left-continuous
function gy with the property (8.6) determines, by (8.4) and (8.5), a probability
measure N concentrated on z({x}) for which the corresponding function gy
is d-times monotone. Consequently, N e I,(E, V). Hence we conclude that
a measure Nel,(E, V) is an extreme point of I,(E, V) if and only if the
corresponding function gy cannot be decomposed into a non-trivial convex
combination of two functions gy, and gy, (N,, Nyel4(E, V)). But this is
possible only in the case gy(¢) =0 if t <ty and gqy(t) =c¢ if t > t, for
some constants ¢, and c¢. By (8.4), (8.5» and by some computation we
get the formula

b
87 N{[x:tl:a<t<b)) =c@d=1)[S(x, 1) {(t—to)}* ' dt

where for a real number A we write A, = max (4,0). The constant ¢ is
determined by (8.6) and (8.7). Namely,

(8.8) ¢l =d-1)! -T O ([x, ] {(t—to)+ }* ' dt.

We remark, by condition (c) and by Lemma 5.2 [17], that the last
integral is finite for every d = 1,2,... Thus we have proved that every
extreme point of I,(E, V) concentrated on t({x}) is of the form (8.7), where
the constant c is given by (8.8).

Conversely, let N be a probability measure on 7T(E) defined by the
formula (8.7) where xe E and the constant ¢ is given by (8.8). Then the
corresponding measure My is of the form

b
My({[x,t]: a <t < b}) =cld-1)! | {(t—1t5)+} " dt.
a
It is easy to check that the measure My defined by the last formula satisfies
the condition (6.2) and hence it belongs to the set I,(E, V). Moreover,

My is an extreme point of I,(E, V).
For every zet(E), z = T,x and xeE, we put

(8.9) NO(U) = Ci(2) | 1u(T,2) P(Ty2) 8 L e
0
where 1y denotes the indicator of a subset U of T(E) and

(8.10) Ci(z) = (d—1)! °f & (Tz)ti~ 1 dr.
0
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By virtue of (8.7) and (8.8) it follows that N are extreme points of I,(E. V).
We extend the definition of N to zeT(E)\t(E) by assuming N = §_.
In this case we have also N eI, (E, V). It hints at, the mapping z » N
from T(E) into I,(E, V) is one-to-one and continuous. Consequently, it is
a homeomorphism between 7(E) and the set e(I,(E, V)) of all extreme points
of I;(E, V). Thus we have proved the following lemma:

LemMA 8.1 The set {N®: zeT(E)} is identical with the set e(I4(E. V)
of all extreme points of 1,(E, V) and the mapping z — N is a homcomorphism
hetween T(E) and ¢(I4(E, V)).

Once the extreme points of I, (E, V) are found we can apply a well-known
Krein~Milman-Choquet Theorem ([14], Chapter 3). Since each element of
H4(E, V) is of the form ¢N, where N,el;(E,V) and ¢ > 0 we then gel
the following proposition:

ProrosiTiON 8.1. A measure N belongs to Hy(E, V) (d = 1.2,...) if and
only if there exists a finite Borel measure m on T(E) such that

_[ SXIN@x)= [ [ fu)N®(du)ym(dz)

HEy il

for cvery continuous function f on T(E). If N is concentrated on t(E) then m
does the same.

From this proposition and by (6.1) and (8.9) we get, after some
computation, the following corollary:

CoroLLary 8.1. Let M be a measure from M(X) concentrated on t(E).
Then MeL,(E,V) (d = 1,2,..) if and only if there exists a finite Borel
measure m on t(E) such that

[ fIM(dx) = | C4(2) ?I(T 2)t9" Vdim(dz)
0

(k) 1(E)

Jor every M-integrable function f on t(E). The function C,(z) is defined by
the formula (8.10).

We now turn to the consideration of arbitrary measures Me M (X)
corresponding to d-times {T;}-decomposable probablhty measures on X. By

Lemma 6.1 there exists a decomposition M = Z M;, where M;e M (X) are
j=1

restrictions of M to disjoint sets 7(E;), 0¢ E; and E; are compact. Then we

have M;e L,(E;, V) (j = 1,2,...). Let m; denote a finite measure on t(Ej)

corresponding to M; in the representation given by Corollary 8.1. Then

[f(x)M (dx) = i | Cd(Z)Tf(ﬂ:)t"*’dtmj(d:)
X

J=1 o(Ep 0

for every M-integrable function f. Substituting f = & into this formula, we

) - Dissertationes Mathematicae CLXXXVI
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get the equation

e

£¢(X) M(dx) = Y m;(t(Ey).

j=1

<
Consequently, setting m = ) m;, we get a finite measure on X satisfying
the equation =1

(8.11) [f(x)M(dx) = [ Cy(2) ]Sf(T, z)t" T dtm(dz)
e X 0

for every M-integrable function f on X. Moreover, m({0}) = 0.
Putting, for any x€ X and ye X*,

(8.12) Ky (x, y) = Ca(x) | K(Tyx, y)t ™" dt
0

where the kernel K is given by the formula (5.3), we get the formula

[K(x, )M (dx) = [ K@y (x, y)ym(dx) (yeX*)
X X

which together with (5.1), (5.2), (5.3) and (5.6) yields the following theorem:

THEOREM 8.1. Let @ be a weight function on X, Ve B(X) and T, := exp tV
— 0 as t = oo. Then a probability measure p on X is d-times { T,}-decomposable
(d=1,2,...) if and only if there exist a finite measure m on X vanishing
at 0, an element xo€ X and an operator Re R;(X, V) such that

(8.13) B(y) = exp(i{y, xop— 3 {y, RvD+ [ K&y (x, y) m(dx)
X

Jor every ye X*. The kernel K9, is defined by the formula (8.12).

Combining Theorems 4.1 and 8.1 we get the following solution of the
Problem I which is a generalization of the Urbanik representation theorem
for full Levy's measures on Banach spaces ([17], Theorem 3.3).

THEOREM B2. Let ¢ be a weight function on X. A full probability
measure p on X belongs to Ny(X) (d = 1,2,...) if and only if there exists
a one-parameter semigroup T, := exp tV(t = 0) with Ve B(X) and lim T, = 0,

\ t—+m
an element xo€ X, an operator Re Ry(X,V) and a finite measure m on X
vanishing at O such that the equation (8.13) holds.

9.The Urbanik representation for completely {7;}-decomposable
probability measures on X

Consider a compact subset E of X such that O¢ E and an arbitrary
probability measure N concentrated on 7({x}) where x € E. Define a function
gy by virtue of the formula (8.1). From (6.2) and (8.2) it follows that
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Nel,(E, V) if and only if- gy is completely monotone. Further, by Prop-
osition 7.2 there exists a unique completely monotone function py such that
for every te(— o0, c0)

(9.1) gn () = _I pw (1) du

which together with (6.3) and (8.1) implies the formula

b

9.2) N{[x,f]: a <t < b} = [ &(x, ) Py(0)dt.

Consequently, we have

[ ]

9.3) [ &([x,tD)pn(t)dt = 1.
-

Conversely, every completely monotone function py on the real line with
the property (9.3) determines, according to the formula (9.2), a probability
measure N concentrated on t({x}). Moreover, we have Nel, (E, V). Hence
we conclude that a measure Nel,(E, V) concentrated on t({x}) is an
extreme point of I (E, V) if and only if the corresponding function py
cannot be decomposed into a non-trivial convex combination of two functions
Pn, and py, (Ny,Ny€I(E, V). Given t > 0 and a function p with such
a property define two auxiliary functions p; and p, as follows:

p(u)+pu—rt) _ p)+plu—t)
T+c and - p2 () = =77

py(u) = (-0 < u < o),

s o]
where ¢ = [ &([x,u])p(u—1)du. It is evident that for sufficiently large ¢
-

we have 0 < ¢ < 1 and then the functions p, and p, are both completely
monotone. Moreover, they are normalized by the condition (9.3) and for
every u €(— o0, o)

pw) =4(1+c)ps W+ (1—c)p, W)

Consequently, for every ue(—oo, o) and sufficiently large t > 0
w
pu—t)=pw) [ @([x,s])p(s—1}ds

which, by a simple reason, implies that the function p is of the form
(9.4) puy =Ce™® (-0 <u < )

where C, s are some positive constants.
Given a subset U of X and an operator VeB(X) such that
T,:=exptV -0 as t - co define a congruence relation in U as follows:
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X, 0x,, Where xy, x,€ U, if and only if there exists a number fe(— o0, o)

such that T,x, = x,. It is evident that the relation ¢ is continuous. Let U/

denote the quotient space. Then for every U < X we have U/g = 1(U)/e.
Suppose that & is a weight function on X. Put

9.5) ooy (U) = {([x],s)e UloxR,: T (T, x)edt < oo}

where U < X\{0}, [x] is an equivalence class of U/g and R, is the
positive half-line.

By Lemma 5.2 [17] and the condition (c) it follows that for every
non-void U < X\{0} the set g4 (U) is non-void. Further, for every sequence
U,, U,,... of subsets of X\{0} such that the sets ©(U)) (j = 1, 2, ...) are disjoint,
the sets g, (U;) are disjoint too and

(9.6) U@.V( U Uj) = U ooy (U).
J=1 i=1

Given an element ([z], s)e g,y (E), where E is a compact subset of
X\{0} and [z] is an equivalence class of E/g with ze E we put

0.7 Ni,),s(Q) = Co v (2, 5) _f 1o(T:2) ®(T, z) €™ d

where 1, denotes the indicator of a subset Q of 7(E) and

9.8) Coblz,s) = | ®(T,2)e"dr.

It is easy to check that the right-hand side of (9.7) does not depend on any
choice of the representing element z of [z].

Since for every extreme point N of I, (E, V) the corresponding function
Py is of the form (94) and normalized by the condition (9.3) the set
{Np.s: ([z), s)e ooy (t(E)} contains all extreme points of I, (E,V) con-
centrated on t(E). Our further aim is to prove that every measure
Nia.s(([2], )€ e,y (t(E)) defined by the formula (9.7) is an extreme point
of I,(E, V).

Accordingly, from (9.7) it follows that the measure Ny, , is concentrated
on t({z}) and the corresponding measure My,  is of the form

b
MN[z],s({T;Zl axst< b}) = C¢,V(Z,S) ." & dt

(-0 <a< b < o). Consequently, My, €L, (E, V) and hence the

measure N, , defined by the formula (9.7) is an extreme point of the
set I,(E,V). It is easily seen that the mapping ([z],s) » N, from
ooy (t(E)) into I,(E,V) is one-to-one and continuous. Thus we have
proved the following lemma:
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LemMA 9.1. The set {Niys: ([z], 5) € ooy (t(E))} is identical with the set
of all extreme points of the set I (E,V) concentrated on t(E) and the
mapping ([2],5) = Ny, is a homeomarphism between them.

Denoting by e(l, (E, V)) the set of all extreme points of I (E, V) and
taking into account the fact that each element of H, (E, V) is of the form cN,,
where Nyel,(E, V) and c > 0, we then get the following proposition:

PrRoOPOSITION 9.1. A measure N belongs to the set H, (E, V) if and only
if there exists a finite Borel measure m on e(I(E, V)) such that

JfN@)= | [ fr(@dum(dn)
t(E) ell o (E.V)) Y(E)
for every continuous function f on T(E). If N is concentrated on 1t(E)

then m is concentrated on the subset of e(I,(E, V)) consisting of probability
measures concentrated on 1 (E).

Combining (6.1), (9.7), Lemma 9.1 and Proposition 9.1 we get the
following corollary:

CoROLLARY 9.1. Let M be a measure from M (X) and concentrated “on
1(E). Then M belongs to the set Lo (E,V) if and only if there exists
a finite Borel measure m on the set ooy (t(E)) such that

[feoM@dx)= | Coylz,u) | f(T,2)e"dtm(d([2], u)
t(E) d’o,y(t(E)) - m
for every M-integrable function f on t(E). The function Cgqy(z,u) is defined
by the formula (9.8).
Consider an arbitrary measure M € M (X) corresponding to a completely
{T.}-decomposable probability measure on X. By Corollary 6.1 there exists

@«
a decomposition M = ) M, where M;e M, (X, V) (j =1,2,..), M; are
=

concentrated on disjoint sets t(E)), 0¢ E; and E; are compact. Let m; denote
a finite Borel measure on o4y (7 (E;)) corresponding to M; in the representation
given by Corollary 9.1. Then, for every M-integrable function f on X

[>s]

[JOM@) = 3 [ Coylei) § fTae"dtm(d([a], )

J=1 ag yGEp

Substituting f = & into this formula we get the equation

- ]

gf(x)M(dx) = _Z mj(crd,y (z (Ej))) < o,
J

Consequently, setting m = Z m; and takmg into account the fact that the
J=

sets O'@'V(T(Ej)) (] = 1, 2, ...) are dlSjOlnt Z Jg, V(T(E})) = O'@y(X\{O}
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get a finite Borel measure m on 64y (X\{0}) satisfying the equation

(9.9) ; fOM@x)= [ Coylz,) _I f(Tz)e" dtm(d([2], u)

o, v (X\(0))
which, by virtue of (9.8), can be written in the form
(9.10)

;f(x)M(dx) = | ]'0 f(T z)e“‘dt[_}rJ ®(T,z)e" dt] ™' m{d([z], u)).

dd)'y(X\lO” -

Hence and by (5.1), (5.2), (5.3), (5.6) we get the following theorem:

THEOREM 9.1. Let & be a weight function on X and V an operator
Jrom B(X) such that T, .= exptV -0 as t - oco. A probability measure u
on X is completely {T,}-decomposable if and only if there exists a finite
Borel measure m on a4y (X\{0}), a covariance operator Re R, (X, V) and
an element xo€ X such that for every ye X*

(9.11)  a(y) = exp {i{y, xo> =3y, Ry>+

x© - o]
+ [ K(T,z,p)edt[ [ ®(T,z)e*dt] ' m(d([2], w)
ap, v (X\(0)) ~ e -m

where the set o4y (X\{0}) is defined by the formula (9.5) and the kernel
K is given by (5.3). The integrand over o4y (X\{0}) does not depend on
any choice of the representing elements z of the equivalence classes [z]
of X\{0}/e.

Combining Theorems 4.1 and 9.1 we get the following solution of
Problem II:

THEOREM 9.2. Let & be a weight function on X. A full probability
measure 1 on X belongs to the set N, (X) if and only if there exist an
operator V € B(X) with :lirg exptV =0, an element xye X, an operator

ReR,(X,V) and a finite Borel measure m on g4y (X\{0}) such that the
characteristic functional of u is given by the formula (9.11).
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