DISSERTATIONES MATHEMATICAE

(ROZPRAWY MATEMATYCZNE)

KOMITET REDAKCYJNY

KAROL BORSUK redaktor
ANDRZEJ BIAŁYNICKI-BIRULA, BOGDAN BOJARSKI,
ZBIGNIEW CIESIELSKI, JERZY ŁOŚ, WIKTOR MAREK,
ZBIGNIEW SEMADENI

CLXXXVI

NGUYEN VAN THU

Limit theorems for random fields

WARSZAWA 1981 PAŃSTWOWE WYDAWNICTWO NAUKOWE

5.7133

PRINTED IN POLAND

© Copyright by Państwowe Wydawnictwo Naukowe, Warszawa, 1981

ISBN 83-01-01122-X

ISSN 0012-3862

CONTENTS

Introduction	5
1. Notation and preliminaries	5
2. Statement of the problem	9
3. Norming sequences	11
4. A characterization of full measures belonging to $N_d(X)$	16
5. A characterization of multiply $\{T_t\}$ -decomposable probability measures on X	22
6. A reduction of the problem	27
7. Multiply monotone functions	29
8. The Urbanik representation for d-times $\{T_i\}$ -decomposable $(d = 1, 2,)$ probability	
measures on X	31
9. The Urbanik representation for completely $\{T_i\}$ -decomposable probability measures on X	i 34
References	39

Introduction

In the present paper (1) we study the limit laws arising from affine modification of certain multi-parameter normed sums of independent Banach space valued random variables. We describe these limit laws in terms of their multi-dimensional decomposability algebraic structures and obtain the Urbanik representation theorems for the characteristic functionals.

The classical limit problem of characterizing of limit laws of normed sums of real-valued random variables was proposed by A. Ya. Khinchin in 1936 and solved by P. Lévy in [6] (p. 195) (see also M. Loéve [7], p. 319). The attempt to extend the theory to the multi-dimensional linear space case developed by H. Shape [13] has resulted in several recent papers of K. Urbanik (see [16], [17]). Namely, he introduced a concept of decomposability semigroup $D(\mu)$ associated with a probability measure μ on a Banach space and characterized all full Lévy's measures μ in terms of $D(\mu)$. Moreover, applying the extreme points method he obtained a representation for the characteristic functionals of Lévy's measures on X.

The purpose of this paper is to generalize the Lévy-Khinchin-Urbanik problèm to the case where the summands are indexed by a countable lattice and take values in a Banach space. The technique developed in [17] by K. Urbanik will be widely exploited.

The Author would like to express his sincere gratitude to Professor K. Urbanik for many helpful discussions.

1. Notation and preliminaries

This paper is concerned with probability measures defined on Borel subsets of a real separable Banach space X with the norm $\| \ \|$ and the topological dual space X^* . For a probability measure μ on X its characteristic functional is defined by the formula

$$\hat{\mu}(y) = \int_{X} \exp i \langle y, x \rangle \mu(dx) \quad (y \in X^*)$$

⁽¹⁾ This paper was written during the author's stay at the University of Wroclaw (Poland) in the academic year 1976/77.

where \langle , \rangle denotes the dual pairing between X and X^* . A sequence $\{\mu_J\}$ of probability measures on X is said to converge to a probability measure μ if for every bounded continuous real-valued function f on X

$$\int\limits_X f\,d\mu_j\to\int\limits_X f\,d\mu.$$

A probability measure μ on X is called *full* if its support is not contained in any proper hyperplane of X. Further, by δ_x , $x \in X$, we shall denote the unit mass at x.

Let B(X) denote the algebra of all continuous linear operators on X with the norm topology. The unit and zero elements of B(X) will be denoted by I and 0 respectively. An element P of B(X) is called a projector if $P^2 = P$. Given a subset F of B(X) let Sem(F) denote the closed multiplicative semigroup of operators spanned by F.

The concept of decomposability semigroup $D(\mu)$ of linear operators associated with a probability measure μ on X was introduced in [16] and [17] by K. Urbanik. Namely, $D(\mu)$ consists of all operators A from B(X) for which the equality

$$\mu = A\mu * \mu_A$$

holds for a certain probability measure μ_A on X. Here * denotes the convolution of measures and $A\mu$ denotes a probability measure defined by the formula

$$A\mu(E) = \mu(A^{-1}(E))$$

for all Borel subsets E of X. Since $A\mu(y) = \hat{\mu}(A^*y)$, $y \in X^*$, we can write (1.1) in the form

$$\hat{\mu}(y) = \hat{\mu}(A^* y) \hat{\mu}_A(y) \quad (y \in X^*).$$

In the sequel we shall need a generalization of the concept of decomposability semigroups. Let d be a fixed positive integer and $A_1, A_2, ..., A_d$ be some operators from B(X). Then a probability measure μ on X is said to be $\langle A_1, A_2, ..., A_d \rangle$ -decomposable if there exist probability measures $\mu_{A_1}, \mu_{A_1, A_2}, ..., \mu_{A_1, A_2, ..., A_d}$ such that $\mu = A_1 \mu * \mu_{A_1}, \mu_{A_1} = A_2 \mu_{A_1} * \mu_{A_1, A_2}, ...$..., $\mu_{A_1, A_2, ..., A_{d-1}} = A_d \mu_{A_1, A_2, ..., A_{d-1}} * \mu_{A_1, A_2, ..., A_d}$. It is evident that if $\hat{\mu}(y) \neq 0$ for every $y \in X^*$ and μ is $\langle A_1, A_2, ..., A_d \rangle$ -decomposable then the measures $\mu_{A_1}, \mu_{A_1, A_2}, ...$ are uniquely determined. Further, let $A_1, A_2, ...$ be an infinite sequence of operators from B(X). Then a probability measure μ on X is said to be $\langle A_1, A_2, ... \rangle$ -decomposable if there exist probability measures $\mu_{A_1}, \mu_{A_1, A_2}, ...$ such that $\mu = A_1 \mu * \mu_{A_1}, \mu_{A_1} = A_1 \mu_{A_1} * \mu_{A_1, A_2}, ...$ Let us introduce the notation:

 $D^d(\mu) = \{\langle A_1, A_2, ..., A_d \rangle; A_j \in B(X), j = 1, 2, ..., d \text{ and } \mu \text{ is } \langle A_1, A_2, ..., A_d \rangle \text{-decomposable} \}$ and

 $D^{\infty}(\mu) = \{\langle A_1, A_2, \ldots \rangle : A_j \in B(X), j = 1, 2, \ldots \text{ and } \mu \text{ is } \langle A_1, A_2, \ldots \text{ decomposable} \}.$

It is clear that for every probability measure μ on X the sets $D^d(\mu)$, $d=1,2,...,\infty$, are non-empty and closed under the product weak* operator topology. In the sequel every set $D^d(\mu)$, d=1,2,..., will be called a d-dimensional decomposability algebraic structure associated with a probability measure μ on X. For d=1 $D^d(\mu)=D(\mu)$ is a semigroup under multiplication of operators. One may expect that $D^d(\mu)$, $d \ge 2$, should be a semigroup under multiplication of corresponding coordinates. Unfortunately this fails to be true if the measure μ is not concentrated at a single point of X. The loss of semigroup properties of $D^d(\mu)$ for the case $d \ge 2$ seems to be the main difficulty to use the method developed in [17] by K. Urbanik.

Let F be a subset of B(X). We say that a probability measure μ on X is d-times, d=1,2,..., (resp. completely) F-decomposable if the Cartesian product $F \times F \times \cdots \times F$ (d-times) (resp. $F \times F \times \cdots$) is contained in $D^d(\mu)$ (resp. $D^\infty(\mu)$). For the further convenience if μ is completely F-decomposable we shall write that μ is ∞ -times F-decomposable. In particular, for $F = \{cI: 0 < c < 1\}$ the concept of multiply F-decomposable probability measures coincides with the concept of multiply self-decomposable probability measures introduced in [8].

Now we shall establish some simple properties of the multi-dimensional decomposability algebraic structures associated with probability measures on X.

PROPOSITION 1.1. Let $F_1, F_2, ...$ be a sequence of subsets of B(X) with the property that for any $i \neq j$, $A \in F_i$ and $B \in F_j$ we have AB = BA. Suppose that the Cartesian product $F_1 \times F_2 \times ... \times F_d$, d = 1, 2, (resp. $F_1 \times F_2 \times ...$) is contained in $D^d(\mu)$ (resp. $D^{\infty}(\mu)$). Then

$$\operatorname{Sem}(F_1) \times \operatorname{Sem}(F_2) \times \times \operatorname{Sem}(F_d) \subset D^d(\mu)$$

(resp. Sem $(F_1) \times \text{Sem } (F_2) \times \subset D^{\infty}(\mu)$).

Proof. It suffices to prove the proposition for the case $d < \infty$. Further, since $D^d(\mu)$ is closed in the norm product topology of $B(X) \times B(X) \times$

 $\times B(X)$ (d times) and by a simple induction it suffices to prove that if $\langle A_1^{(i)}, A_2, ..., A_d \rangle$, i = 1, 2, belong to $F_1 \times F_2 \times ... \times F_d$ then the element $\langle A_1^{(1)}, A_1^{(2)}, A_2, ..., A_d \rangle$ belongs to $D^d(\mu)$.

Accordingly, let $\mu_{A_1^{(i)}}$, $\mu_{A_1^{(i)},A_2}$, ..., $\mu_{A_1^{(i)},A_2,...,A_d}$ (i=1,2) be such probability measures that $\mu = A_1^{(i)} \mu * \mu_{A_1^{(i)}}$,

$$\begin{split} \mu_{A_1^{(i)}} &= A_2 \, \mu_{A_1^{(i)}} * \, \mu_{A_1^{(i)}, A_2}, \dots, \, \mu_{A_1^{(i)}, A_2, \dots, A_{d-1}} \\ &= A_d \, \mu_{A_1^{(i)}, A_2, \dots, A_{d-1}} * \, \mu_{A_1^{(i)}, A_2, \dots, A_d} \quad (i = 1, 2). \end{split}$$

Then we have the equation

$$A_1 \mu = A_1^{(2)} A_1^{(1)} \mu * A_1^{(2)} \mu_{A_1^{(1)}}$$

and consequently,

$$\mu = A_1^{(1)} A_1^{(2)} \mu * \mu_{A_1^{(1)} A_1^{(2)}}$$

where the measure $\mu_{A_1^{(1)}A_1^{(2)}}$ is defined as $\mu_{A_1^{(2)}} * A_1^{(2)} \mu_{A_1^{(1)}}$. Moreover, we have

$$\begin{split} \mu_{A_{1}^{(1)}A_{1}^{(2)}} &= A_{2} \, \mu_{A_{1}^{(2)}} * \mu_{A_{1}^{(2)},A_{2}} * A_{1}^{(2)} \, A_{2} \, \mu_{A_{1}^{(1)}} * A_{1}^{(2)} \, \mu_{A_{1}^{(1)},A_{2}} \\ &= A_{2} \, \mu_{A_{1}^{(1)}A_{1}^{(2)}} * \mu_{A_{1}^{(1)}A_{1}^{(2)},A_{2}} \end{split}$$

where the measure $\mu_{A_1^{(1)}A_2^{(2)},A_2}$ is defined as $\mu_{A_1^{(2)},A_2}*A_1^{(2)}\mu_{A_1^{(1)},A_2}$. This means that $\langle A_1^{(1)}A_1^{(2)},A_2\rangle$ belongs to $D^2(\mu)$. Proceeding successively, by induction, it follows that $\langle A_1^{(1)}A_1^{(2)},A_2,\ldots,A_d\rangle \in D^d(\mu)$. The proposition is thus proved.

PROPOSITION 1.2. Let P_1 , P_2 , ..., P_r be some projectors in B(X) with the property that $P_iP_j=P_jP_i=0$ for all indexes $i\neq j$. Given a number v=1,2,...,d let $A_1,A_2,...,A_v^{(i)},...,A_d$ (i=1,2,...,r) be such operators that for every i=1,2,...,r $A_1,A_2,...,A_v^{(i)},...,A_d$ commute one another and for each choice of $1\leq j_1< j_2< < j_s \leq d$ we have $\langle A_{j_1},A_{j_2},...,A_{j_s}\rangle \in D^s(\mu)$, where by A_v we denote an arbitrary operator from the set $\{P_j,A_v^{(j)}:j=1,2,...,r\}$. Put $B_j=A_j$ for j=1,2,...,d and $j\neq v$ and put $B_v=\sum_{i=1}^r P_iA_v^{(i)}$. Then for any $1\leq j_1< j_2< < j_s \leq d$ we have $\langle B_{j_1},B_{j_2},...,B_{j_s}\rangle \in D^s(\mu)$.

Proof. Let $j_1 < j_2 < < j_s$ be a fixed subsequence of the sequence $\{1, 2, ..., d\}$. Without loss of generality we may assume that $\{j_1, j_2, ..., j_s\}$ = $\{1, 2, ..., d\}$ and v = 1. Put $B = \sum_{i=1}^{r} P_i A_1^{(i)}$. Since $A_1^{(i)} \in D(\mu)$ we have the decompositions

$$\mu = A_1^{(i)} \mu * \mu_{A_1^{(i)}} \quad (i = 1, 2, ..., r).$$

Moreover by the proof of Proposition 1.2 [17] we have

$$\mu = B\mu * \mu_B$$

where the measure μ_B is defined by the formula

(1.3)
$$\mu_B = * P_i \mu_{A_1^{(i)}} * (I - \sum_{i=1}^r P_i) \mu$$

where the symbol * denotes the convolution of relevant measures. Further,

we have the decompositions

$$\mu_{A_1^{(i)}} = A_2 \, \mu_{A_1^{(i)}} * \mu_{A_1^{(i)},A_2} \quad (i = 1, 2, ..., r),$$

and

$$\mu = A_2 \mu * \mu_{A_2}.$$

Consequently, by virtue of (1.3) it follows that

$$\mu_B = A_2 \,\mu_B * \mu_{B,A_2}$$

where the measure $\mu_{B,A,2}$ is defined by the formula

$$\mu_{B,A_2} = * P_i \mu_{A_1^{(i)},A_2} * (I - \sum_{i=1}^r P_i) \mu_{A_2}.$$

Finally, by induction, it follows that $\langle B, A_2, ..., A_d \rangle$ belongs to $D^d(\mu)$ which completes the proof of the proposition.

2. Statement of the problem

Let N^d , d=1,2,..., denote the lattice of all *d*-vectors with natural components and with the natural ordering \leq . For $n=(n^1,n^2,...,n^d) \in N^d$ we shall write $n \to \infty$ whenever n^1 , n^2 ,..., $n^d \to \infty$ simultaneously.

In the sequel, we shall use the letters n, m, k, h to denote the vectors of N^d and use the letters i, j, r, v, u, d, t, s to denote real or natural numbers.

We say that a collection of probability measures $\mu_{n,k}$ $(n, k \in N^d, k \leq k_n, k_n \in N^d, k_n \to \infty)$ whenever $n \to \infty$ and d = 1, 2, ...) on a Banach space X is uniformly infintesimal if for every subsequence $\{i_1, i_2, ..., i_s\}$ of the sequence $\{1, 2, ..., d\}$ such that $i_1 < i_2 < ... < i_s$ and for every neighbourhood U of 0 in X

$$\lim_{n \to \infty} \min_{\substack{1 \leqslant k^i_r \leqslant k^i_{n^r} \\ r = 1, 2, \dots, s}} * \underset{j \in \{1, 2, \dots, d\} \setminus \{i_1, i_2, \dots, i_s\}}{*} \mu_{n,k}(U) = 1$$

where $k = (k^1, k^2, ..., k^d)$ and $k_n = (k_n^1, k_n^2, ..., k_n^d)$.

It is evident that the collection $\{\mu_{n,k}\}$, n, $k \in N^d$, is uniformly infinitesimal if and only if for every subsequence $\{i_1, i_2, ..., i_s\}$ of $\{1, 2, ..., d\}$ with $i_1 < i_2 < ... < i_s$ and for every choice of $h_n^{i_r}$, $1 \le h_n^{i_r} \le k_n^{i_r}$, $n \in N^d$ and r = 1, 2, ..., s,

$$\begin{array}{ccc} * & \mu_{n,k} \to \delta_0 \,. \\ 1 \leq k^j \leq k^j_n & \\ j \in \{1,2,...,d\} \setminus \{i_1,i_2,...,i_s\} \\ k^j_r = h^{j_r}_n & \\ r = 1,2,...,s & \end{array}$$

Moreover, we have the following proposition:

PROPOSITION 2.1. For every d=1,2,... the class of all probability measures μ on X for which there exists a uniformly infinitesimal collection $\{\mu_{n,k}\}$, $n, k \in \mathbb{N}^d$ and $k \leqslant k_n$, such that $\underset{k \leqslant k_n}{*} \mu_{n,k} \to \mu$ as $n \to \infty$ coincides with

the class of all infinitely divisible probability measures on X.

Proof. Suppose that $\{\mu_{n,k}\}$, $n, k \in \mathbb{N}^d$, be a uniformly infinitesimal collection of probability measures on X such that

$$\underset{k \leq k_n}{*} \mu_{n,k} \to \mu \quad \text{as } n \to \infty.$$

We shall prove that μ is infinitely divisible.

Put, for t, s = 1, 2, ...

$$\nu_{t,s} = \underset{k \leq (s_t, s_t, \dots, s_t)}{*} \mu_{\substack{(t, t, \dots, t), k \\ (d \text{ times})}}$$

where $s_t = k_{(t,t,...,t)}^1$. By the uniform infinitesimality condition of $\{\mu_{n,k}\}$ it follows that the triangular array $\{\nu_{t,s}\}$ $(t, s = 1, 2, ..., s \leq s_t)$ is uniformly infinitesimal too. Moreover,

$$\underset{s\leqslant s_t}{*} v_{t,s} = \underset{k\leqslant (s_t,s_t,\ldots,s_t)}{*} \mu_{(t,t,\ldots,t),k} \to \mu \quad \text{ as } t\to\infty.$$

Consequently, μ is infinitely divisible.

Conversely, given an infinitely divisible probability measure μ on X define a collection $\{\mu_{n,k}\}$ $(n, k \in N^d)$ by

$$\mu_{n,k} = \mu^{\frac{1}{n^1 n^2 \dots n^d}}$$

whenever $n = (n^1, n^2, ..., n^d)$ and $k \in N^d$. It hints at the collection $\{\mu_{n,k}\}$ $(n, k \in N^d; k \le n)$ is uniformly infinitesimal and moreover,

$$\underset{k \leq n}{*} \mu_{n,k} = \mu \quad \text{for every } n \in \mathbb{N}^d.$$

Thus the proposition is proved.

In terms of random variables, the problem we study can be formulated as follows:

PROBLEM I. Suppose that $\{\xi_n\}$, $n \in \mathbb{N}^d$, d = 1, 2, ..., is a random field of X-valued random variables with distributions $\{\mu_n\}$, $\{x_n\}$, $n \in \mathbb{N}^d$, is a vector field in X and A_1 , A_2 , is a sequence of operators from B(X) such that

- (I.1) A_1, A_2 , are invertible and commute one another,
- (I.2) Sem $(\{A_r A_s^{-1}: s = 1, 2, ..., r; r = 1, 2, ...\})$ is compact (in the norm topology of B(X)),

(I.3) the probability measures $\{A_n \mu_k\}$, where k, $n \in \mathbb{N}^d$; $k \leq n$ and $A_n = A_{n^1} A_{n^2}$ A_{n^d} if $n = (n^1, n^2, ..., n^d)$, form a uniformly infinitesimal collection and the distribution of

$$A_n \sum_{k \leq n} \xi_k + x_n$$

converges to a probability measure μ as $n \to \infty$; What can be said about the limit measure μ ?

PROBLEM II. Suppose that $A_1, A_2, ...$ is a sequence of operators from B(X) with the properties (I.1) and (I.2) and μ is a probability measure on X such that for every d = 1, 2, ... there exist a random field $\{\xi_n\}$, $n \in \mathbb{N}^d$, of independent X-valued random variables with distributions $\{\mu_n\}$ and a vector field $\{x_n\}$, $n \in \mathbb{N}^d$, in X such that (I.3) holds. What can be said about the limit measure μ ?

Let us denote by $N_d(X)$, d=1,2,..., the set of all limit measures in the Problem I and by $N_\infty(X)$ the set of all limit measures in the Problem II. Our further aim is to give a description of full measures belonging to $N_d(X)$, $d=1,2,...,\infty$. In the case d=1 K. Urbanik [17] solved the Problem I without the assumption that the operators commute one another. It is interesting how to solve the Problem I for $d \ge 2$ omitting the extra condition that $A_1, A_2, ...$ commute one another.

We note that for full measures in $N_d(X)$, $d = 1, 2, ..., \infty$, on finite-dimensional spaces the compactness condition (I.2) can be omitted ([16], Proposition 3.3). The same is true for non-denegerate measures on a Banach space X when $A_1, A_2, ...$ are multiples of I. In this case, the limit measures in the Problems I and II are multiply self-decomposable ones. We refer the reader to [5] and [8] for an account of multiply self-decomposable probability measures on Banach spaces.

3. Norming sequences

We say that a sequence $A_1, A_2, ...$ of operators from B(X) with the properties (I.1) and (I.2) is a norming sequence corresponding to a probability measure μ in $N_d(X)$, d = 1, 2, ..., if there exist sequences $\{\mu_n\}$, $n \in \mathbb{N}^d$, and $\{x_n\}$, $n \in \mathbb{N}^d$, of probability measures on X with the property (I.3) and elements of X respectively, such that

$$A_n * \mu_k * \delta_{x_n}$$

converges to μ as $n \to \infty$. Here $A_n = A_{n^1} A_{n^2} \dots A_{n^d}$ if $n = (n^1, n^2, \dots, n^d) \in \mathbb{N}^d$. Further, a sequence A_1, A_2, \dots of operators from B(X) with the properties (I.1) and (I.2) is a norming sequence corresponding to a measure μ in $N_{\infty}(X)$

if it is a norming sequence corresponding to the measure μ treated as an element of $N_d(X)$ for every d = 1, 2, ...

Proposition 3.1. For every norming sequence $\{A_j\}$, j=1,2,... corresponding to a full measure μ from $N_d(X)$, $d=1,2,...,\infty$, we have $A_j \rightarrow 0$.

Proof. It suffices to prove the proposition for the case $d < \infty$. Suppose that $A_n v_n * \delta_{x_n} \to \mu$ where μ is full, $v_n = \underset{k \le n}{*} \mu_n$, $n \in \mathbb{N}^d$, and $A_n = A_{n-1} A_{n-2} \dots A_{n-d}$ if $n = (n^1, n^2, \dots, n^d) \in \mathbb{N}^d$. By the condition (I.2) Sem ($\{A_j: j = 1, 2, \dots\}$) is compact. Let A be an arbitrary cluster point of the sequence $\{A_j\}$ and $A_{j_r} \to A$ as $j_r \to \infty$. Since for each $n, n \le (j_r, j_r, \dots, j_r)$,

$$A_{(j_r,j_r,...,j_r)} \nu_{(j_r,j_r,...,j_r)} * \delta_{x_{(j_r,j_r,...,j_r)}} = A_{j_r}^d \nu_n * A_{j_r}^d \underset{k \leq (j_r,j_r,...,j_r)}{*} \mu_k * \delta_{x_{(j_r,j_r,...,j_r)}}$$
and $\exists i=1,2,...,d$
such that $n^i < k^i$

and

$$A_{j_r}^d \mu_k \to \delta_0$$
 for every $k \in \mathbb{N}^d$ when $j_r \to \infty$,

we have the equation

$$(3.1) \mu = A^d \nu_n * \mu (n \in N^d).$$

Further, by the condition (I.2), Sem ($\{AA_{j_r}^{-1}: r=1,2,\ldots\}$) is compact. Let B be a cluster point of the sequence $\{AA_{j_r}^{-1}\}$. Passing if necessary to a subsequence we may assume without loss of generality that $AA_{j_r}^{-1} \to B$. Consequently,

$$(3.2) A = BA.$$

By (3.1) we have the equation

(3.3)
$$\mu = A^d A_{j_r}^{-d} (A_{j_r}^d v_{(J_r, J_r, \dots, J_r)} * \delta_{x_{(J_r, J_r, \dots, J_r)}}) * \mu * \delta_{u_{(J_r, J_r, \dots, J_r)}}$$

where $u_{(j_r,j_r,\ldots,j_r)} = -A_{x_{(j_r,j_r,\ldots,j_r)}}$. Since the sequence $\{\delta_{x_{(j_r,j_r,\ldots,j_r)}}\}$ is conditionally compact ([12], Chapter III, Theorem 2.1), we may assume without loss of generality that $\delta_{u_{(j_r,j_r,\ldots,j_r)}} \to \delta_u$. Then (3.3) implies

$$\mu = B^d \mu * \mu * \delta_u.$$

Consequently, $|B^d \mu(y)| = 1$ for every $y \in X^*$. Thus $B^d \mu = \delta_x$ for a certain $x \in X$ ([3], Proposition 2.3). But this is possible for a full measure μ if and only if $B^d = 0$ and x = 0. Now by (3.2) we get

$$A = B^d A = 0$$

and hence $A_j \to 0$ which completes the proof of the proposition.

LEMMA 3.1. Let $\{A_j\}$, j=1,2,..., be a norming sequence corresponding to a measure $\mu \in N_d(X)$, d=1,2,... (resp. $d=\infty$). Let F denote the set of all cluster points of sequences $A_{j_r}A_{i_r}^{-1}$ with $i_r \leq j_r$, r=1,2,... and $i_r \to \infty$.

Then we have

$$F \times F \times \ldots \times F \subset D^d(\mu)$$

(resp. $F \times F \times \subset D^{\infty}(\mu)$).

Proof. It suffices to prove the lemma for the case $d < \infty$. Let n_r , $m_r \in \mathbb{N}^d$, r = 1, 2, ..., s such that $n_r \leq m_r$ and $n_r \to \infty$. Let C_i , i = 1, 2, ..., d, be a cluster point of the sequence $\{A_{m_r^i} A_{n_r^i}^{-1}\}$, i = 1, 2, ..., d. Suppose that $A_n v_n * \delta_{x_n} \to \mu$, where $v_n = \underset{k \leq n}{*} \mu_k$, $A_n = A_{n_1} A_{n_2} ... A_{n_d}$ whenever $n = (n_1, n_2, ..., n_d)$. Then

(3.4)

$$A_{m_r} v_{m_r} * \delta_{x_{m_r}} = A_{m_r^1} A_{n_r^1}^{-1} (A_{n_r^1} A_{m_r^2} \dots A_{m_r^d} v_{(n_r^1, m_r^2, \dots, m_r^d)} * \delta_{x_{(n_r^1, m_r^2, \dots, m_r^d)}}) * \omega_r^{(1)}$$

where $\omega_r^{(1)} = A_{m_r} \underset{k \leq m_r}{*} \mu_k * \delta_{x_{m_r}^{(1)}}$ for some points $x_{m_r}^{(1)} \in X$. Further, we have

$$(3.5) \quad \omega_{r}^{(1)} = A_{m_{r}^{2}} A_{n_{r}^{2}}^{-1} (A_{m_{r}^{1}} A_{n_{r}^{2}} A_{m_{r}^{3}} \dots A_{m_{r}^{d}} *_{n_{r}^{1} < k^{1}} \mu_{k} * \delta_{x}^{(1)} {}_{(m_{r}^{1}, n_{r}^{2}, m_{r}^{3}, \dots, m_{r}^{d})}) * \omega_{r}^{(2)}$$

$$k^{2} \leq n_{r}^{2}$$

$$k^{3} \leq m_{r}^{3}$$

$$\vdots$$

$$k^{d} \leq m_{r}^{d}$$

where $\omega_r^{(2)}=A_{m_r}\underset{\substack{n_r^1< k^1\\n_r^2< k^2\\k^3\leqslant m_r^3\\\vdots\\k^d\leqslant m^d}}{*}\mu_k*\delta_{x_{m_r}^{(2)}} \text{ for some } x_{m_r}^{(2)}\in X.$ Proceeding successively,

we get a probability measure $\omega_r^{(d)}$ such that

(3.6)

$$\omega_{r}^{(d-1)} = A_{m_{r}^{d}} A_{n_{r}^{d}}^{-1} (A_{m_{r}^{1}} A_{m_{r}^{2}} A_{m_{r}^{d-1}} A_{n_{r}^{d}} * \mu_{k} * \delta_{x} \mu_{k} * \delta_{x} (m_{r}^{1}, m_{r}^{2}, ..., m_{r}^{d-1}, n_{r}^{d}) * \omega_{r}^{(d)}.$$

$$n_{r}^{2} < k^{2}$$

$$n_{r}^{d-1} < k^{d-1}$$

$$k^{d} \le m_{r}^{d}$$

For the simplicity of the notation we may assume that the sequences $\{\omega_r^{(j)}\}_{r=1,2,...}$ (j=1,2,...,d) being conditionally compact ([12], Chapter III, Theorem 2.1) converge to some probability measures $\omega^{(j)}$ (j=1,2,...,d), respectively and for every i=1,2,...,d

$$C_i = \lim_{r \to \infty} A_{m_r^i} A_{n_r^i}^{-1}.$$

Letting $r \to \infty$ we get, by virtue of (3.4), (3.5) and (3.6), the following equations:

$$\mu = C_1 \, \mu * \omega^{(1)}, \; \omega^{(1)} = C_2 \, \omega^{(1)} * \omega^{(2)}, \; \dots, \; \omega^{(d-1)} = C_d \, \omega^{(d-1)} * \omega^{(d)}$$

which show that $\langle C_1, C_2, ..., C_d \rangle \in D^d(\mu)$. The lemma is thus proved.

Given a probability measure μ on X by $A(\mu)$ we shall denote the subset of $D(\mu)$ consisting of all operators A with the property that $\mu = A\mu * \delta_x$ for a certain $x \in X$. It is clear that $A(\mu)$ is a closed subsemigroup of $D(\mu)$ and $I \in A(\mu)$.

LEMMA 3.2. For every norming sequence $\{A_j\}$ (j=1,2,...) corresponding to a full measure μ in $N_d(X)$ $(d=1,2,...,\infty)$

$$(3.7) A(\mu) \cap Sem(F)$$

where F is the set defined in Lemma 3.1, is a compact group containing all cluster points of the sequence $\{A_{j+1} A_j^{-1}\}$ (j = 1, 2, ...).

Proof. It suffices to prove the lemma for the case $d < \infty$. The compactness of the set (3.7) is clear. Suppose that A is a cluster point of the sequence $\{A_{j+1} A_j^{-1}\}$ and $A_{j_r+1} A_{j_r}^{-1} \to A$. From the equation

$$A_{(n^{1}+1,n^{2},...,n^{d})} v_{(n^{1}+1,n^{2},...,n^{d})} * \delta_{x_{(n^{1}+1,n^{2},...,n^{d})}}$$

$$= A_{n^{1}+1} A_{n^{1}}^{-1} (A_{n} v_{n} * \delta_{x_{n}}) * A_{(n^{1}+1,n^{2},...,n^{d})} * k^{1} = n^{1}+1 k^{2} \leq n^{2}$$

$$k^{d} \leq n^{d}$$

where $v_n = \underset{k \le n}{*} \mu_k (n \in N^d)$ and u_n are some points of X, we get, by virtue of (I.3), $\mu = A\mu * \delta_x$. Thus $A \in A(\mu)$ and consequently, A belongs to the set (3.7).

Suppose now that B is an element of the set (3.7). Consider the monothetic compact semigroup Sem ($\{B\}$). By virtue of Numakura Theorem ([11], Theorem 3.1.1) the cluster points of the sequence $\{B^j\}$ form a group G. Moreover, G is the minimal ideal of Sem ($\{B\}$) and Sem ($\{B\}$) contains exactly one idempotent P, namely the unit of G. Hence it follows that G contains an element C with the property that

$$BC = CB = P$$
.

Of course P and C belong to the set (3.7). Thus $\mu = P\mu * \delta_x$ for a certain point $x \in X$. Since μ is full and P is an idempotent, the last formula yields PX = X. Thus P = I and consequently, $C = B^{-1}$ which completes the proof of the lemma.

PROPOSITION 3.2. To every full measure $\mu \in N_d(X)$ $(d = 1, 2, ..., \infty)$ there corresponds a norming sequence $\{B_j\}$, j = 1, 2, ..., with the property that

$$(3.8) B_{i+1}B_i^{-1} \to I.$$

Proof. It suffices to prove the proposition for the case $d < \infty$. Let A_1, A_2 , be an arbitrary norming sequence corresponding to a full measure $\mu \in N_d(X)$. Put

$$G = A(\mu) \cap \operatorname{Sem}(F)$$

where the set F is defined in Lemma 3.1. By Lemma 3.2 G is a compact group containing all cluster points of the sequence $\{A_{j+1}A_j^{-1}\}$. Consequently, we can choose a sequence $\{C_j\}$ (j=1,2,...) of elements of G with the property

(3.9)
$$C_j^{-1} - A_{j+1} A_j^{-1} \to 0 \quad \text{as } j \to \infty.$$

Putting $B_1 = A_1$ and $B_j = C_1 C_2 \dots C_{j-1} A_j$ $(j = 2, 3, \dots)$ we infer that B_1, B_2, \dots are invertible and moreover, Sem $(\{B_j B_r^{-1}: r = 1, 2, \dots, j; j = 1, 2, \dots\})$ being a closed subsemigroup of Sem $(\{A_j A_r^{-1}: r = 1, 2, \dots, j; j = 1, 2, \dots\})$ is compact. Further, by assumption, $A_n \mu_{j_n} \to \delta_0$ for every choice of $\{j_n\}$, $j_n \leq n$, $n \in \mathbb{N}^d$ and $A_n = A_{n1} A_{n2} \dots A_{n^d}$ if $n = (n^1, n^2, \dots, n^d)$. Since the sequence $\{C_1 C_2 C_j\}$, $j = 1, 2, \dots$, is conditionally compact the last relation yields $B_n \mu_{j_n} \to \delta_0$, where $B_n = B_{n1} B_{n2} \dots B_{n^d}$ if $n = (n^1, n^2, \dots, n^d) \in \mathbb{N}^d$. Thus condition (I.3) is fulfilled. Moreover, the conditional compactness of the sequence $\{C_1 C_2 C_j\}$, $j = 1, 2, \dots$, implies the conditional compactness of the sequence $\{B_n v_n * \delta_{u_n}\}$, where for $n = (n^1, n^2, \dots, n^d)$ with $n^j \geq 2$ $(j = 1, 2, \dots, d)$ $u_n = \prod_{j=1}^d (C_1 C_2 C_{n^{j-1}}) x_n$ and $v_n = \prod_{k \leq n}^* \mu_k$. From the relation $A_n v_n * \delta_{x_n} \to \mu$ it follows that each cluster point of $\{B_n v_n * \delta_{u_n}\}$ is of the form $C\mu$, where C is a cluster point of the sequence $\{\prod_{j=1}^d (C_1 C_2 C_{n^{j-1}})\}$, $n = (n^1, n^2, \dots, n^d) \in \mathbb{N}^d$ with $n^j \geq 2$, $j = 1, 2, \dots, d$. But $C \in G$ and, consequently, $\mu = C\mu * \delta_{v_C}$ for a certain $v_C \in X$. Hence it follows that we can choose elements $v_n, n \in \mathbb{N}^d$, in X in such a way that

$$B_n v_n * \delta_{v_n} \to \mu$$
 as $n = (n^1, n^2, ..., n^d) \to \infty$.

Thus B_1, B_2, \ldots is a norming sequence corresponding to μ .

To prove the condition (3.8) we observe that the norms of elements of the compact set G are bounded in common, say by a constant b. Thus

$$||B_{j+1}B_{j}^{-1} - I|| = ||C_{1}C_{2} C_{j}(A_{j+1}A_{j}^{-1} - C_{j})C_{j-1}^{-1}C_{j-2}^{-1} \dots C_{1}^{-1}||$$

$$\leq b^{2}||A_{j+1}A_{j}^{-1} - C_{j}^{-1}||$$

which, by (3.9), implies (3.8). The proposition is thus proved.

4. A characterization of full measures belonging to $N_d(X)$

Let μ be a full probability measure in $N_d(X)$, $d=1,2,...,\infty$. By Proposition 3.2 we choose a norming sequence $\{A_j\}$, j=1,2,..., corresponding to μ with the property $A_{j+1}A_j^{-1} \to I$. We fix this norming sequence for the remainder of this section. Define the set F as in Lemma 3.1 and put S = Sem(F). Let P be a projector belonging to S and

$$S_P = \{A \in S \colon AP = PA = A\}.$$

It is clear that S_P is a compact subsemigroup of S. Further, by G_P we denote the subset of S_P consisting of those operators A for which

$$P\mu = A\mu * \delta_x$$
 for a certain $x \in X$.

LEMMA 4.1. G_P is a compact group with the unit P.

Proof. It is easy to check that G_P is a closed subsemigroup of S_P which implies the compactness of G_P . By the definition of G_P the projector P is the unit of G_P . Let $A \in G_P$. Then the monothetic semigroup Sem (A) is compact and, by Numakura Theorem ([11], Theorem 3.1.1), contains a projector Q and an operator B with the property

$$AB = BA = Q.$$

Of course PQ = QP = Q and $P\mu = Q\mu * \delta_x$ for a certain $x \in X$. Since μ is full the last formula yields PX = QX. Consequently, P = Q and, in view of (4.1), G_P is a group.

LEMMA 4.2. If $A \in S_P$ and $P \in Sem(A)$, then $A \in G_P$.

Proof. Let $A^{k_r} \to P$ for a subsequence $\{k_r\}$ of $\{1, 2, ...\}$. Of course, without loss of generality, we may assume that $k_r \ge 2$ and the sequence $\{A^{k_r-1}\}$ is convergent to an operator B. Then we have AB = P and for some probability measures ν and λ

$$\mu = A\mu * \nu,$$

$$\mu = B\mu * \lambda,$$

because $A, B \in D(\mu)$. From (4.3) we get $A\mu = P\mu * A\lambda$. Hence and from (4.2) we obtain the equation $\mu = P\mu * A\lambda * \nu$. Consequently, $P\mu = P\mu * A\lambda * P\nu$ or in terms of the characteristic functionals

$$\widehat{P\mu}(y) = P\mu(y) \widehat{A\lambda}(y) \widehat{P\nu}(y) \quad (y \in X^*).$$

Thus $|P\mu(y)| = 1$ in a neighbourhood of 0 in X^* which implies $P\nu = \delta_x$ for a certain $x \in X$ ([3], Proposition 2.3). Now taking into account (4.2) we have $P\mu = A\mu * \delta_x$ which completes the proof of the lemma.

Lemma 4.3. For every non-zero projector P belonging to S the semigroup S_P contains a one-parameter semigroup $P \exp tV$ ($t \ge 0$, $V \in B(X)$ with PV = VP = V). Moreover, S_P contains a projector Q with the properties $P \ne Q$ and

$$\lim_{t\to\infty} (P-Q) \exp tV = 0.$$

Proof. By Lemma 4.1 the group G_P is compact. Put

$$a_{t,u} = \min \{ \|P - A_u A_t^{-1} H\| \colon H \in G_P \}.$$

Obviously,

$$(4.4) a_{u,u} = 0 (u = 1, 2, ...)$$

and by Proposition 3.1,

(4.5)
$$\lim_{u \to x} a_{t,u} = ||P|| \ge 1 \quad (t = 1, 2, ...).$$

Since the semigroup Sem ($\{A_r A_s^{-1}: s = 1, 2, ..., r; r = 1, 2, ...\}$) is compact, all its elements have the norm bounded in common by a constant b. Consequently, for $t \le u$

$$a_{t,u+1} \leq \min \left\{ \|P - A_u A_t^{-1} H\| + \|(A_{u+1} A_u^{-1} - I) A_u A_t^{-1} H\| \colon H \in G_P \right\}$$

$$\leq a_{t,u} + b \|A_{u+1} A_u^{-1} - I\|$$

and

$$a_{t,u} \leq \min \left\{ \|P - A_{u+1} A_t^{-1} H\| + \|(A_{u+1} A_u^{-1} - I) A_u A_t^{-1} H\| \colon H \in G_P \right\}$$

$$\leq a_{t,u+1} + b \|A_{u+1} A_u^{-1} - I\|$$

which imply that

(4.6)
$$\lim_{u \to \infty} \max_{1 \le i \le u} |a_{i,u+1} - a_{i,u}| = 0.$$

Given a number c satisfying the condition 0 < c < 1 we can find, by virtue of (4.4) and (4.5), an index $u_t \ge t$ such that $a_{t,u_t} < c$ and $a_{t,u_t+1} \ge c$ (t = 1, 2, ...). From (4.6) it follows that $a_{t,u_t} \to c$. Further, by the conditional compactness of the sequence $\{A_{u_t}A_t^{-1}\}$ and the compactness of G_P we can choose a cluster point A_c of $\{A_{u_t}A_t^{-1}\}$ and $D_c \in G_P$ such that

$$||P-D_c A_c|| = c = \min \{||P-A_c H||: H \in G_P\}.$$

By Lemma 3.1 $A_c \in S$. Consequently, setting $B_c = D_c A_c$ we have $B_c \in S_P$ and

$$(4.7) ||P-B_c|| = c = \min \{||P-B_cH||: H \in G_P\}$$

which yields

(4.8)
$$B_{c} \notin G_{R},$$
Dissertationes Mathematicae CLXXXVI

Put

$$b_{t,c} = \min \{ \|P - B_c^t H\| : H \in G_P \} \quad (t = 1, 2, ...).$$

By (4.7) we have

$$(4.9) b_{1,c} = c.$$

Consider the semigroup Sem ($\{B_c\}$). By Numakura Theorem ([11], Theorem 3.1.1) it contains a projector P_c . Of course

$$\lim_{t\to\infty}\sup b_{t,c}\geqslant \min\left\{\|P-P_c\cdot H\|\colon H\in G_P\right\}.$$

Since $P_c \in S_P$, $P - P_c$ is also a projector and, by Lemma 4.2, $P_c \neq P$. Thus

Put

$$a = \inf \{ \|P - P_c H\| \colon H \in G_P, \ 0 < c < 1 \}.$$

We shall show that a > 0. Contrary to this let us assume that a = 0. Then by the compactness of S_P and G_P , we can find an element D of G_P and a cluster point R of $\{P_c: 0 < c < 1\}$ with the property P = DR. Since R is also a projector and $R \in S_P$, we have R = PR = DR = P. Consequently, P is a cluster point of $\{P_c: 0 < c < 1\}$ which contradicts (4.11). Thus a > 0 and, by (4.10),

(4.12)
$$\lim_{t \to \infty} \sup b_{t,c} \geqslant a > 0 \quad \text{for every } c \ (0 < c < 1).$$

Further, taking into account that all elements of the compact semigroup S have norm bounded by a constant b, we have, in view of (4.7),

$$b_{t+1,c} \leq \min \{ \|P - B_c^t H\| + \|(B_c^t - B_c^{t+1}) H\| : H \in G_P \} \leq b_{t,c} + bc.$$

and

$$b_{t,c} \leq \min \left\{ \|P - B_c^{t+1} H\| + \|(B_c^{t+1} - B_c^t) H\| \colon H \in G_P \right\} \leq b_{t+1,c} + bc$$

which imply that

(4.13)
$$\lim_{\epsilon \to 0} \sup_{t=1,2,...} |b_{t+1,\epsilon} - b_t| = 0.$$

Let $c_t \to 0$. Given a number d satisfying the condition 0 < d < a, we can find, by virtue of (4.9) and (4.12), an integer t_u such that $b_{t_u,c_u} < d$ and $b_{t_u+1,c_u} \ge d$. From (4.13) it follows that $b_{t_u,c_u} \to d$. The sequence $\{B_{c_u}^{t_u}\}$ is conditionally compact. Let E_d be its cluster point. Then

$$(4.14) \qquad \min \{ \|P - E_d H\| \colon H \in G_P \} = d \quad (0 < d < a)$$

and, consequently,

$$(4.15) E_d \notin G_P (0 < d < a).$$

The set $\{E_d: 0 < d < a\}$ is also conditionally compact. Let E_0 be its cluster point when $d \to 0$. Then by (4.14) and the compactness of G_P , $P = H_0 E_0$ for a certain H_0 of the group G_P . Since $E_0 \in S_P$, this implies that $E_0 \in G_P$. Consequently, by Numakura Theorem ([11], Theorem 3.1.1), there exists a positive integer q such that

$$||P - E_0^q|| < \frac{1}{4}$$
.

Taking a positive number d_0 with the property

$$||E_0^q - E_{00}^q|| < \frac{1}{4}$$

we put

$$(4.16) W = E_{d_0}^q.$$

Then

and, by the definition of the operators E_d ,

$$(4.18) B_{ci}^{r_i} \to W$$

where $r_i \in \{1, 2, ...\}$ and $r_l \to \infty$. From (4.7) and (4.17) it follows that the operators B_{c_l} and W can be represented in an exponential form

$$(4.19) B_{c_i} = P \exp U_t, W = P \exp V$$

where $U_i, V \in B(X), PV = VP = V, PU_i = U_i V = U_i (i = 1, 2),$

$$(4.20) WV = VW$$

and, by (4.18),

$$(4.21) r_i U_i \to V$$

Let t be an arbitrary positive real number. Then, by (4.19) and (4.21),

$$B_{c_i}^{[r_i t]} \rightarrow P \exp tV$$
,

where the square brackets denote the integral part. Since $B_{c_l} \in S_P$ we infer that the one-parameter semigroup $\{P \exp tV\}$ $(t \ge 0)$ is contained in S_P . Consider the semigroup Sem $(\{W\})$. By the Numakura Theorem ([11]. Theorem 3.1.1) it contains a projector Q. By (4.16) $Q \in \text{Sem }(\{E_{d_0}\})$. By (4.15) and Lemma 4.2 we have the inequality $P \ne Q$. Obviously, $Q \in S_P$ and the set $\{(P-Q) \exp tV: t \ge 0\}$ is conditionally compact. Let H be its cluster point when $t \to \infty$. Then for a sequence $\{t_r\}$ tending to ∞ we have

(4.22)
$$\lim_{r \to \infty} (P - Q) \exp t_r V = H.$$

Passing to a subsequence if necessary we may assume without loss of generality that both sequences $\{P \exp[t_r] V\}$ and $\{P \exp(t_r - [t_r]) V\}$ are

convergent to H_1 and H_2 respectively. By (4.19) H_1 is a cluster point of the sequence $\{W^r\}$. Consequently, $QH_1 = H_1Q = H_1$. Thus $(P-Q)H_1 = 0$, because $H_1 \in S_P$. Furthermore, by (4.22), $H = (P-Q)H_1H_2$ which implies H = 0. Thus we have proved that

$$\lim_{t \to \infty} (P - Q) \exp tV = 0$$

which completes the proof of the lemma.

The following theorem gives a characterization of full measures belonging to $N_d(X)$ $(d = 1, 2, ..., \infty)$ in terms of their multi-dimentional decomposability algebraic structures.

THEOREM 4.1. A full probability measure μ on X belongs to the set $N_d(X)$ (d=1,2,...) (resp. $d=\infty$) if and only if there exists a one-parameter semigroup $T_t:=\exp tV(t\geqslant 0)$ with $V\in B(X)$ and $\lim_{t\to\infty}T_t=0$ such that μ is d-times (resp. completely) $\{T_t\}_{t\geqslant 0}$ -decomposable.

Proof. It suffices to prove the theorem for the case $d < \infty$.

The necessity. Suppose that μ is a full measure from the set $N_d(X)$ (d=1,2,...). By Proposition 3.2 we choose a norming sequence $\{A_j\}$, j=1,2,..., corresponding to μ with the property that $A_{j+1}A_j^{-1} \to I$. By Lemma 3.2 $I \in S$. By consecutive application of Lemma 4.3 we get a system of projectors $P_0 = I$, $P_1,...,P_r$ and a system of operators $V_1, V_2,...,V_r$ with the following properties: S_{P_j} contains the one-parameter semigroup $P_j \exp tV_{j+1}$ $(t \ge 0)$, $P_j V_{j+1} = V_{j+1}P_j = V_{j+1}$, $P_{j+1} \in S_{P_j}$, $P_{j+1}V_{j+1} = V_{j+1}P_{j+1}$, $P_j \ne P_{j+1}$ and $\lim_{t\to\infty} (P_j - P_{j+1}) \exp tV_{j+1} = 0$ (j=0,1,2,...,r-1). Moreover, by the compactness of S we may assume that $P_r = 0$. Further, the condition $P_j \in S_{P_{j-1}}$ yields $P_j P_{j-1} = P_{j-1}P_j = P_j$ (j=1,2,...,r). Put $Q_j = P_{j-1} - P_j = P_j(I - P_{j-1})$ and $U = \operatorname{Sem}(\{S, I - P_j: j=1,2,...,r\})$. By Proposition 1.3 we have the inclusion

$$(4.23) U \times U \times \dots \times U \in D^{d}(\mu).$$

It is clear that $Q_j \in U$ (j = 1, 2, ..., r), $\sum_{j=1}^r Q_j = I$, $Q_j V_j = V_j Q_j$ and the one-parameter semigroup $Q_j \exp tV_j$ $(t \ge 0)$ is contained in U. Moreover,

$$\lim_{t\to\infty}\sum_{j=1}^r Q_j \exp tV_j = 0.$$

Now by (4.23) and by Proposition 1.2 we infer that for any $t_1, t_2, ..., t_d \ge 0 < \sum_{j=1}^r Q_j \exp t_1 V_j$, $\sum_{j=1}^r Q_j \exp t_2 V_j$, $\sum_{j=1}^d Q_j \exp t_d V_j > \in D^d(\mu)$. Setting $V = \sum_{j=1}^r Q_j V_j$ we have $\exp tV = \sum_{j=1}^r Q_j \exp tV_j$. Then the one-

parameter semigroup $T_t = \exp tV$ satisfies the condition $\lim_{t \to \infty} T_t = 0$ and, moreover, the measure μ is d-times $\{T_t\}$ -decomposable.

The sufficiency. Let $T_i = \exp tV$ $(t \ge 0)$ be a one-parameter semigroup such that $\lim_{t\to\infty} T_t = 0$ and μ is d-times $\{T_i\}$ -decomposable. Setting, for

$$j = 1, 2,$$
 $B_j = \exp \frac{1}{j} V$, we have the formula

(4.24)
$$\mu = B_{n^1} \mu * \lambda_{n^1} \quad (n^1 = 1, 2, ...).$$

Put

$$A_j = \exp \sum_{i=1}^{j} \frac{1}{i} V$$
 $(j = 1, 2, ...)$

and

(4.25)
$$\mu_{n^1} = \begin{cases} A_1^{-1} \mu & \text{for } n^1 = 1, \\ A_{n^1}^{-1} \lambda_{n^1} & \text{for } n^1 = 2, 3, \dots \end{cases}$$

Since for any $n=(n^1,n^2,\ldots,n^d)\in N^d$ $\langle B_{n^1},B_{n^2},\ldots,B_{n^d}\rangle\in D^d(\mu)$ and by (4.24) we have $B_{n^2}\in D(\lambda_{n^1})$. Consequently, by (4.25), $B_{n^2}\in D(\mu_{n^1})$ and hence there exists a probability measure λ_{n^1,n^2} such that

$$\mu_{n1} = B_{n2} \mu_{n1} * \lambda_{n1,n2}.$$

Put, for $n^1, n^2 = 1, 2, ...,$

(4.27)
$$\mu_{n^{1},n^{2}} = \begin{cases} A_{1}^{-1} \lambda_{n^{1}} & \text{for } n^{2} = 1, \\ A_{n^{2}}^{-1} \lambda_{n^{1},n^{2}} & \text{for } n^{2} > 1. \end{cases}$$

By the same reason as above we infer that for every $n^3=1,2,...$ $B_{n^3}\in D(\mu_{n^1,n^2})$. Proceeding successively, we get 2 systems of probability measures $\mu_{n^1},\ \mu_{n^1,n^2},...,\mu_{n^1,n^2,...,n^d}$ and $\lambda_{n^1},\ \lambda_{n^1,n^2},...,\lambda_{n^1,n^2,...,n^d}$ $(n^1,n^2,...,n^d,n^d)$ $(n^1,n^2,...,n^d)$ $(n^1,n^2,...,n^d)$ $(n^1,n^2,...,n^d)$ $(n^1,n^2,...,n^d)$ with the properties that for every $n^2=1,2,...,n^d$

(4.28)
$$\mu_{n^1, n^2, \dots, n^r} = B_{n^r+1} \mu_{n^1, n^2, \dots, n^r} * \lambda_{n^1, n^2, \dots, n^r+1}$$

and

(4.29)
$$\mu_{n^{1}, n^{2}, \dots, n^{r+1}} = \begin{cases} A_{1}^{-1} \lambda_{n^{1}, n^{2}, \dots, n^{r}} & \text{for } n^{r+1} = 1, \\ A_{n^{r+1}}^{-1} \lambda_{n^{1}, n^{2}, \dots, n^{r+1}} & \text{for } n^{r+1} > 1. \end{cases}$$

Now, by (4.25), (4.28) and (4.29), we have

$$\mu = A_{n1} A_{n2} ... A_{nd} *_{k \leq n} \mu_k \quad (n = (n^1, n^2, ..., n^d)).$$

It remains to prove that the collection of probability measures $\{A_n \mu_k\}$ $\{n, k \in \mathbb{N}^d, k \leq n \text{ and } A_n = A_{n^1} A_{n^2} \dots A_{n^d} \text{ whenever } n = (n^1, n^2, \dots, n^d) \in \mathbb{N}^d \}$ is uniformly infinitesimal. We shall prove this by induction.

Let $i_1 < i_2 < i_s$ be a subsequence of $\{1, 2, ..., d\}$. Then by virtue of (4.25), (4.28) and (4.29) we have

$$(4.30) \qquad \underset{\substack{1 \leq k^{j} \leq n^{j} \\ j \in \{1, 2, \dots, d\} \setminus \{i_{1}, i_{2}, \dots, i_{s}\}}}{*} A_{n} \mu_{k} = A_{n^{i_{1}}} A_{n^{i_{2}}} \dots A_{n^{i_{s}}} \mu_{k^{i_{1}, k^{i_{2}}}, \dots, k^{i_{s}}}$$

whenever $n = (n^1, n^2, ..., n^d)$ and $k = (k^1, k^2, ..., k^d)$.

For s=1 it is known (see the proof of Theorem 4.1 [17]) that $A_{n^{l_1}}\mu_{k^{l_1}}\to \delta_0$ for each choice of $k^{l_1}\leqslant n^{l_1}$. Suppose that for any choice of $k^{l_1}\leqslant n^{l_1}$, $k^{l_2}\leqslant n^{l_2}$, ..., $k^{l_r}\leqslant n^{l_r}$ $(r=1,2,\ldots,s-1)$ we have

$$A_{n}^{i_{1}} A_{n}^{i_{2}} \dots A_{n}^{i_{r}} \mu_{k}^{i_{1}} \mu_{k}^{i_{2}} \dots \mu_{k}^{i_{r}} \to \delta_{0}$$

From (4.28) and (4.29) we get the equations

$$\begin{split} A_{n}i_{1} & \stackrel{1}{\wedge}_{n}i_{2} \dots A_{n}i_{r+1} \mu_{k}i_{1,k}i_{2,\dots,k}i_{r+1} \\ &= A_{n}i_{1} A_{n}i_{2} \dots A_{n}i_{r} (A_{n}i_{r+1} A_{k}i_{r+1}) \lambda_{k}i_{1,k}i_{2,\dots,k}i_{r+1} \quad (k^{i_{r+1}} > 1) \end{split}$$

and

$$\begin{split} A_{n}i_{1} A_{n}i_{2} & \dots A_{n}i_{r} \mu_{k}i_{1,k}i_{2,\dots,k}i_{r} \\ &= B_{k}i_{r+1} A_{n}i_{1} A_{n}i_{2} \qquad A_{n}i_{r} \mu_{k}i_{1,k}i_{2,\dots,k}i_{r} * A_{n}i_{1} A_{n}i_{2} \dots A_{n}i_{r} \lambda_{k}i_{1,k}i_{2,\dots,k}i_{r+1}. \end{split}$$

Consequently, by the induction assumption and by the fact that the sequence $\{A_{n^i r+1} A_{k^i r+1}^{-1}\}$ is conditionally compact $A_{n^i 1} A_{n^i 2} A_{n^i r+1} \mu_{k^i 1, k^i 2, \dots, k^i r+1} \rightarrow \delta_0$ for each choice of $k^{i_1} \leq n^{i_1}$, $k^{i_2} \leq n^{i_2}$, ..., $k^{i_{r+1}} \leq n^{i_{r+1}}$ Thus the condition (I.3) is also fulfilled which completes the proof of the theorem.

5. A characterization of multiply $\{T_t\}$ -decomposable probability measures on X

It is well-known ([14], [15], [2]) that every infinitely divisible probability measure μ on X has a unique representation

$$(5.1) \mu = \rho * \tilde{e}(M)$$

where ϱ is a symmetric Gaussian measure and $\tilde{e}(M)$ is a generalized Poisson measure on X. In terms of the characteristic functional we have the formulas

(5.2)
$$\hat{\varrho}(y) = \exp\left\{-\frac{1}{2}\langle y, Ry\rangle\right\} \quad (y \in X^*)$$

R being a covariance operator i.e. a compact operator from X^* into X such that $\langle y_1, Ry_2 \rangle = \langle y_2, Ry_1 \rangle$ (symmetry) and $\langle y, Ry \rangle \geqslant 0$ (non-negativity)

([4], [18]) and

(5.3)
$$\hat{\vec{e}}(M)(y) = \exp \{i \langle y, x_0 \rangle + \int_X K(x, y) M(dx)\}$$

for a certain $x_0 \in X$. The kernel K is defined by the formula

$$K(x, y) = \exp i\langle y, x \rangle - 1 - i\langle y, x \rangle 1_W(x)$$

where 1_W denotes the indicator of a compact subset W of X. Furthermore, the measure M being a generalized Poisson exponent has a finite mass outside every neighbourhood of 0 in X.

Let R(X) denote the set of all covariance operators of symmetric Gaussian measures on X and M(X) denote the set of all generalized Poisson exponents on X. Recall that if R_1 is a symmetric non-negative operator from X^* into X and $R_2 - R_1$ is non-negative for a certain operator $R_2 \in R(X)$, then also $R_1 \in R(X)$ ([18], p. 151). Moreover, M(X) is a cone, i.e. if $M \in M(X)$ and $M \ge N \ge 0$, then $N, M - N \in M(X)$.

Given an operator $V \in B(X)$ with the property that $T_t := \exp tV \to 0$ as $t \to \infty$ we shall denote by $L_d(X, V)$ $(d = 1, 2, ..., \infty)$ the set of all d-times $\{T_t\}$ -decomposable probability measures on X. In particular, $L_\infty(X, V)$ denotes the set of all completely $\{T_t\}$ -decomposable probability measures on X. It is evident that

$$L_d(X, V) \subseteq L_{d+1}(X, V) \subseteq L_{\infty}(X, V)$$
 for every $d = 1, 2, ...$

Lemma 5.1. Suppose that $\mu = \varrho * \tilde{e}(M)$ where ϱ is a symmetric Gaussian measure with the covariance operator R and $M \in M(X)$. If $\langle A_1, A_2, ..., A_d \rangle \in D^d(\mu)$ and

$$\mu = A_1 \mu * \mu_{A_1},$$

$$\mu_{A_1,A_2,...,A_j} = A_{j+1} \mu_{A_1,A_2,...,A_j} * \mu_{A_1,A_2,...,A_{j+1}} \qquad (j = 1, 2, ..., d-1)$$

where the measures μ_{A_1} , μ_{A_1,A_2} , ..., μ_{A_1,A_2} , ..., A_d are infinitely divisible, then $\langle A_1, A_2, ..., A_d \rangle \in D^d(\varrho)$ and $\langle A_1, A_2, ..., A_d \rangle \in D^d(\tilde{e}(M))$. Moreover, if $\mu_{A_1,A_2,...,A_j} = \varrho_j * \tilde{e}(M_j)$ (j = 1, 2, ..., d) is the Tortrat representation of the measure $\mu_{A_1,A_2,...,A_j}$, then the covariance operator R_j of ϱ_j is given by the formula

$$(5.4) R_j = R + \sum_{r=1}^j (-1)^r \sum_{1 \le i_1 \le i_2 \le \dots \le i_r \le j} A_{i_r} A_{i_{r-1}} A_{i_1} R A_{i_1}^* A_{i_2}^* \dots A_{i_r}^*$$

and the generalized Poisson exponent M_j is given by the formula

(5.5)
$$M_{j} = M + \sum_{r=1}^{j} (-1)^{r} \sum_{1 \leq i_{1} < i_{2} < \dots < i_{r} \leq j} A_{i_{r}} A_{i_{r-1}} A_{i_{1}} M.$$

Proof (by induction). If d=1 the lemma reduces to Urbanik's lemma ([17], Lemma 5.1). Suppose that our lemma is true for $d \ge 1$. Further, let $\langle A_1, A_2, ..., A_{d+1} \rangle \in D^{d+1}(\mu)$ and $\mu_{A_1}, \mu_{A_1, A_2}, ..., \mu_{A_1, A_2, ..., A_{d+1}}$ are infinitely divisible. We shall prove that for every j=1, 2, ..., d+1 equations (5.4) and (5.5) hold.

By the induction assumption for every j = 1, 2, ..., d R_j and M_j are given by (5.4) and (5.5) respectively. On the other hand,

$$\mu_{A_1,A_2,...,A_d} = A_{d+1} \varrho_d * \varrho_{d+1} * \tilde{e} (A_{d+1} M_d + M_{d+1}).$$

1

Consequently, by the uniqueness of the Tortrat representation, $\varrho_d = A_{d+1} \varrho_d * \varrho_{d+1}$ and $M_d = A_{d+1} M_d + M_{d+1}$ which together with (5.4) and (5.5) (for j = d) imply that the equations (5.4) and (5.5) hold also for j = d+1. The lemma is thus proved.

THEOREM 5.1. Let $V \in B(X)$ and $T_t := \exp tV \to 0$ as $t \to \infty$. Then a probability measure μ on X is d-times $\{T_t\}$ -decomposable $(d = 1, 2, ..., \infty)$ if and only if $\mu = \varrho * \widetilde{e}(M)$, where ϱ is a symmetric Gaussian measure with the covariance operator R and $M \in M(X)$ such that for every j = 1, 2, ..., d,

$$(5.6) (-1)^{j} (V^{j} R + V^{j-1} R V^{*} + V^{j-1} + R V^{*j}) \ge 0$$

and

(5.7)

$$M + \sum_{r=1}^{j} (-1)^{r} \sum_{1 \leq i_{1} < i_{2} < \dots < i_{r} \leq j} T_{i_{i_{1}} + i_{i_{2}} + \dots + t_{i_{r}}} M \geq 0 \quad \text{for all } t_{1}, t_{2}, \dots, t_{j} \geq 0$$

Proof. It is enough to prove the theorem for $d < \infty$. Let $\mu \in L_d(X, V)$ and $t_1, t_2, ..., t_d \ge 0$. Then there exist probability measures $\mu_{t_1}, \mu_{t_1, t_2}, ..., \mu_{t_1, t_2, ..., t_d}$ such that

$$\mu = T_{t_1} \mu * \mu_{t_1},$$

$$\mu_{t_1,t_2,...,t_j} = T_{t_{j+1}} \mu_{t_1,t_2,...,t_j} * \mu_{t_1,t_2,...,t_{j+1}} \quad (j = 1, 2, ..., d-1).$$

Since $L_d(X, V) \subseteq L_1(X, V)$ $(d = 1, 2, ..., \infty)$ and by Corollary 4.2 [17] the probability measures $\mu, \mu_{i_1}, ..., \mu_{i_1, i_2, ..., i_d}$ are infinitely divisible. Let

$$\mu = \varrho * \tilde{e}(M)$$
 and $\mu_{t_1, t_2, ..., t_j} = \varrho_{t_1, t_2, ..., t_j} * \tilde{e}(M_{t_1, t_2, ..., t_j})$

be their Tortrat representations, where ϱ , $\varrho_{t_1,t_2,...,t_j}$ (j=1,2,...,d) are some symmetric Gaussian measures on X with the covariance operators R_j , $R_{t_1,t_2,...,t_j}$ respectively and M, $M_{t_1,t_2,...,t_j} \in M(X)$. By virtue of Lemma 5.1

we get the equations

(5.8)

$$R_{t_1,t_2,\ldots,t_j} = R + \sum_{r=1}^{j} (-1)^r \sum_{1 \le i_1 < i_2 < \ldots < i_r \le j} T_{i_{i_1} + t_{i_2} + \ldots + t_{i_r}} R T_{i_{i_1} + t_{i_2} + \ldots + t_{i_r}}^* R T_{i_{i_1} + t_{i_2} + \ldots + t_{i_r}}^*$$

and

$$(5.9) M_{t_1,t_2,\ldots,t_j} = M + \sum_{r=1}^{j} (-1)^r \sum_{1 \leq t_1 < t_2 < \ldots < t_r \leq j} T_{t_{i_1} + t_{i_2} + \ldots + t_{i_r}} M.$$

Hence it follows that the relation (5.7) holds. Further, by equation (5.8) and taking into account the expansion in a neighbourhood of 0

$$R_{t_1,t_2,...,t_j} = (-1)^j t_1 t_2 \dots t_j (V^j R + V^{j-1} R V^* + V R V^{*(j-1)} + R V^{*j}) + o(t_1, t_2, ..., t_i)$$

it follows that (5.6) holds.

Conversely, suppose that (5.6) and (5.7) hold for every j=1,2,...,d. Given $t_1,t_2,...,t_d \ge 0$ define $R_{t_1,t_2,...,t_j}$ and $M_{t_1,t_2,...,t_j}$ according to the formulas (5.8) and (5.9). By an easy induction it follows that $M_{t_1,t_2,...,t_j} \in M(X)$ (j=1,2,...,d) and

$$\tilde{e}(M) = T_{t_1} \tilde{e}(M) * \tilde{e}(M_{t_1}),$$

$$\tilde{e}(M_{t_1,t_2,...,t_j}) = T_{t_{j+1}} \tilde{e}(M_{t_1,t_2,...,t_j}) * \tilde{e}(M_{t_1,t_2,...,t_{j+1}}) \quad (j = 1, 2, ..., d-1).$$

Consequently, $\langle T_{t_1}, T_{t_2}, ..., T_{t_d} \rangle \in D^d(\tilde{e}(M))$. It remains to prove that $\langle T_{t_1}, T_{t_2}, ..., T_{t_d} \rangle \in D^d(\varrho)$. Accordingly, it suffices to prove that $R_{t_1, t_2, ..., t_j} \geqslant 0$ for every j = 1, 2, ..., d and for all $t_1, t_2, ..., t_d \geqslant 0$.

For j=1 we have $R_{t_1} \ge 0$ ([17], Theorem 5.1). Suppose that $R_{t_1,t_2,...,t_j} \ge 0$ $(t_1,t_2,...,t_j \ge 0)$. By the definition of $R_{t_1,t_2,...,t_j}$ we have the formula

$$R_{t_1,t_2,\ldots,t_{j+1}} = R_{t_1,t_2,\ldots,t_j} - T_{t_{j+1}} R_{t_1,t_2,\ldots,t_j} T_{t_{j+1}}^*$$

which, by Theorem 5.1 [17], implies that $R_{t_1,t_2,...,t_{J+1}} \ge 0$. Thus by induction the theorem is proved.

Let $\{T_t\}$ be the same as in Theorem 5.1. For every d=1,2,... let $R_d(X,V)$ denote a subset of R(X) consisting of all covariance operators R of the form

(5.10)
$$R = \int_{0}^{\infty} t^{d-1} T_{t} Q T_{t}^{*} dt$$

for a certain symmetric non-negative operator Q from X^* into X. It is evident that

$$R_{d+1}(X, V) \subseteq R_d(X, V) \quad (d = 1, 2, ...).$$

Further, we put

$$(5.11) R_{\infty}(X, V) = \bigcap_{d=1}^{\infty} R_d(X, V).$$

THEOREM 5.2. The class of all covariance operators of d-times $\{T_i\}$ -decomposable Gaussian measures on X coincides with $R_d(X, V)$ $(d = 1, 2, ..., \infty)$.

Proof. Let $d < \infty$ and R be a covariance operator of d-times $\{T_t\}$ -decomposable Gaussian measure ϱ on X. Given $t_1, t_2, ..., t_d \ge 0$ define the covariance operators $R_{t_1, t_2, ..., t_j}$ by the formula (5.8). For every $y \in X^*$ define the functions $f_y(t_1, t_2, ..., t_j)$ (j = 1, 2, ..., d) by

$$f_{y}(t_{1}, t_{2}, ..., t_{j}) = \langle y, R_{t_{1}, t_{2}, ..., t_{j}} y \rangle.$$

It is evident that

$$\frac{\partial^{j}}{\partial t_{1}, \partial t_{2}, ..., \partial t_{j}} f_{y}(t_{1}, t_{2}, ..., t_{j})$$

$$= \langle y, T_{t_{1}+t_{2}+...+t_{j}} \{ (-1)^{j} (V^{j}R + V^{j-1}RV^{*} + VRV^{*(j-1)} + RV^{*j}) \} \times T_{t_{1}+t_{2}+...+t_{j}} y \rangle.$$

Consequently,

$$f_{y}(t_{1}, t_{2}, ..., t_{j}) = \int_{0}^{t_{1}} \int_{0}^{t_{2}} \left\langle y, T_{s_{1}+s_{2}+...+s_{j}} Q_{j} T_{s_{1}+s_{2}+...+s_{j}}^{*} y \right\rangle ds_{1} ds_{2} ... ds_{j}$$

where by Q_I we denote the operator

$$(-1)^{j}(V^{j}R+V^{j-1}RV^{*}+ + VRV^{*(j-1)}+RV^{*j}).$$

Letting $t_1, t_2, ..., t_j \to \infty$ and taking into account the fact that $T_t \to 0$ as $t \to \infty$ we get the equation

$$\langle y, Ry \rangle = \int_{0}^{\infty} \int_{0}^{\infty} \left(y, T_{s_1 + s_2 + \dots + s_j} Q_j T_{s_1 + s_2 + \dots + s_j}^* y \right) ds_1 ds_2 \quad ds_j$$

which, by a simple changing the variables, implies that

$$\langle y, Ry \rangle = \frac{1}{(j-1)!} \langle y, \int_0^\infty t^{j-1} T_i Q_j T_i^* dt y \rangle.$$

Putting j = d and $Q = \frac{1}{(d-1)!} Q_d$ into this formula we have the equation

$$R = \int_0^\infty t^{d-1} T_t Q T_t^* dt.$$

It is clear, by Theorem 5.1, that Q is a symmetric non-negative operator from X^* into X. Thus we conclude that $R \in R_d(X, V)$.

Conversely, let $R \in R_d(X, V)$. Then there exists a symmetric non-negative operator Q from X^* into X such that the equation (5.10) holds. Let us write (5.10) in an equivalent form

$$(5.12) R = \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} T_{s_1+s_2+\ldots+s_j} Q' T_{s_1+s_2+\ldots+s_j}^* ds_1 ds_2 \ldots ds_j,$$

where Q' = (d-1)! Q. Then for any j = 1, 2, ..., d and $t_1, t_2, ..., t_j \ge 0$ we get the formula

$$\begin{split} R_{t_1,t_2,\ldots,t_j} &:= R + \sum_{r=1}^{j} (-1)^r \sum_{\substack{1 \leq i_1 < i_2 < \ldots < i_r \leq j}} T_{t_{i_1} + t_{i_2}} + \sum_{\substack{+t_{i_r} R T_{t_{i_1} + t_{i_2} + \ldots + t_{i_r} \\ + t_{i_r} R T_{t_{i_1} + t_{i_2} + \ldots + t_{i_r}}}^* R T_{t_{i_1} + t_{i_2} + \ldots + t_{i_r}}^* R T_{t_{i_1} + t_{i_2} + \ldots + t_{i_r}}^* \\ &= \int_{0}^{t_1} \int_{0}^{t_2} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} T_{s_1 + s_2 + \ldots + s_d} Q' T_{s_1 + s_2 + \ldots + s_d} ds_1 ds_2 \ldots ds_d, \end{split}$$

which, by the assumption that Q is symmetric and non-negative implies $R_{t_1,t_2,...,t_j} \ge 0$. But, by the proof of Theorem 5.1, the last inequality is equivalent to the condition (5.6). Hence and by Theorem 5.1 R is a covariance operator of a d-times $\{T_i\}$ -decomposable Gaussian measure on X. Thus the theorem is proved for the case $d < \infty$. The case $d = \infty$ is quite clear which completes the proof of the theorem.

6. A reduction of the problem

In [17] K. Urbanik has introduced a concept of weight functions on a real separable Banach space X. Roughly speaking, a weight function on X is every real-valued function Φ on X such that

- (a) $\Phi(0) = 0$ and $\Phi(x) > 0$ for all $x \neq 0$,
- (b) $\Phi(x)$ converges to a positive limit as $||x|| \to \infty$,
- (c) $\Phi(x) \le \alpha ||x||^2$ for a certain positive constant α and for all $x \in X$,
- (d) $\int_{X} \Phi(x) M(dx) < \infty$ for every $M \in M(X)$,
- (e) if $M_j \in M(X)$, $\tilde{e}(M_j) \to \mu$ and $\int_X \Phi(x) M_j(dx) \to 0$, then $\mu = \delta_x$ for a certain $x \in X$.

It is known ([17], Proposition 5.2) that for every real separable Banach space X there exists a weight function on X.

Given a subset E of X we put

$$\tau(E) = \{T_t x : x \in E, -\infty < t < \infty\},\$$

where $\{T_t\}$ is a semigroup as described in Theorem 5.1.

Lemma 6.1 (cf. [17], Lemma 5.4). For every $M \in M(X)$ there exists a sequence $\{E_j\}$ of compact subset of X such that $0 \notin E_j$, $\tau(E_i) \cap \tau(E_j) = \emptyset$

if $i \neq j$ (i, j = 1, 2, ...) and $M = \sum_{j=1}^{\infty} M_j$ where M_j is the restriction of M to $\tau(E_i)$.

We note that if $M \in M_d(X, V)$ $(d = 1, 2, ..., \infty)$ then for every $\{T_i\}$ -invariant subset U of X, i.e. such a subset that $\tau(U) = U$, the restriction of M to U, denoted by $M|_U$ belongs to $M_d(X, V)$ too. Consequently, from Lemma 6.1 we get the following corollary:

COROLLARY 6.1. Let $M \in M_d(X, V)$ $(d = 1, 2, ..., \infty)$. Then there exists a decomposition $M = \sum_{j=1}^{\infty} M_j$, where $M_j \in M_d(X, V)$ (j = 1, 2, ...) M_j are concentrated on disjont sets $\tau(E_j)$, $0 \notin E_j$, and E_j are compact.

This corollary reduces our problem of examing measures $M \in M_d(X, V)$ $(d = 1, 2, ..., \infty)$ to the case of measures concentrated on $\tau(E)$ where E is compact and $0 \notin E$. We denote this class of measures by $L_d(E, V)$ $(d = 1, 2, ..., \infty)$. Following K. Urbanik [17] we shall find a suitable compactification of $\tau(E)$ and determine the extreme points of a certain convex set formed by probability measures on this compactification.

Accordingly, let $[-\infty, \infty]$ be the usual compactification of the real line and let E be a compact subset of X such that $0 \notin E$. Then $E \times [-\infty, \infty]$ endowed with the product topology becomes a compact space. We define an equivalence relation in $E \times [-\infty, \infty]$ as follows: $(x_1, t_1) \sim (x_2, t_2)$ where $x_1, x_2 \in E$ and $t_1, t_2 \in [-\infty, \infty]$, if and only if there exists a real number s such that $T_s x_1 = x_2$ and $t_2 = t_1 - s$. It is known [17] that \sim is continuous. Hence the quotient space $E \times [-\infty, \infty]/\sim$ denoted by $\bar{\tau}(E)$ is compact. The element of $\bar{\tau}(E)$, i.e. the coset containing (x, t) will be denoted by [x, t]. Each element of $\tau(E)$ is of the form $T_t x$, where $x \in E$ and t is a real number. In general this representation is not unique. But $T_{t_1}x_1 = T_{t_2}x_2$ if and only if $(x_1, t_1) \sim (x_2, t_2)$. Thus the mapping $T_t x \to [x, t]$ is an embedding of $\tau(E)$ into a dense subset of $\bar{\tau}(E)$. In other words, $\bar{\tau}(E)$ is a compactification of $\tau(E)$. In the sequel we shall identify the elements $T_t x$ of $\tau(E)$ and the corresponding elements [x, t] of $\overline{\tau}(E)$. Further, we extend the functions T_s $(-\infty < s < \infty)$ and $\| \|$ from $\tau(E)$ onto $\bar{\tau}(E)$ by continuity, i.e. we put $T_s[x, -\infty] = [x, -\infty], T_s[x, \infty] = [x, \infty],$ $\|[x, -\infty]\| = \infty$, $\|[x, \infty]\| = 0$ for all $x \in E$. Then we have the formula

$$T_s[x,t] = [x,t+s].$$

Let Φ be a weight function on X. By Lemma 5.3 [17] and the condition (b) Φ is bounded from below on every set $\{x: ||x|| \ge r\} \cap \tau(E)$ with r > 0. Further, Φ can be extended to $\overline{\tau}(E)$ by assuming $\Phi([x, \infty]) = 0$ and $\Phi([x, \infty]) = \lim_{\|z\| \to \infty} \Phi(z)$. Let N be a finite Borel measure on $\overline{\tau}(E)$. Put

$$(6.1) M_N(U) = \int_U \frac{N(du)}{\Phi(u)}$$

for every subset U of $\bar{\tau}(E)$ with the property inf $\{\|u\|: u \in U\} > 0$. This formula defines a σ -finite measure M_N on the set $\{u \in \bar{\tau}(E): \|u\| > 0\}$. Let $H_d(E, V)$ (d = 1, 2, ...) denote the class of all finite measures N on $\bar{\tau}(E)$ for which the corresponding measures M_N fulfil the condition

(6.2)
$$M_N + \sum_{r=1}^{j} (-1)^r \sum_{1 \leq i_1 < i_2 < \dots < i_r \leq j} T_{i_{i_1} + i_{i_2} + \dots + i_{i_r}} M_N \geq 0$$

for every j = 1, 2, ..., d and for all $t_1, t_2, ..., t_d \ge 0$. Moreover, we put

$$H_{\infty}(E, V) = \bigcap_{d=1}^{\infty} H_d(E, V).$$

It is easy to check that the sets $H_d(E, V)$ $(d = 1, 2, ..., \infty)$ are closed and convex. Let us consider the measures M from $L_d(E, V)$ as measures on $\bar{\tau}(E)$. Set

(6.3)
$$N^{M}(U) = \int_{U} \Phi(u) M(du)$$

for every Borel subset U of $\bar{\tau}(E)$. It is evident that $M \in L_d(E, V)$ if and only if $N^M \in H_d(E, V)$ ($d = 1, 2, ..., \infty$). By $I_d(E, V)$ we shall denote the subset of $H_d(E, V)$ consisting of probability measures. Clearly, $I_d(E, V)$ ($d = 1, 2, ..., \infty$) is convex and compact. Further, for every Borel subset E_1 of E the sets $\tau(E_1)$, $\{[x, -\infty]: x \in E_1\}$ and $\{[x, \infty]: x \in E_1\}$ are $\{T_i\}$ -invariant. Hence if $N \in H_d(E, V)$, the restriction of N to any of these sets is again in $H_d(E, V)$. This implies that every extreme point of $I_d(E, V)$ ($d = 1, 2, ..., \infty$) must be concentrated on orbits of elements of $\bar{\tau}(E)$, i.e. on one of the following sets: $\tau(\{x\})$, $\{[x, -\infty]\}$ and $\{[x, \infty]\}$ where $x \in E$. Obviously, all measures δ_z , $z \in \bar{\tau}(E) \setminus \tau(E)$ are extreme points of $I_d(E, V)$. Then the problem of examing the measures M from $L_d(E, V)$ is reduced to finding extreme points of sets $I_d(E, V)$ ($d = 1, 2, ..., \infty$) concentrated on $\tau(\{x\})$, where $x \in E$.

7. Multiply monotone functions

A real-valued function g defined on the real line is called *d-times* monotone (d = 1, 2, ...) if the following conditions are satisfied:

- (i) g is left-continuous and $\lim_{t\to\infty} g(t) = 0$,
- (ii) for any $t_1, t_2, ..., t_d > 0$ and $a, b \in (-\infty, \infty)$ with a < b we have the inequality

where Δ is a difference operator defined on the real functions g inductively as follows:

$$\Delta_{t_1,t_2,...,t_d} g(s) = \begin{cases}
\Delta g(s) - g(s - t_d) & \text{if } d \ge 2, \\
t_1,t_2,...,t_{d-1} & \text{if } d = 1
\end{cases}$$

 $(t_1, t_2, ..., t_d > 0 \text{ and } -\infty < s < \infty).$

Further, if for every d = 1, 2, ... a function g is d-times monotone, then it is called *completely monotone*.

PROPOSITION 7.1. Let g a d-times monotone function on the real line (d=1,2,...). Then there exists a unique non-negative left-continuous monotone non-decreasing function q such that for every $t \in (-\infty,\infty)$

(7.1)
$$g(t) = \int_{-\infty}^{t} \int_{-\infty}^{u_{d-1}} \int_{-\infty}^{u_{d-2}} \int_{-\infty}^{u_1} q(u) du du_1 du_2 \dots du_{d-1}.$$

Proof. It is evident that every d-times monotone function g on the real line is convex non-negative and monotone non-decreasing. Consequently, there exists a unique non-negative left-continuous monotone non-decreasing function g_1 such that for every $t \in (-\infty, \infty)$

$$g(t) = \int_{-\infty}^{t} g_1(s) ds.$$

It is easy to check that if d > 1 then the function g_1 is (d-1)-times monotone. Hence and by an easy induction it follows that there exists a unique non-negative left-continuous monotone non-decreasing function q such that (7.1) holds. The proposition is thus proved.

PROPOSITION 7.2. Let g be a completely monotone function on the real line. Then there exists a unique completely monotone function q such that for every $t \in (-\infty, \infty)$

$$g(t) = \int_{-\infty}^{t} q(u) du.$$

Proof. By the definition of completely monotone functions it follows that the function g is convex non-negative monotone non-decreasing. Consequently, there exists a unique non-negative left-continuous monotone non-decreasing function q such that for every $t \in (-\infty, \infty)$ equation (7.2) holds. It is clear that

$$\lim_{t \to -\infty} q(t) = 0$$

and, moreover, for any $d=1,2,...,t_1,t_2,...,t_d>0$ and $a,b\in(-\infty,\infty)$ with a < b

$$\int_{a}^{b} \int_{t_{1},t_{2},...,t_{d}} q(s) ds = \int_{t_{1},t_{2},...,t_{d}} g(b) - \int_{t_{1},t_{2},...,t_{d}} g(a) \geq 0.$$

Consequently, $\Delta_{i_1,i_2,...,i_d} q(s) \ge 0$ for every $s \in (-\infty, \infty)$ which shows that the function q is completely monotone. Thus the proposition is proved.

8. The Urbanik representation for d-times $\{T_i\}$ -decomposable (d = 1, 2, ...) probability measures on X

Consider a compact subset E of X such that $0 \notin E$ and an arbitrary probability measure N concentrated on $\tau(\{x\})$ $(x \in E)$. Setting

(8.1)
$$g_N(b) = M_N(\{[x, t]: t < b\})$$

we infer, by (6.2), that $N \in I_d(E, V)$ if and only if for any $t_1, t_2, ..., t_d > 0$ and a < b

$$(8.2) \qquad \Delta g_N(b) - \Delta g_N(a)$$

$$= M_N(U) + \sum_{r=1}^d (-1)^r \sum_{1 \le i_1 < i_2 < \dots < i_r \le d} T_{i_{i_1} + i_{i_2} + \dots + i_{i_r}} M_N(U) \ge 0$$

where $U = \{[x, t]: a \le t < b\}$. In other words, $N \in I_d(E, V)$ if and only if the function g_N defined by the formula (8.1) is d-times monotone. Further, by Proposition 7.1, there exists a unique non-negative left-continuous monotone non-decreasing function q_N such that for every $t \in (-\infty, \infty)$

(8.3)
$$g_N(t) = \int_{-\infty}^{t} \int_{-\infty}^{u_{d-1}} \int_{-\infty}^{u_{d-2}} \int_{-\infty}^{u_1} q_N(u) du du_1 du_2 \dots du_{d-1}.$$

which, by virtue of (6.1) and (8.1), implies that

(8.4)
$$N(\{[x,t]: a \leq t < b\}) = \int_{a}^{b} \Phi([x,t]) g_{N}^{*}(t) dt$$

where the function g_N^* is defined by the formula

(8.5)
$$g_N^*(t) = \begin{cases} \int_{-\infty}^{t} \int_{-\infty}^{u_{d-2}} \int_{-\infty}^{u_1} q_N(u) du du_1 du_2 \dots du_{d-2} & \text{whenever } d \geq 2, \\ q_N(t) & \text{whenever } d = 1. \end{cases}$$

Consequently, we have

(8.6)
$$\int_{-\infty}^{\infty} \Phi([x,t]) g_N^*(t) dt = 1.$$

Conversely, every non-negative monotone non-decreasing left-continuous function q_N with the property (8.6) determines, by (8.4) and (8.5), a probability measure N concentrated on $\tau(\{x\})$ for which the corresponding function g_N is d-times monotone. Consequently, $N \in I_d(E, V)$. Hence we conclude that a measure $N \in I_d(E, V)$ is an extreme point of $I_d(E, V)$ if and only if the corresponding function q_N cannot be decomposed into a non-trivial convex combination of two functions q_{N_1} and q_{N_2} $(N_1, N_2 \in I_d(E, V))$. But this is possible only in the case $q_N(t) = 0$ if $t \leq t_0$ and $q_N(t) = c$ if $t > t_0$ for some constants t_0 and c. By (8.4), (8.5), and by some computation we get the formula

(8.7)
$$N(\{[x,t]: a \leq t < b\}) = c(d-1)! \int_{a}^{b} \Phi([x,t]) \{(t-t_0)_+\}^{d-1} dt$$

where for a real number λ we write $\lambda_+ = \max(\lambda, 0)$. The constant c is determined by (8.6) and (8.7). Namely,

(8.8)
$$c^{-1} = (d-1)! \int_{-\infty}^{\infty} \Phi([x, t]) \{(t-t_0)_+\}^{d-1} dt.$$

We remark, by condition (c) and by Lemma 5.2 [17], that the last integral is finite for every d = 1, 2, ... Thus we have proved that every extreme point of $I_d(E, V)$ concentrated on $\tau(\{x\})$ is of the form (8.7), where the constant c is given by (8.8).

Conversely, let N be a probability measure on $\bar{\tau}(E)$ defined by the formula (8.7) where $x \in E$ and the constant c is given by (8.8). Then the corresponding measure M_N is of the form

$$M_N(\{[x,t]: a \leq t < b\}) = c(d-1)! \int_a^b \{(t-t_0)_+\}^{d-1} dt.$$

It is easy to check that the measure M_N defined by the last formula satisfies the condition (6.2) and hence it belongs to the set $I_d(E, V)$. Moreover, M_N is an extreme point of $I_d(E, V)$.

For every $z \in \tau(E)$, $z = T_s x$ and $x \in E$, we put

(8.9)
$$N_{z}^{(d)}(U) = C_{d}(z) \int_{0}^{\infty} 1_{U}(T_{t}z) \Phi(T_{t}z) t^{d-1} dt$$

where 1_U denotes the indicator of a subset U of $\bar{\tau}(E)$ and

(8.10)
$$C_d^{-1}(z) = (d-1)! \int_0^{\infty} \Phi(T_t z) t^{d-1} dt.$$

By virtue of (8.7) and (8.8) it follows that $N_z^{(d)}$ are extreme points of $I_d(E, V)$. We extend the definition of $N_z^{(d)}$ to $z \in \overline{\tau}(E) \setminus \tau(E)$ by assuming $N_z^{(d)} = \delta_z$. In this case we have also $N_z^{(d)} \in I_d(E, V)$. It hints at, the mapping $z \to N_z^{(d)}$ from $\overline{\tau}(E)$ into $I_d(E, V)$ is one-to-one and continuous. Consequently, it is a homeomorphism between $\overline{\tau}(E)$ and the set $e(I_d(E, V))$ of all extreme points of $I_d(E, V)$. Thus we have proved the following lemma:

LEMMA 8.1. The set $\{N_z^{(d)}: z \in \overline{\tau}(E)\}$ is identical with the set $e(I_d(E, V))$ of all extreme points of $I_d(E, V)$ and the mapping $z \to N_z^{(d)}$ is a homeomorphism between $\overline{\tau}(E)$ and $e(I_d(E, V))$.

Once the extreme points of $I_d(E, V)$ are found we can apply a well-known Krein-Milman-Choquet Theorem ([14], Chapter 3). Since each element of $H_d(E, V)$ is of the form cN_1 where $N_1 \in I_d(E, V)$ and $c \ge 0$ we then get the following proposition:

PROPOSITION 8.1. A measure N belongs to $H_d(E, V)$ (d = 1, 2, ...) if and only if there exists a finite Borel measure m on $\bar{\tau}(E)$ such that

$$\int_{\tau(E)} f(x) N(dx) = \int_{\tau(E)} \int_{\tau(E)} f(u) N_z^{(d)}(du) m(dz)$$

for every continuous function f on $\overline{\tau}(E)$. If N is concentrated on $\tau(E)$ then m does the same.

From this proposition and by (6.1) and (8.9) we get, after some computation, the following corollary:

COROLLARY 8.1. Let M be a measure from M(X) concentrated on $\tau(E)$. Then $M \in L_d(E, V)$ (d = 1, 2, ...) if and only if there exists a finite Borel measure m on $\tau(E)$ such that

$$\int_{\mathcal{I}(E)} f(x) M(dx) = \int_{\mathcal{I}(E)} C_d(z) \int_0^\infty f(T_t z) t^{d-1} dt m(dz)$$

for every M-integrable function f on $\tau(E)$. The function $C_d(z)$ is defined by the formula (8.10).

We now turn to the consideration of arbitrary measures $M \in M(X)$ corresponding to d-times $\{T_i\}$ -decomposable probability measures on X. By Lemma 6.1 there exists a decomposition $M = \sum_{j=1}^{\infty} M_j$, where $M_j \in M(X)$ are restrictions of M to disjoint sets $\tau(E_j)$, $0 \notin E_j$ and E_j are compact. Then we have $M_j \in L_d(E_j, V)$ (j = 1, 2, ...). Let m_j denote a finite measure on $\tau(E_j)$ corresponding to M_j in the representation given by Corollary 8.1. Then

$$\int_{X} f(x) M(dx) = \sum_{j=1}^{\infty} \int_{\tau(E_{j})} C_{d}(z) \int_{0}^{\infty} f(T_{t}z) t^{d-1} dt m_{j}(dz)$$

for every M-integrable function f. Substituting $f = \Phi$ into this formula, we

get the equation

$$\int_{X} \Phi(x) M(dx) = \sum_{j=1}^{\infty} m_{j} (\tau(E_{j})).$$

Consequently, setting $m = \sum_{j=1}^{\infty} m_j$, we get a finite measure on X satisfying the equation

for every M-integrable function f on X. Moreover, $m(\{0\}) = 0$. Putting, for any $x \in X$ and $y \in X^*$,

(8.12)
$$K_{\Phi,V}^{(d)}(x, y) = C_d(x) \int_0^\infty K(T_t x, y) t^{d-1} dt$$

where the kernel K is given by the formula (5.3), we get the formula

$$\int\limits_X K\left(x\,,\,y\right)M\left(dx\right) \,=\, \int\limits_X K_{\Phi,\mathcal{V}}^{(d)}\left(x\,,\,y\right)m\left(dx\right) \qquad (y\in X^*)$$

which together with (5.1), (5.2), (5.3) and (5.6) yields the following theorem:

THEOREM 8.1. Let Φ be a weight function on X, $V \in B(X)$ and $T_t := \exp tV \to 0$ as $t \to \infty$. Then a probability measure μ on X is d-times $\{T_t\}$ -decomposable (d = 1, 2, ...) if and only if there exist a finite measure m on X vanishing at 0, an element $x_0 \in X$ and an operator $R \in R_d(X, V)$ such that

(8.13)
$$\hat{\mu}(y) = \exp(i\langle y, x_0 \rangle - \frac{1}{2}\langle y, Ry \rangle + \int_{Y} K_{\Phi, Y}^{(d)}(x, y) m(dx)$$

for every $y \in X^*$. The kernel $K_{\Phi,V}^{(d)}$ is defined by the formula (8.12).

Combining Theorems 4.1 and 8.1 we get the following solution of the Problem I which is a generalization of the Urbanik representation theorem for full Levy's measures on Banach spaces ([17], Theorem 5.3).

THEOREM 8.2. Let Φ be a weight function on X. A full probability measure μ on X belongs to $N_d(X)$ (d=1,2,...) if and only if there exists a one-parameter semigroup $T_t := \exp tV(t \ge 0)$ with $V \in B(X)$ and $\lim_{t \to \infty} T_t = 0$, an element $x_0 \in X$, an operator $R \in R_d(X,V)$ and a finite measure m on X vanishing at 0 such that the equation (8.13) holds.

9. The Urbanik representation for completely $\{T_i\}$ -decomposable probability measures on X

Consider a compact subset E of X such that $0 \notin E$ and an arbitrary probability measure N concentrated on $\tau(\{x\})$ where $x \in E$. Define a function g_N by virtue of the formula (8.1). From (6.2) and (8.2) it follows that

 $N \in I_{\infty}(E, V)$ if and only if g_N is completely monotone. Further, by Proposition 7.2 there exists a unique completely monotone function p_N such that for every $t \in (-\infty, \infty)$

$$(9.1) g_N(t) = \int_{-\infty}^t p_N(u) du$$

which together with (6.3) and (8.1) implies the formula

(9.2)
$$N\{[x, t]: a \leq t < b\} = \int_{a}^{b} \Phi([x, t]) P_{N}(t) dt.$$

Consequently, we have

(9.3)
$$\int_{-\infty}^{\infty} \Phi([x,t]) p_N(t) dt = 1.$$

Conversely, every completely monotone function p_N on the real line with the property (9.3) determines, according to the formula (9.2), a probability measure N concentrated on $\tau(\{x\})$. Moreover, we have $N \in I_{\infty}(E, V)$. Hence we conclude that a measure $N \in I_{\infty}(E, V)$ concentrated on $\tau(\{x\})$ is an extreme point of $I_{\infty}(E, V)$ if and only if the corresponding function p_N cannot be decomposed into a non-trivial convex combination of two functions p_{N_1} and $p_{N_2}(N_1, N_2 \in I_{\infty}(E, V))$. Given t > 0 and a function p with such a property define two auxiliary functions p_1 and p_2 as follows:

$$p_1(u) = \frac{p(u) + p(u - t)}{1 + c}$$
 and $p_2(u) = \frac{p(u) + p(u - t)}{1 + c}$ $(-\infty < u < \infty),$

where $c = \int_{-\infty}^{\infty} \Phi([x, u]) p(u-t) du$. It is evident that for sufficiently large t

we have 0 < c < 1 and then the functions p_1 and p_2 are both completely monotone. Moreover, they are normalized by the condition (9.3) and for every $u \in (-\infty, \infty)$

$$p(u) = \frac{1}{2}(1+c)p_1(u) + \frac{1}{2}(1-c)p_2(u).$$

Consequently, for every $u \in (-\infty, \infty)$ and sufficiently large t > 0

$$p(u-t) = p(u) \int_{-\infty}^{\infty} \Phi([x,s]) p(s-t) ds$$

which, by a simple reason, implies that the function p is of the form

$$(9.4) p(u) = Ce^{su} (-\infty < u < \infty)$$

where C, s are some positive constants.

Given a subset U of X and an operator $V \in B(X)$ such that $T_t := \exp tV \to 0$ as $t \to \infty$ define a congruence relation in U as follows:

 $x_1 \varrho x_2$, where $x_1, x_2 \in U$, if and only if there exists a number $t \in (-\infty, \infty)$ such that $T_i x_1 = x_2$. It is evident that the relation ϱ is continuous. Let U/ϱ denote the quotient space. Then for every $U \subset X$ we have $U/\varrho = \tau(U)/\varrho$.

Suppose that Φ is a weight function on X. Put

(9.5)
$$\sigma_{\Phi,V}(U) = \left\{ ([x], s) \in U/\varrho \times R_+ : \int_{-\infty}^{\infty} \Phi(T_t x) e^{st} dt < \infty \right\}$$

where $U \subset X \setminus \{0\}$, [x] is an equivalence class of U/ϱ and R_+ is the positive half-line.

By Lemma 5.2 [17] and the condition (c) it follows that for every non-void $U \subset X\setminus\{0\}$ the set $\sigma_{\Phi,V}(U)$ is non-void. Further, for every sequence U_1, U_2, \ldots of subsets of $X\setminus\{0\}$ such that the sets $\tau(U_j)$ $(j=1, 2, \ldots)$ are disjoint, the sets $\sigma_{\Phi,V}(U_j)$ are disjoint too and

(9.6)
$$\sigma_{\Phi,V}\left(\bigcup_{j=1}^{\infty}U_{j}\right)=\bigcup_{j=1}^{\infty}\sigma_{\Phi,V}\left(U_{j}\right).$$

Given an element $([z], s) \in \sigma_{\Phi,V}(E)$, where E is a compact subset of $X \setminus \{0\}$ and [z] is an equivalence class of E/ϱ with $z \in E$ we put

(9.7)
$$N_{[z],s}(Q) = C_{\Phi,V}(z,s) \int_{-\infty}^{\infty} 1_Q(T,z) \Phi(T,z) e^{st} dt$$

where 1_Q denotes the indicator of a subset Q of $\bar{\tau}(E)$ and

$$(9.8) C_{\Phi,V}^{-1}(z,s) = \int_{-\infty}^{\infty} \Phi(T_t z) e^{st} dt.$$

It is easy to check that the right-hand side of (9.7) does not depend on any choice of the representing element z of [z].

Since for every extreme point N of $I_{\infty}(E, V)$ the corresponding function P_N is of the form (9.4) and normalized by the condition (9.3) the set $\{N_{[z],s}: ([z],s)\in\sigma_{\Phi,V}(\tau(E))\}$ contains all extreme points of $I_{\infty}(E,V)$ concentrated on $\tau(E)$. Our further aim is to prove that every measure $N_{[z],s}(([z],s)\in\sigma_{\Phi,V}(\tau(E)))$ defined by the formula (9.7) is an extreme point of $I_{\infty}(E,V)$.

Accordingly, from (9.7) it follows that the measure $N_{[z],s}$ is concentrated on $\tau(\{z\})$ and the corresponding measure $M_{N_{[z],s}}$ is of the form

$$M_{N_{[z],s}}(\lbrace T_t z \colon a \leqslant t < b \rbrace) = C_{\Phi,V}(z,s) \int_a^b e^{st} dt$$

 $(-\infty < a < b < \infty)$. Consequently, $M_{N[z],s} \in L_{\infty}(E,V)$ and hence the measure $N_{[z],s}$ defined by the formula (9.7) is an extreme point of the set $I_{\infty}(E,V)$. It is easily seen that the mapping $([z],s) \to N_{[z],s}$ from $\sigma_{\Phi,V}(\tau(E))$ into $I_{\infty}(E,V)$ is one-to-one and continuous. Thus we have proved the following lemma:

LEMMA 9.1. The set $\{N_{[z],s}: ([z],s) \in \sigma_{\Phi,V}(\tau(E))\}$ is identical with the set of all extreme points of the set $I_{\infty}(E,V)$ concentrated on $\tau(E)$ and the mapping $([z],s) \to N_{[z],s}$ is a homeomorphism between them.

Denoting by $e(I_{\infty}(E, V))$ the set of all extreme points of $I_{\infty}(E, V)$ and taking into account the fact that each element of $H_{\infty}(E, V)$ is of the form cN_1 , where $N_1 \in I_{\infty}(E, V)$ and $c \ge 0$, we then get the following proposition:

PROPOSITION 9.1. A measure N belongs to the set $H_{\infty}(E,V)$ if and only if there exists a finite Borel measure m on $e(I_{\infty}(E,V))$ such that

$$\int_{\bar{\tau}(E)} f(x) N(dx) = \int_{e(I_{\infty}(E,V))} \int_{\bar{\tau}(E)} f(u) \pi(du) m(d\pi)$$

for every continuous function f on $\overline{\tau}(E)$. If N is concentrated on $\tau(E)$ then m is concentrated on the subset of $e(I_{\infty}(E,V))$ consisting of probability measures concentrated on $\tau(E)$.

Combining (6.1), (9.7), Lemma 9.1 and Proposition 9.1 we get the following corollary:

COROLLARY 9.1. Let M be a measure from M(X) and concentrated on $\tau(E)$. Then M belongs to the set $L_{\infty}(E,V)$ if and only if there exists a finite Borel measure m on the set $\sigma_{\Phi,V}(\tau(E))$ such that

$$\int_{\tau(E)} f(x) M(dx) = \int_{\sigma_{\Phi,V}(\tau(E))} C_{\Phi,V}(z,u) \int_{-\infty}^{\infty} f(T_t z) e^{ut} dt m(d([z],u))$$

for every M-integrable function f on $\tau(E)$. The function $C_{\Phi,V}(z,u)$ is defined by the formula (9.8).

Consider an arbitrary measure $M \in M(X)$ corresponding to a completely $\{T_i\}$ -decomposable probability measure on X. By Corollary 6.1 there exists a decomposition $M = \sum_{j=1}^{\infty} M_j$, where $M_j \in M_{\infty}(X, V)$ (j = 1, 2, ...), M_j are concentrated on disjoint sets $\tau(E_j)$, $0 \notin E_j$ and E_j are compact. Let m_j denote a finite Borel measure on $\sigma_{\Phi,V}(\tau(E_j))$ corresponding to M_j in the representation given by Corollary 9.1. Then, for every M-integrable function f on X

$$\int_{X} f(x) M(dx) = \sum_{j=1}^{\infty} \int_{\sigma_{\mathbf{\Phi}, V}(x(E_{j}))} C_{\mathbf{\Phi}, V}(z, u) \int_{-\infty}^{\infty} f(T_{t}z) e^{ut} dt m(d([z], u)).$$

Substituting $f = \Phi$ into this formula we get the equation

$$\int_{X} f(x) M(dx) = \sum_{j=1}^{\infty} m_{j} \left(\sigma_{\Phi, V} \left(\tau(E_{j}) \right) \right) < \infty.$$

Consequently, setting $m = \sum_{j=1}^{\infty} m_j$ and taking into account the fact that the sets $\sigma_{\Phi,V}(\tau(E_j))$ (j = 1, 2, ...) are disjoint, $\sum_{j=1}^{\infty} \sigma_{\Phi,V}(\tau(E_j)) = \sigma_{\Phi,V}(X \setminus \{0\})$ we

get a finite Borel measure m on $\sigma_{\phi,V}(X\setminus\{0\})$ satisfying the equation

$$(9.9) \quad \int_{X} f(x) M(dx) = \int_{\sigma_{\Phi, V}(X \setminus \{0\})} C_{\Phi, V}(z, u) \int_{-\infty}^{\infty} f(T_{i}z) e^{ut} dt \, m(d([z], u))$$

which, by virtue of (9.8), can be written in the form (9.10)

$$\int_{X} f(x) M(dx) = \int_{\sigma_{D,V}(X\setminus\{0\})} \int_{-\infty}^{\infty} f(T,z) e^{ut} dt \left[\int_{-\infty}^{\infty} \Phi(T,z) e^{ut} dt \right]^{-1} m(d([z],u)).$$

Hence and by (5.1), (5.2), (5.3), (5.6) we get the following theorem:

THEOREM 9.1. Let Φ be a weight function on X and V an operator from B(X) such that $T_i := \exp tV \to 0$ as $t \to \infty$. A probability measure μ on X is completely $\{T_t\}$ -decomposable if and only if there exists a finite Borel measure m on $\sigma_{\Phi,V}(X\setminus\{0\})$, a covariance operator $R\in R_\infty(X,V)$ and an element $x_0\in X$ such that for every $y\in X^*$

$$(9.11) \quad \hat{\mu}(y) = \exp\left\{i\langle y, x_0 \rangle - \frac{1}{2}\langle y, Ry \rangle + \int_{\sigma_{D_t}(X \setminus \{0\})}^{\infty} \int_{-\infty}^{\infty} K(T_t z, y) e^{ut} dt \left[\int_{-\infty}^{\infty} \Phi(T_t z) e^{ut} dt \right]^{-1} m(d([z], u))$$

where the set $\sigma_{\Phi,V}(X\setminus\{0\})$ is defined by the formula (9.5) and the kernel K is given by (5.3). The integrand over $\sigma_{\Phi,V}(X\setminus\{0\})$ does not depend on any choice of the representing elements z of the equivalence classes [z] of $X\setminus\{0\}/\varrho$.

Combining Theorems 4.1 and 9.1 we get the following solution of Problem II:

THEOREM 9.2. Let Φ be a weight function on X. A full probability measure μ on X belongs to the set $N_{\infty}(X)$ if and only if there exist an operator $V \in B(X)$ with $\lim_{t \to \infty} \exp tV = 0$, an element $x_0 \in X$, an operator $R \in R_{\infty}(X, V)$ and a finite Borel measure m on $\sigma_{\Phi, V}(X \setminus \{0\})$ such that the characteristic functional of μ is given by the formula (9.11).

References

- [1] G. Choquet, Le théorem de représentation intégrale dans les ensemble convexes compact, Ann. Inst. Fourier 10 (1960), pp. 333-344.
- [2] E. Dettweiler, Grenzwertsätze für Wahrscheinlichkeitsmasse auf B-adrikianschen Räumen, Thesis, Eberhard-Karls Universität zu Tübingen, 1974.
- [3] K. Ito and M. Nisio, On the convergence of sums of independent Banach space valued random variables, Osaka J. of Math. 5 (1968), pp. 35-48.
- [4] N. S. Jain and G. Kallianpur, Norm convergent expansions for Gaussian processes in Banach spaces, Proc. Amer. Math. Soc. 25 (1970), pp. 890-895.
- [5] A. Kumar and B. M. Schreiber, Self-decomposable probability measures on Banach spaces, Studia Math. 53 (1975), pp. 55-71.
- [6] P. Lévy, Théorie de l'addition des variables aléatoires, Paris 1954.
- [7] M. Loéve, Probability Theory, New York 1950.
- [8] Nguyen Van Thu, Multiply self-decomposable probability measures on Banach spaces, Studia Math. 66 (1980), pp. 161-175.
- [9] Banach space valued Brownian motions I, Acta Math. Vietnam 3 (1978), pp. 35-40.
- [10] Banach space valued Brownian motions II: A stochastic integral of operator-valued functions, ibid. 3 (1978), 44-46.
- [11] A. B. Paalman-de Miranda, Topological Semigroup, Amsterdam 1964.
- [12] K. R. Parthasarathy, Probability Measures on Metric Spaces, New York-London 1967.
- [13] M. Sharpe, Operator-stable probability distributions on vector groups, Trans. Amer. Math. Soc. 136 (1969), pp. 51-65.
- [14] A. Tortrat, Structure des lois indéfiniment divisibles dans un espace vectorial topologique (separe) X, Symposium on Probability Methods in Analysis, Lecture Notes in Mathematics 31, Berlin-Heidelberg-New York 1967, pp. 299-328.
- [15] Sur la structure des lois indéfiniment divisibles dans les espaces vectoriels, Z. Warhscheinlichkeitstheorie verw. Geb. 11 (1969), pp. 311-326.
- [16] K. Urbanik, Levy's probability measures on Euclidean spaces, Studia Math. 44 (1972), pp. 119-148.
- [17] Levy's probability measures on Banach spaces, ibid. 63 (1978), pp. 284-308.
- [18] N. N. Vahaniya, Probability distributions on linear spaces (in Russian), Tbilisi 1971.
- [19] R. E. Williamson, Multiply monotone functions and their Laplace transforms, Duke Math. J. 23 (1956), pp. 189-207.