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Let S",,, n 2 0, be either of the two sequences of essential double covers for the
symmetric groups. There is an epimorphism §, 5 S, with kernel {1, z}. For
'n > 4, the central involution z is in the commutator subgroup of $,; and the
complex projective representations of S, (up to equivalence) are in -1
correspondence with those linear representations of $, in which z acts as —1.
The same is true for the alternating group 4,, letting A, = n~! 4,, except that
A, and A, have additional families of projective representations. These [acts,
and many more, including a complete determination of the characters in terms
of certain symmetric functions, the Q-functions, were discovered by Schur
[Schur 1911].

There is a graded ring C = @, C, in which, if n> 4, C, is the free
abelian group generated by the irreducible projective representations above.
Both S, and A, are involved. The ring structure was introduced in [Hoff-
man—-Humphreys 1985], with detailed proofs in [Hoffman-Humphreys 1986].
This initial treatment had two drawbacks, whose sum was greater than its
parts. The first one was removed [Hoffman-Humphreys 1987] by the
introduction of the base ring

L:= Z[i]/A3—24),

to replace Z. Let ¢:= A2—1. There is a Z/2-grading on L given by requiring
4 to be in LY. Each C, has a Z/2-grading, C, = C'® @ C\"). where, for n > 4,
and for i = 0 (respectively i = 1), C{’ is generated by the irreducible projective
representations of A, (respectively, S,). In fact, C, is a free Z/2-graded
IL-module, where 4 acts by inducing and restricting between A4, and §,. An
L-basis is found by choosing exactly one from each pair {x, ¢-x], where
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x ranges over irreducibles for which x # g-x. The introduction of L both
allowed a simpler description of C, and provided a Hopf algebra structure for
C. The description is:

THEOREM A. There are irreducible c,€ C§'" ! such that C is the L-algebra
generated by {c,, c,, ...} subject only to relations
(COMM) =o't e,

(5Q) ¢ =<—1)"“A[c2"+ani (=1 cansci]-
i=1

Consequently, an L-basis for C (not the basis of irreducibles) is
{c; €t iy >0 > .00

Note that the general form of (COMM) is

xy=¢" yx for xeC¥, yeCY.

The second drawback was that the proof of this theorem, which involved
some Hopf algebra theory (and worse at the prime 2, before the use of L), did
not identify the irreducibles. For this it was still necessary to follow the
intricacies of Schur’s original treatment.

In the first section below it is shown how this second drawback may be
overcome by use of an inductive formula for the irreducibles. This simplifies
earlier work considerably, and avoids Hopf algebra theory.

Recently there have appeared two interesting updated expositions of
Schur’s theory, both of which introduce a ring structure. (See also a forth-
coming book by John Humphreys and the author). In [Jozefiak 1989], a major
feature is the use of the theory of Z/2-graded algebras, known also as
superalgebras In terms of the above ring C, the ring structure in Jozefiak’s
exposition is C@/(1 —g)- C'?, the multiplication being defined using one of the
four formulae for multlplymg in C, namely the Z/2-graded tensor product. This
type of product for modules apparently first appeared in [ Atiyah—Bott-Shapiro
1964].

The other modernized treatment is in the introductory sections of
[Stembridge 1987]. His operation gives an associative product on the sum over
n of the Grothendieck groups of those negative representations V of S, for
which ¢-V = V. This group is 1- C'¥ =« CM), and the multiplication, say o, in
terms of that in C, may be given by

(A-x)o(d-y) = A-(xy).

(See also [H- H 1986, 3.2]) Using this multiplication, the group isomorphism
CO/1—)C 5 4 C(O’ becomes a ring isomorphism. This ring is also isomor-

phic to the algebra of Q-functions, at least after tensoring with Q[\[ 1. It
contains slightly less information than C itself does, and certainly has more
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complicated ring structure than C, although easily determinable from that of
C. For example, due to arithmetical problems, it lacks a basis consisting of
monomials in a set of ring generators. However, it is useful for applications of
this representation theory to Q-function theory. Most applications in the
opposite direction are more easily done by using the operators below, rather
than Q-functions.

1. The Bernstein-type operators
Define an L-bilinear symmetric positive definite inner product,
(,): CxC—L,

by requiring that {(x, x) =1 if x is an irreducible with ¢-x # x, and that
{x, y> =0if x and y irreducible for which x, y, ¢-x, and ¢y are all distinct.
Positivity is with respect to the canonical basis {1, ¢, 4} for L.
Now, for each ueC, define u*: C— C by {(u*(v), w) = (v, uw).
Finally, for each n > 1, define 4,: C— C by

A () =c,x+ 4 Y (= 1) ¢y icF(x).

i>0

See [Zelevinsky 1981; p. 69] for the motivating analogue re linear represen-
tations of §,, due to Bernstein.

THeoreM B [Hoffman 1989]. Define

Apy g = Ap, Ay (1),
Then:
(i) the Z-basis for C of irreducibles is
{0-a,,,. :0=1,¢00r i n >n,>...>0}

(i) the sets {a,: a€ 2P} and {c,: ae D} are related by unitriangular matrices
over L.

Above, 2 is the set {(n,, n,, ...): n, > n, > ...} of strict integer partitions,
and

c :=c(,C

ny,n3,... Ry m2° "

Part (ii) is the L-version of a fact due to Schur for Q-functions. The proof
proceeds by showing {a,, a;> = d,,, the main calculation being
a if k=ng;
C* a - na2,n3,... ] 1>
(@, n,.) {0 if k>n,.
The only other routes from the definition of §, to a description of its irreducible
negative representations (in the Grothendieck group; construction of the
modules is another matter) seem to be several orders of magnitude lengthier.
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Once one has defined the basic irreducibles ¢, (say, as Clifford modules) and
verified (COMM) and (SQ), Theorem A is equivalent to the fact that {c,: e 2}
is an L -basis for C. But this is immediate from part (i1) of Theorem B, since
{u,: €%} is an L-basis. This argument is the bypass of Hopf algebra theory
mentioned above.

2. The formula for characters

For brevity we shall avoid discussing 4,. Letting y, denote the character of
a (possibly virtual) representation h, define, for xe 2,

Xa if o is odd;
(o) = { :

X1a, I o 1S even.

Oddness of partitions is in the sense of cycle types, that is, the parity of the
number of even parts. For each cycle type w, the number of conjugacy classes
in §, which project to w is either one or two. If one, then (&> (g) = 0 for g in
that class, since g ~ zg. When @ consists entirely of odd parts, the number is
two. The number {a) (g) therefore has different signs for g in the two classes of
S which project to a cycle type in #2%, The aim below is to give a new proof of
an inductive method for calculating this number. The method is analogous to
the Murnaghan-Nakayama rule for linear representations of S,. It is the only
calculation which is needed, as is clear from a theorem of Schur which says that
(x> (g) is zero for all « whenever the cycle type of n(g) has at least one even
part, with the one exception of () (g) when a is odd and g projects to the cycle
type « itself. In that case the value is given rather simply [J. 5.8]. A slight
elaboration of the theory below will yield this result as well as all character
information on A4,. This includes the character values of the basic (Clifford
module) irreducibles ¢,. Only two direct trace calculations need be made: the
value of {r) on the r-cycle, and the corresponding value of basic irreducible
character on 4, when r is odd. We shall however confine ourselves to the more
interesting case of {a)(y) where g projects to a cycle type in 2°%.
For this, we need the following elements of C:

k
Pak+1-= (l+k)‘2)C2k+l+}* 2 (—l)i(zk_2i+1)62k—i+lci;
i=1

pa: = (1—0) gy
These are primitive elements, satisfying <{p,.,, C2x41» = 1, introduced in
[H-H 1987]. Choose s,,,,€S,,+, so that it projects to a (2k + 1)-cycle and so
that y,... (Sas() = 1. Then, for all he CHY,,,
AnS2+ 1) = Chy APak v Dg=0-

This follows by noting that both sides are group homomorphisms as functions
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of h, and by checking that they agree on those h = 0 ¢, which are in CY/, ,,
where 0 = 1,9 or Aand «e Z,,,,. When a = (2k + 1), both sides give 1, and for
all other «, we get zero. Note that { , >,_, 1s the usual Z-valued inner product
for representations of S,. This is because it is Z-bilinear and has the
irreducibles as an orthonormal basis.

the set {p,}, as a ranges over all partitions of n, generates C,, ®,Q as an
L ®,Q-module. It is not a basis, nor are any of its subsets. If a ¢ 2 U 2°%, we
have p, = 0. It now follows that the coproduct 4: C - C ® C can be written in
the form

Ay =Y y,®p,

for certain (not always unique) elements y,e C ®, Q which depend on y.

LeMMA C. Let r be an odd positive integer. Let ye C{Y),, and let g€ S, so that
(g,5)eS, YS < S ... Assume that g is even. Then

x_y (g7 Sr) = Xp:(y) (g)

This is the basic reduction formula. It shows how to “remove an r-cycle”,
at the expense of having to calculate p¥(y), which will usually be a virtual
representation, not an actual one. For the inductive calculation of the
irreducible characters we shall therefore need to learn how to write p}(a,) as
a linear combination of irreducibles.

Proof of Lemma C. We have

Xy(g’ S,) =X Iz ya®Ppa (g5 S,) = Z Xy,.@p, (g! Sr)-
at-r al-r )
We have identified the set of virtual negative representations of S, Y S, with the
sumodule spanned by the image of (C{? x C{") U(CM x C!9) in C, ®, C,; and
we identified the restriction map to S Y§ with the component
C,.r— C,®; C, of the coproduct on C. Using that g is even, and using the
definition of the isomorphism between C, ®, C, and the group of graded and
ungraded negative representations of §,YS,, one gets the formula

Xy (D) Xsp(s) i a is even;

Yyawp. 9> ) = {xu, @ 1,.(5) if o is odd.

Thus

(1) xy (g’ sr) = Xy,.(g) X}lp, (S,),

since, for a # (r), the second factor in each of the earlier formula is zero. This is
because p, is induced from a “Young subgroup™ S, Y S, Y... of §,, where s, is
an “r-cycle”. Alternatively, {p,, p,> =0, as we now see.
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Now if u and v both have positive Z-grading which add to r, we have
{p,, uv) = {4p,, u@v>> =<0, u@v)) =0.
In particular, {p,, p,> =0 if a # (r), and

—1
p,. p> = <(] +r—2—12) ¢, + decomposables, p,>

_ r—1., _ r—1,
—(H— 5 i)(c,,p,)—l—}- 5 AL,

1
Thus y;,, (s,) = <Ap,, AP,Yy—¢ = I:ftz (1 +rle)j| = r. Going back to (1),
e=0
we see that
2) %09, 8,) = ry, (9)

But, for all z,
pF, 2 =<y, zp,) = K4y, 2@ p,>)
=Y. ®P, 2®p)) =Y (Va» 20 {Pes P,

—1
= G <P b = (1 +TTAZ) SAS

Therefore,
r+1 r—1

r—1
*(={1+— A2y =—y.+—0"y..
pr(y) (+2A)y, 2y,+2ey,

Since g is even, x,,(g) = xv(g9) for any V. Thus

r+1 r—1
Xpn (@) = — . (9)+ 5 You (@ =ry,, (9.

Comparing this with (2) yields the result.

The remaining problem of determining p} (a,) in terms of irreducibles can
be readily disposed of by manipulations with the operators. The combined
answer below in Theorem F is a formula which was discovered (perhaps
empirically) many years ago [Morris 1965], and later occurred in [Humphreys
1986] and [Morris 1988]. It is a rather ungainly formula, making its discovery

all the more admirable. Our method of proof makes clear the stages at which
the complexities arise.

LEmMMA D. For all neZ and odd r = 1, we have

AA,_, ifn#0orr;
pr A, —0" A, pF = 4 Ao ifn=r

A2A_, ifn=0,
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where, to define A, for n <0, we take

Ap(0):=x+ 42 Y (—1f e (e,
i>0
and
A ) i=(=Dct)+4) (—1)Vet(x)e;_,  for k>0.
i>k
Proof. The primitivity of p, is equivalent to p¥ (uv) = (p* u)v + g% u(p¥ v),
from which the identities follow easily.

CorOLLARY. For positive odd r and for k, > k, > ... > k, > 0, we have

Here we have extended, to any sequence n,,n,,..., the definition:
Ay o i=A, A, ...(1). The second summation is over a singleton or empty set,
and the subscript k;,—r is zero, but should not be omitted.

The proof is immediate by induction on s.

Lemma E.

(i) Ay A, = 1d.

(i) A Ag+0Ag A, =0, if n#0.

(i) A, A +A, A  =(—171d, if n#0.

(iv) A, A;+0" 4,4, =0 if all of k, | and k+1 are nonzero.
(v) A, A, =0 if k #0.

Sketch proof. All of these can be proved by straightforward manipulation
with the definitions of the operators, using (SQ) several times. It is less
laborious to only do this for (iv) with k > O, separately for / >0 and ! < 0.
Then all the other identities are quickly deduced using the following inductive
principle: If an L-linear operator V: C — C satisfies:

(@) V(1)=0;
and
(b) V(x)=0 implies VA4, (x) =0 for all k > 0;

then V is zero. This is clear from Theorem B(i). Note also that (v) is an
immediate consequence of (iv).

CoROLLARY. Since Ay(1)=1 and A,(1) =0 for n <0, the element in the
summations of the previous corollary is determined as either zero or + (an
irreducible), according to the following five cases. We take k,, , = 0 in the second
k, IS
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O, if k;>r, and Ju with k,—r =k ;

P-i N ;
U] (=Y ""eva, ... Kpki = r kg e ks

if ki >r, and 3j with k; > ki—r > k;.,;

(n (=1 fay, i i ke=r

(1M (=0 0May  Goike

if ki<, and 3 >0 with kj+k; =r;

0, if ky<r, and |k;—r| # k;Vj > i.

In (1), N=(-ilk=r)+k, +...+k;
in (1), M= (—i—=1)k—nr+k+.. +k_,.

Proof. In each case, move k;, —r past other subscripts to the right, using (iv)
or (ii). If k,—r > 0, use (iv). Either move it until reaching an equal entry, giving
0 by (v): or until reaching a smaller entry, giving formula (). If k,—r = 0, use
(11). Move it to the right hand end and delete it, giving formula (I1). If k;, —r < 0,
use (iv). Either move 1t till reaching an entry r—k,, then apply (i), giving
formula (IIT) after applying the next argument to the other term; or move it to
the right hand end, giving 0.

Combining the two corollaries with the basic method, Lemma C, we
obtain the theorem referred to earlier.

THEOREM F. Let g be an even element of §n and let r be an odd integer. For
each a = (k,, ..., k)eZ,,,, define

ntr

0 if o is even

par (x): = {l if ais odd

}:: the reduction med 2
of the number of i's for which k, is even. With summation over the sets (1), (II), (11I)
of the previous corollary, we have

(g s) = T (=1 200k Kk k= F Ky KD (g)

tec)

+ Y (=1 ik, ko, kD)
ie(l

+ 3 (—1yTirkteen ek K L kD (9).
ie(lll)

The partitions occurring in this formula are sometimes described using
shifted Young diagrams and various paraphernalia such as hooks, skew hooks,
bars, leg lengths, coat hangers, etc. ...
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