Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Cover of the book
Tytuł książki

Borel spaces

Seria
Rozprawy Matematyczne tom/nr w serii: 190 wydano: 1981
Zawartość
Warianty tytułu
Abstrakty
EN
CONTENTS

Introduction............................................................................... 5

Chapter 1. Borel spaces........................................................ 7

 § 1. Borel spaces....................................................... 7
 § 2. Classical descriptive set theory............................... 10
 § 3. Measure and category............................................... 12
 § 4. Countably generated structures.............................. 13
 § 5. Product spaces........................................................... 17
 § 6. Minimal generators.................................................... 19
 § 7. Rigid Borel spaces..................................................... 20

Chapter 2. Blackwell spaces................................................ 21

 § 8. Blackwell spaces............................................... 21
 § 9. Nonanalytic Blackwell spaces................................. 24
 § 10. Coanalytic Blackwell spaces................................. 26
 § 11. Combinatorial properties........................................ 27

Chapter 3. Atomless structures........................................... 29

 § 12. Atomless structures........................................ 29
 § 13. Atomless substructures of given structures....... 31
 § 14. Separated atomless structures............................. 35
 § 15. Combinatorial properties........................................ 36
 § 16. Measures on atomless structures........................ 40

Chapter 4. Lattice of Borel structures.................................. 41
 § 17. Lattice of Borel structures....................................... 41
 § 18. Atoms and antiatoms.............................................. 42
 § 19. Complementation.................................................... 45
 § 20. A sublattice of $L_X$............................................... 54
 § 21. Embedding................................................................ 56
 § 22. Power of $L_X$......................................................... 56
 § 23. Isomorphism problem............................................ 58

References............................................................................... 60

Index to problems................................................................... 63
Słowa kluczowe
Tematy
Miejsce publikacji
Warszawa
Copyright
Seria
Rozprawy Matematyczne tom/nr w serii: 190
Liczba stron
62
Liczba rozdzia³ów
Opis fizyczny
Dissertationes Mathematicae, Tom CXC
Daty
wydano
1981
Twórcy
Bibliografia
  • [1] R. J. Aumann, BoreI structures for function spaces, Ill. J. Math. 5 (1961), 614-630.
  • [2] D. Basu, Problems relating to the existence of maximal and minimal elements in some fields of statistics (subfields), Proc. fifth Berkeley Symp., Vol. 1 (1965), 41-50.
  • [3] K. P. S. Bhaskara Rao, Studies in Boolean algebras and measure theory, thesis, Indian Statistical Institute, Calcutta 1972.
  • [4] K. P. S. Bhaskara Rao and B. V. Rao, On the isomorphism problem for analytic sets, Bull. Acad. Polon. Sci. 26 (1978), 767-769.
  • [5] K. P. S. Bhaskara Rao and B. V. Rao, Mixtures of nonatomic measures, II, Colloq. Math. 33 (1975), 105-112.
  • [6] K. P. S. Bhaskara Rao and B. V. Rao, Atomless structures and σ-independence. Bull. Acad. Polon. Sci. 26 (1978), 783-784.
  • [7] K. P. S. Bhaskara Rao and B. V. Rao, Lattice of Borel structures, ibid. 26 (1978), 785-786.
  • [8] K. P. S. Bhaskara Rao and M. Bhaskara Rao, A note on the countable chain condition and a finiteness of measures, Bull. Aust. Math. Soc. 6 (1972), 349-353.
  • [9] K. P. S. Bhaskara Rao and M. Bhaskara Rao, A remark on nonatomic measures, Ann. Math. Stat. 43 (1972), 369-370.
  • [10] M. Bhaskara Rao and K. P. S. Bhaskara Rao, Borel σ-algebra on [0,Ω], Manuscripta Math. 5 (1971), 195-198.
  • [11] M. Bhaskara Rao and K. P. S. Bhaskara Rao, Cardinalities of Banach spaces, Journ. Indian Math. Soc. 37 (1973), 347-349.
  • [12] G. Birkhoff, Lattice theory, Amer. Math. Soc., Coll. pub., Vol. 25 (1967).
  • [13] D. Blackwell, On a class of probability spaces, Proc. third. Berkeley Symp., Vol. 2 (1954), 1-6.
  • [14] D. Blackwell and L. E. Dubins, On existence and nonexistence of proper, regular, conditional distributions, Ann. Prob. 3 (1975), 741-752.
  • [15] J. de Groot, Groups represented by homeomorphism groups I, Math. Ann. 138 (1959), 80-102.
  • [16] G. Fichtenholz and L. Kantorovitch, Sur les opérations linéaires dans l'espaces des fonctions bornées, Studia Math. 5 (1934), 69-98.
  • [17] Z. Frolik, Stone-Weierstrass theorems for C(X) with the sequential topology, Proc. Amer. Math. Soc. 27 (1971), 486-494.
  • [18] G. Grätzer, Universal algebra, D. Van Nostrand Inc., Princeton 1968.
  • [19] P. R. Halmos, Measure theory, D. Van Nostrand Co., New York 1950.
  • [20] L. Harrington, Analytic determinancy and $0^H$, preprint, 1977.
  • [21] F. Hausdorff, Set theory, 2nd ed., Chelsea, New York 1962.
  • [22] J. Hoffman-Jørgensen, The theory of analytic spaces, Various publications series. No. 10, Aarhus University, 1970.
  • [23] B. Jónsson, A Boolean algebra without proper automorphisms, Proc. Amer. Math. Soc. 2 (1951), 766-770.
  • [24] S. Kakutani and J. C. Oxtoby, Construction of a nonseparable invariant extension of the Lebesgue measure space, Ann. Math. 52 (1950), 580-590.
  • [25] M. Katětov, Remarks on Boolean algebras, Colloq. Math. 2 (1951), 229-235.
  • [26] M. Kondo, Sur la représentation paramétrique régulière des ensembles analytiques, Fund. Math. 31 (1938), 29-46.
  • [27] K. Kunen, Inaccessibility properties of cardinals, thesis, Stanford University, Stanford 1968.
  • [28] K. Kuratowski, Topology, I. Academic Press-PWN. New York - Warszawa 1966.
  • [29] K. Kuratowski and A. Mostowski, Set theory, 2nd ed., North-Holland, Amsterdam 1976.
  • [30] R. E. Larson and S. J. Andima, The lattice of topologies: a survey, Rocky, Mountain J. Math. 5 (1975), 177-197.
  • [31] N. Lusin, Leçon sur les ensembles analytiques, Gauthier-Villars, Paris 1930.
  • [32] G. W. Mackey, Borel structures in groups and their duals, Trans. Amer. Math. Soc. 85 (1957), 134-165.
  • [33] A. Maitra, Coanalytic sets that are not Blackwell spaces, Fund. Math. 67 (1970), 251-254.
  • [34] A. Maitra, B. V. Rao and K. P. S. Bhaskara Rao, A problem in the extension of measures, Ill. J. Math. 23 (1979), 211-216.
  • [35] R. Mansfield, The solution to one of Ulam's problems concerning analytic rectangles, Proc. Summer institute on set theory, UCLA, Los Angeles, 1967, 241-245.
  • [36] R. Mansfield, The solution to one of Ulam's problems concerning analytic sets, II, Proc. Amer. Math. Soc. 26 (1970), 539-540.
  • [37] E. Marczewski, The characteristic function of a sequence of sets and some of its applications, Fund. Math. 31 (1938), 207-223.
  • [38] E. Marczewski, Ensembles indépendants et leurs applications à la théorie de la mesure, ibid. 35 (1948), 13-28.
  • [39] D. A. Martin and R. M. Solovay, Internal Cohen extensions, Ann. Math. Logic 2 (1970), 143-178.
  • [40] P. A. Meyer, Probability and potentials, Blaisdell Publishing Company, Boston 1966.
  • [41] P. S. Novikov, Sur les fonctions implicites mesurables B, Fund. Math. 17 (1931), 8-25.
  • [42] M. Orkin, A Blackwell space which is not analytic, Bull. Acad. Polon. Sci. 20 (1972), 437-438.
  • [43] J. C. Oxtoby, Measure and category, Springer-Verlag, New York 1971.
  • [44] D. Ramachandran, On the two definitions of independence, Colloq. Math. 32 (1975), 227-231.
  • [45] B. V. Rao, Studies in Borel structures, thesis, Indian Statistical Institute, Calcutta 1969.
  • [46] B. V. Rao, On discrete Borel spaces and projective sets, Bull. Amer. Math. Soc. 75 (1969), 614-617.
  • [47] B. V. Rao, Nonexistence of certain Borel structures, Fund Math, 69 (1970), 241-242.
  • [48] B. V. Rao, Remarks on analytic sets, ibid. 66 (1970), 237-239.
  • [49] B. V. Rao, On Borel structures, Colloq. Math. 21 (1970), 199-204.
  • [50] B. V. Rao, Lattice of Borel structures, ibid. 23 (1971), 213-216.
  • [51] B. V. Rao, On discrete Borel spaces, Acta Math, Acad. Sci. Hung. 22 (1971), 197-198.
  • [52] S. B. Rao, On the minimal thick sets of a measure space, Indian Journ. Math. 12 (1970), 31-41.
  • [53] W. Rudin, Fourier analysis on groups. Interscience, New York 1967.
  • [54] S. Saks, Theory of the integral, 2 nd ed., Dover, New York 1964.
  • [55] H. Sarbadhikari, A projective Blackwell space which is not analytic, Bull. Acad. Polon. Sci. 21 (1973), 511-514.
  • [56] H. Sarbadhikari, Some contributions to descriptive set theory, thesis, Indian Statistical Institute, Calcutta, 1977.
  • [57] H. Sarbadhikari, K. P. S. Bhaskara Rao and E. Grzegorek, Complementation in the lattice of Borel structures, Colloq. Math. 31 (1974), 29-32.
  • [58] W. Sierpiński, Sur un ensemble non dénombrable dont tout homeomorphe est de mesure nulle, Fund. Math. 7 (1925), 188-190.
  • [59] W. Sierpiński, Les ensembles projectifs et analytiques, Gauthier-Villars, Paris 1950.
  • [60] W. Sierpiński, L'hypothèse du continu, 2 nd éd., Chelsea, New York 1956.
  • [61] R. M. Solovay, A model of set theory in which every set of reals is Lebesgue measurable, Ann. Math. 92 (1970), 1-56.
  • [62] J. Steel. Ph. D. Thesis, University of California, Berkeley, 1976.
Języki publikacji
EN
Uwagi
Identyfikator YADDA
bwmeta1.element.zamlynska-30cd945e-459d-48e6-a770-c67d105614dc
Identyfikatory
ISBN
83-01-01253-6
ISSN
0012-3862
Kolekcja
DML-PL
Zawartość książki

rozwiń roczniki

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.