[1] R. J. Aumann, BoreI structures for function spaces, Ill. J. Math. 5 (1961), 614-630.
[2] D. Basu, Problems relating to the existence of maximal and minimal elements in some fields of statistics (subfields), Proc. fifth Berkeley Symp., Vol. 1 (1965), 41-50.
[3] K. P. S. Bhaskara Rao, Studies in Boolean algebras and measure theory, thesis, Indian Statistical Institute, Calcutta 1972.
[4] K. P. S. Bhaskara Rao and B. V. Rao, On the isomorphism problem for analytic sets, Bull. Acad. Polon. Sci. 26 (1978), 767-769.
[5] K. P. S. Bhaskara Rao and B. V. Rao, Mixtures of nonatomic measures, II, Colloq. Math. 33 (1975), 105-112.
[6] K. P. S. Bhaskara Rao and B. V. Rao, Atomless structures and σ-independence. Bull. Acad. Polon. Sci. 26 (1978), 783-784.
[7] K. P. S. Bhaskara Rao and B. V. Rao, Lattice of Borel structures, ibid. 26 (1978), 785-786.
[8] K. P. S. Bhaskara Rao and M. Bhaskara Rao, A note on the countable chain condition and a finiteness of measures, Bull. Aust. Math. Soc. 6 (1972), 349-353.
[9] K. P. S. Bhaskara Rao and M. Bhaskara Rao, A remark on nonatomic measures, Ann. Math. Stat. 43 (1972), 369-370.
[10] M. Bhaskara Rao and K. P. S. Bhaskara Rao, Borel σ-algebra on [0,Ω], Manuscripta Math. 5 (1971), 195-198.
[11] M. Bhaskara Rao and K. P. S. Bhaskara Rao, Cardinalities of Banach spaces, Journ. Indian Math. Soc. 37 (1973), 347-349.
[13] D. Blackwell, On a class of probability spaces, Proc. third. Berkeley Symp., Vol. 2 (1954), 1-6.
[14] D. Blackwell and L. E. Dubins, On existence and nonexistence of proper, regular, conditional distributions, Ann. Prob. 3 (1975), 741-752.
[15] J. de Groot, Groups represented by homeomorphism groups I, Math. Ann. 138 (1959), 80-102.
[16] G. Fichtenholz and L. Kantorovitch, Sur les opérations linéaires dans l'espaces des fonctions bornées, Studia Math. 5 (1934), 69-98.
[17] Z. Frolik, Stone-Weierstrass theorems for C(X) with the sequential topology, Proc. Amer. Math. Soc. 27 (1971), 486-494.
[18] G. Grätzer, Universal algebra, D. Van Nostrand Inc., Princeton 1968.
[19] P. R. Halmos, Measure theory, D. Van Nostrand Co., New York 1950.
[20] L. Harrington, Analytic determinancy and $0^H$, preprint, 1977.
[21] F. Hausdorff, Set theory, 2nd ed., Chelsea, New York 1962.
[22] J. Hoffman-Jørgensen, The theory of analytic spaces, Various publications series. No. 10, Aarhus University, 1970.
[23] B. Jónsson, A Boolean algebra without proper automorphisms, Proc. Amer. Math. Soc. 2 (1951), 766-770.
[24] S. Kakutani and J. C. Oxtoby, Construction of a nonseparable invariant extension of the Lebesgue measure space, Ann. Math. 52 (1950), 580-590.
[25] M. Katětov, Remarks on Boolean algebras, Colloq. Math. 2 (1951), 229-235.
[26] M. Kondo, Sur la représentation paramétrique régulière des ensembles analytiques, Fund. Math. 31 (1938), 29-46.
[27] K. Kunen, Inaccessibility properties of cardinals, thesis, Stanford University, Stanford 1968.
[28] K. Kuratowski, Topology, I. Academic Press-PWN. New York - Warszawa 1966.
[29] K. Kuratowski and A. Mostowski, Set theory, 2nd ed., North-Holland, Amsterdam 1976.
[30] R. E. Larson and S. J. Andima, The lattice of topologies: a survey, Rocky, Mountain J. Math. 5 (1975), 177-197.
[31] N. Lusin, Leçon sur les ensembles analytiques, Gauthier-Villars, Paris 1930.
[32] G. W. Mackey, Borel structures in groups and their duals, Trans. Amer. Math. Soc. 85 (1957), 134-165.
[33] A. Maitra, Coanalytic sets that are not Blackwell spaces, Fund. Math. 67 (1970), 251-254.
[34] A. Maitra, B. V. Rao and K. P. S. Bhaskara Rao, A problem in the extension of measures, Ill. J. Math. 23 (1979), 211-216.
[35] R. Mansfield, The solution to one of Ulam's problems concerning analytic rectangles, Proc. Summer institute on set theory, UCLA, Los Angeles, 1967, 241-245.
[36] R. Mansfield, The solution to one of Ulam's problems concerning analytic sets, II, Proc. Amer. Math. Soc. 26 (1970), 539-540.
[37] E. Marczewski, The characteristic function of a sequence of sets and some of its applications, Fund. Math. 31 (1938), 207-223.
[38] E. Marczewski, Ensembles indépendants et leurs applications à la théorie de la mesure, ibid. 35 (1948), 13-28.
[39] D. A. Martin and R. M. Solovay, Internal Cohen extensions, Ann. Math. Logic 2 (1970), 143-178.
[40] P. A. Meyer, Probability and potentials, Blaisdell Publishing Company, Boston 1966.
[41] P. S. Novikov, Sur les fonctions implicites mesurables B, Fund. Math. 17 (1931), 8-25.
[42] M. Orkin, A Blackwell space which is not analytic, Bull. Acad. Polon. Sci. 20 (1972), 437-438.
[43] J. C. Oxtoby, Measure and category, Springer-Verlag, New York 1971.
[44] D. Ramachandran, On the two definitions of independence, Colloq. Math. 32 (1975), 227-231.
[45] B. V. Rao, Studies in Borel structures, thesis, Indian Statistical Institute, Calcutta 1969.
[46] B. V. Rao, On discrete Borel spaces and projective sets, Bull. Amer. Math. Soc. 75 (1969), 614-617.
[47] B. V. Rao, Nonexistence of certain Borel structures, Fund Math, 69 (1970), 241-242.
[48] B. V. Rao, Remarks on analytic sets, ibid. 66 (1970), 237-239.
[49] B. V. Rao, On Borel structures, Colloq. Math. 21 (1970), 199-204.
[50] B. V. Rao, Lattice of Borel structures, ibid. 23 (1971), 213-216.
[51] B. V. Rao, On discrete Borel spaces, Acta Math, Acad. Sci. Hung. 22 (1971), 197-198.
[52] S. B. Rao, On the minimal thick sets of a measure space, Indian Journ. Math. 12 (1970), 31-41.
[53] W. Rudin, Fourier analysis on groups. Interscience, New York 1967.
[54] S. Saks, Theory of the integral, 2 nd ed., Dover, New York 1964.
[55] H. Sarbadhikari, A projective Blackwell space which is not analytic, Bull. Acad. Polon. Sci. 21 (1973), 511-514.
[56] H. Sarbadhikari, Some contributions to descriptive set theory, thesis, Indian Statistical Institute, Calcutta, 1977.
[57] H. Sarbadhikari, K. P. S. Bhaskara Rao and E. Grzegorek, Complementation in the lattice of Borel structures, Colloq. Math. 31 (1974), 29-32.
[58] W. Sierpiński, Sur un ensemble non dénombrable dont tout homeomorphe est de mesure nulle, Fund. Math. 7 (1925), 188-190.
[59] W. Sierpiński, Les ensembles projectifs et analytiques, Gauthier-Villars, Paris 1950.
[60] W. Sierpiński, L'hypothèse du continu, 2 nd éd., Chelsea, New York 1956.
[61] R. M. Solovay, A model of set theory in which every set of reals is Lebesgue measurable, Ann. Math. 92 (1970), 1-56.
[62] J. Steel. Ph. D. Thesis, University of California, Berkeley, 1976.