Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Cover of the book
Tytuł książki

Hyperspace retractions for curves

Seria

Rozprawy Matematyczne tom/nr w serii: 370 wydano: 1997

Zawartość

Abstrakty

EN
CONTENTS
1. Introduction...................................5
2. Preliminaries.................................7
3. Hyperspace retractions.................9
4. Applications to selections............15
5. Applications to means.................18
References.....................................32

Miejsce publikacji

Warszawa

Seria

Rozprawy Matematyczne tom/nr w serii: 370

Liczba stron

34

Opis fizyczny

Dissertationes Mathematicae, Tom CCCLXX

Daty

wydano
1997
otrzymano
1996-04-30
poprawiono
1997-04-30

Twórcy

  • Mathematical Institute, University of Wrocław, pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland
  • Instituto de Matemáticas, UNAM, Circuito Exterior, Ciudad Universitaria, 04510 México, D.F., México
  • Mathematical Institute, University of Wrocław, pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland
  • Departamento de Matemáticas, Facultad de Ciencias, UNAM, Circuito Exterior, Ciudad Universitaria, 04510 México, D.F., México
  • Mathematical Institute, University of Wrocław, pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland
  • Institute of Mathematics, University of Opole, ul. Oleska 48, 45-951 Opole, Poland

Bibliografia

  • [1] G. Aumann, Aufbau von Mittelwerten mehrerer Argumente I, Math. Ann. 109 (1934), 235-253.
  • [2] G. Aumann, Aufbau von Mittelwerten mehrerer Argumente II (Analytische Mittelwerte), Math. Ann. 111 (1935), 713-730.
  • [3] G. Aumann, Über Räume mit Mittelbildungen, Math. Ann. 119 (1943), 210-215.
  • [4] P. Bacon, An acyclic continuum that admits no mean, Fund. Math. 67 (1970), 11-13.
  • [5] M. Bell and S. Watson, Not all dendroids have a mean, Houston J. Math. 22 (1996), 39-50.
  • [6] D. P. Bellamy, The cone over the Cantor set-continuous maps from both directions, in: Proceedings of the Topology Conference, Emory University, Atlanta, Ga., 1970, 8-25.
  • [7] K. Borsuk, Quelques théorèmes sur les ensembles unicohérents, Fund. Math. 17 (1931), 171-209.
  • [8] K. Borsuk, Theory of Retracts, PWN, Warszawa, 1967.
  • [9] J. H. Case and R. E. Chamberlin, Characterizations of tree-like continua, Pacific J. Math. 10 (1960), 73-84.
  • [10] J. J. Charatonik, Two invariants under continuity and the incomparability of fans, Fund. Math. 53 (1964), 187-204.
  • [11] J. J. Charatonik, Confluent mappings and unicoherence of continua, Fund. Math. 56 (1964), 213-220.
  • [12] J. J. Charatonik, Problems and remarks on contractibility of curves, in: General Topology and its Relations to Modern Analysis and Algebra IV, Proc. Fourth Prague Topological Symposium, 1976; Part B, Contributed Papers, Society of Czechoslovak Mathematicians and Physicists, Prague, 1977, 72-76.
  • [13] J. J. Charatonik, Contractibility and continuous selections, Fund. Math. 108 (1980), 109-118.
  • [14] J. J. Charatonik, Mapping properties of hereditary classes of acyclic curves, Period. Math. Hungar. 18 (2) (1987), 143-149.
  • [15] J. J. Charatonik, Some problems on selections and contractibility, Rend. Circ. Mat. Palermo (2) Suppl. 18 (1988), 27-30.
  • [16] J. J. Charatonik, On continuous selections for the hyperspace of subcontinua, in: Topology (Pécs 1989), Colloq. Math. Soc. János Bolyai 55, North-Holland, Amsterdam, 1993, 91-100.
  • [17] J. J. Charatonik, Contractibility of curves, Matematiche (Catania) 46 (1991), 559-592.
  • [18] J. J. Charatonik and W. J. Charatonik, Monotoneity relative to a point and inverse limits of continua, Glasnik Mat. 20 (40) (1985), 139-151.
  • [19] J. J. Charatonik, W. J. Charatonik and S. Miklos, Confluent mappings of fans, Dissertationes Math. (Rozprawy Mat.) 301 (1990).
  • [20] J. J. Charatonik and C. Eberhart, On smooth dendroids, Fund. Math. 67 (1970), 297-322.
  • [21] J. J. Charatonik and C. Eberhart, On contractible dendroids, Colloq. Math. 25 (1972), 89-98.
  • [22] J. J. Charatonik and Z. Grabowski, Homotopically fixed arcs and contractibility of dendroids, Fund. Math. 100 (1978), 229-239.
  • [23] W. J. Charatonik, Inverse limits of smooth continua, Comment. Math. Univ. Carolin. 23 (1982), 183-191.
  • [24] D. W. Curtis, A hyperspace retraction theorem for a class of half-line compactifications, Topology Proc. 11 (1986), 29-64.
  • [25] S. T. Czuba, On dendroids with Kelley's property, Proc. Amer. Math. Soc. 102 (1988), 728-730.
  • [26] R. B. Fraser, A new characterization of Peano continua, Comment. Math. Prace Mat. 16 (1972), 247-248.
  • [27] J. B. Fugate, G. R. Gordh, Jr. and L. Lum, Arc-smooth continua, Trans. Amer. Math. Soc. 265 (1981), 545-561.
  • [28] G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislowe and D. S. Scott, A Compendium of Continuous Lattices, Springer, 1980.
  • [29] J. T. Goodykoontz, Jr., Connectedness im kleinen and local connectedness in $2^X$ and C(X), Pacific J. Math. 53 (1974), 387-397.
  • [30] J. T. Goodykoontz, More on connectedness im kleinen and local connectedness in C(X), Proc. Amer. Math. Soc. 65 (1977), 357-364.
  • [31] J. T. Goodykoontz, Some functions on hyperspaces of hereditarily unicoherent continua, Fund. Math. 95 (1977), 1-10.
  • [32] J. T. Goodykoontz, C(X) is not necessarily a retract of $2^X$, Proc. Amer. Math. Soc. 67 (1977), 177-178.
  • [33] J. T. Goodykoontz, A nonlocally connected continuum X such that C(X) is a retract of $2^X$, Proc. Amer. Math. Soc. 91 (1984), 319-322.
  • [34] J. T. Goodykoontz, Some retractions and deformation retractions on $2^X$ and C(X), Topology Appl. 21 (1985), 121-133.
  • [35] J. T. Goodykoontz, Jr. and S. B. Nadler, Jr., Whitney levels in hyperspaces of certain Peano continua, Trans. Amer. Math. Soc. 274 (1982), 671-694.
  • [36] B. G. Graham, On contractible fans, Fund. Math. 111 (1981), 77-93.
  • [37] S. T. Hu, Theory of Retracts, Wayne State Univ. Press, 1965.
  • [38] A. Illanes, A continuum X which is a retract of C(X) but not of $2^X$, Proc. Amer. Math. Soc. 100 (1987), 199-200.
  • [39] A. Illanes, Two examples concerning hyperspace retraction, Topology Appl. 29 (1988), 67-72.
  • [40] K. Kawamura and E. D. Tymchatyn, Continua which admit no mean, Colloq. Math. 71 (1996), 97-105.
  • [41] J. L. Kelley, Hyperspaces of a continuum, Trans. Amer. Math. Soc. 52 (1942), 22-36.
  • [42] R. J. Koch and I. S. Krule, Weak cutpoint ordering on hereditarily unicoherent continua, Proc. Amer. Math. Soc. 11 (1960), 679-681.
  • [43] A. N. Kolmogoroff, Sur la notion de la moyenne, Atti Accad. Naz. Lincei Rend. (6) 12 (1930), 388-391.
  • [44] J. Krasinkiewicz, Curves which are continuous images of tree-like continua are movable, Fund. Math. 89 (1975), 233-260.
  • [45] W. Kuperberg, Uniformly pathwise connected continua, in: Studies in Topology, Proc. Conf. Univ. North Carolina, Charlotte, N.C., 1974, Academic Press, New York, 1975, 315-324.
  • [46] K. Kuratowski, Topology, Vol. 1, Academic Press and PWN, 1966.
  • [47] K. Kuratowski, Topology, Vol. 2, Academic Press and PWN, 1968.
  • [48] K. Kuratowski, S. B. Nadler, Jr. and G. S. Young, Continuous selections on locally compact separable metric spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 18 (1970), 5-11.
  • [49] T. J. Lee, Every contractible fan has the bend intersection property, Bull. Polish Acad. Sci. Math. 36 (1988), 413-417.
  • [50] T. J. Lee, Bend intersection property and dendroids of type N, Period. Math. Hungar. 23 (2) (1991), 121-127.
  • [51] A. Lelek, On weakly chainable continua, Fund. Math. 51 (1962), 271-282.
  • [52] L. Lum, Weakly smooth dendroids, Fund. Math. 83 (1974), 111-120.
  • [53] T. Maćkowiak, Confluent mappings and smoothness of dendroids, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 21 (1973), 719-725.
  • [54] T. Maćkowiak, Continuous selections for C(X), Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 26 (1978), 547-551.
  • [55] T. Maćkowiak, Contractible and nonselectible dendroids, Bull. Polish Acad. Sci. Math. 33 (1985), 321-324.
  • [56] H. C. Miller, On unicoherent continua, Trans. Amer. Math. Soc. 69 (1950), 179-194.
  • [57] L. Mohler, A characterization of smoothness in dendroids, Fund. Math. 67 (1970), 369-376.
  • [58] L. Mohler and J. Nikiel, A universal smooth dendroid answering a question of J. Krasinkiewicz, Houston J. Math. 14 (1988), 535-541.
  • [59] S. B. Nadler, Jr., Inverse limits and multicoherence, Bull. Amer. Math. Soc. 76 (1970), 411-414.
  • [60] S. B. Nadler, Jr., Some problems concerning hyperspaces, in: Lecture Notes in Math. 375, Springer, 1974, 190-194.
  • [61] S. B. Nadler, Jr., A characterization of locally connected continua by hyperspace retractions, Proc. Amer. Math. Soc. 67 (1977), 167-176.
  • [62] S. B. Nadler, Jr., Hyperspaces of Sets, M. Dekker, 1978.
  • [63] S. B. Nadler, Jr. and L. E. Ward, Jr., Concerning continuous selections, Proc. Amer. Math. Soc. 25 (1970), 369-374.
  • [64] L. G. Oversteegen, Non-contractibility of continua, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 26 (1978), 837-840.
  • [65] L. G. Oversteegen, Internal characterization of contractibility of fans, Bull. Acad. Polon. Sci. Sér. Sci. Math. 27 (1979), 385-389.
  • [66] K. Sigmon, A note on means in Peano continua, Aequationes Math. 1 (1968), 85-86.
  • [67] L. E. Ward, Jr., Rigid selections and smooth dendroids, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 19 (1971), 1041-1044.
  • [68] M. Wojdysławski, Sur la contractilité des hyperespaces des continus localement connexes, Fund. Math. 30 (1938), 247-252.
  • [69] M. Wojdysławski, Rétractes absolus et hyperespaces des continus, Fund. Math. 32 (1939), 184-192.

Języki publikacji

EN

Uwagi

1991 Mathematics Subject Classification: 54B20, 54C15, 54F15, 54F50.

Identyfikator YADDA

bwmeta1.element.zamlynska-2f7a5858-d496-4f5a-9849-f7d9aff7f411

Identyfikatory

ISSN
0012-3862

Kolekcja

DML-PL
Zawartość książki