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04510 México, D.F., México
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Abstract

We study retractions from the hyperspace of all nonempty closed subsets of a given continuum
onto the continuum (which is naturally embedded in the hyperspace). Some necessary and some
sufficient conditions for the existence of such a retraction are found if the continuum is a curve. It
is shown that the existence of such a retraction for a curve implies that the curve is a uniformly
arcwise connected dendroid, and that a universal smooth dendroid admits such a retraction. The
existence of this retraction for a given dendroid implies that the dendroid admits a mean. An
example of a (nonplanable) smooth dendroid that admits no mean is constructed. Some related
results are obtained and open problems are stated. The results answer several questions asked
in the literature.
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1. Introduction

Let X be a metric continuum. We denote by 2X (respectively, C(X)) the hyperspace of

all nonempty closed subsets (respectively, subcontinua) of X , equipped with the Hausdorff

metric. Sam B. Nadler, Jr. asks in [60, (3.1), p. 193] the following question.

1.1. Problem (Nadler). When is X a continuous image of 2X or of C(X)?

In the same paper [60] he gives some necessary and some sufficient conditions for

existence of a mapping from 2X or C(X) onto X . The existence of such a mapping implies

that X is weakly chainable (in the sense of [51] or—equivalently—X is a continuous

image of a pseudo-arc) and that X is the union of two proper subcontinua each of which

is arcwise connected [60, Theorem 3.2, p. 193]. In case when X is chainable (circle-like)

such a mapping exists if and only if X is an arc (a simple closed curve, respectively)

[60, 3.3, p. 193]. A space is said to be g-contractible [6] provided that there exists a

surjective mapping from the space onto itself which is homotopic to a constant mapping.

Nadler shows that if X is g-contractible, then there is a mapping from 2X onto X [60,

Theorem 3.4, p. 193].

Since the hyperspace F1(X) of singletons of X is a subspace of 2X and is homeomor-

phic to X , the continuum X can be considered as naturally embedded in C(X). Thus, if

we identify X with F1(X), we have

(1.2) X ⊂ C(X) ⊂ 2X .

So, the following is a particular case of Problem 1.1 (see [59, p. 413] and also [62, (6.2),

p. 270]).

1.3. Problem (Nadler). What are necessary and sufficient conditions in order that a

continuum X be a retract of 2X or C(X)?

Let H be 2X or C(X). By a selection for H we mean a mapping s : H → X such that

s(A) ∈ A for each A ∈ H. Then a selection for H is a retraction of H onto X . Therefore

Problem 1.3 is related to the existence of a selection for the corresponding hyperspace

(see [63], [54], [55] and an expository paper [16], where a number of references are given).

There are a number of results that are related to mappings from, onto or between

some hyperspaces (which are subspaces of 2X), in particular to hyperspace retractions.

For example, C(X) is always a continuous image of 2X [60, Theorem 3.6, p. 194], not

necessarily being its retract, [32]. Many results concern local connectedness of X or of

a hyperspace at some of its points (see [26], [29], [30], [35], [61] for example). In the

late thirties M. Wojdys lawski proved that locally connected continua have contractible

hyperspaces [68] and that C(X) is an absolute retract if and only if X is locally connected
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[69] (compare also [41, Theorem 4.4, p. 28]). A characterization of dendrites in terms

of continuity of the function I : 2X → C(X) that assigns to a closed subset A of a

hereditarily unicoherent continuum X the continuum I(A) irreducible with respect to

containing A is given as Theorem 1 of [31, p. 3]. For characterizations of smooth dendroids

in terms of continuity of functions related to hyperspaces see [31, Theorem 8, p. 7];

compare also [52, Theorem 1, p. 112].

Conditions mentioned in Problem 1.3 are known in a very particular case when X is

locally connected. Namely, we have the following important result (see [59, p. 413] and

[62, Theorem (6.4), p. 270]).

1.4. Theorem (Nadler). A locally connected continuum X is a retract of 2X if and

only if X is an absolute retract.

As a consequence we get a corollary.

1.5. Corollary (Nadler). A locally connected curve X is a retract of 2X if and only

if X is a dendrite.

For arbitrary continua, not necessarily locally connected, the situation is much more

complicated and it is not likely to be clarified soon. However, there are partial results and

examples which describe various situations. Hyperspace retractions of half-line compac-

tifications are studied and many very interesting results are obtained by D. W. Curtis in

[24]. Some interrelations between several conditions concerning hyperspace retractions,

as well as suitable examples, are presented by S. B. Nadler, Jr. in his book [62]. It is

known that if a one-dimensional continuum X is a retract of either 2X or C(X), then

it is a dendroid, i.e., it is arcwise connected and hereditarily unicoherent [34, p. 122].

J. T. Goodykoontz, Jr. shows in [32] (in [33], respectively) an example of a nonlocally

connected continuum X which is a smooth dendroid such that C(X) is (is not, respec-

tively) a retract of 2X . A. Illanes in [38] constructs an example of a continuum X which

is a retract of C(X) but not of 2X , and which does not admit any mean. Recall that

a mean on a space X is a mapping µ : X × X → X such that µ(x, y) = µ(y, x) and

µ(x, x) = x for every x, y ∈ X (in other words, it is a symmetric, idempotent, continuous

binary operation on X). In [39] two examples of dendroids are constructed relating to

the existence of a selection and of a retraction on C(X).

In [34] a complete discussion is given of the existence of retractions, deformation

retractions and strong deformation retractions between F1(X), C(X) and 2X ; conclusions

are collected in Table I of [34, p. 130]. We erase some question marks from that table and

answer some other questions from [34].

The main subject is related to Problem 1.3 of Nadler in its part concerning 2X rather

than C(X). In the light of Theorem 1.4 we consider nonlocally connected continua. Recall

that there are continua X in all dimensions such that X is a deformation retract of 2X [34,

Proposition 2.10, p. 126]. We discuss the above question under the additional assumption

that dim X = 1 (i.e., that the continuum X is a curve). In other words, we are interested

in the following problem.

1.6. Problem. Characterize curves X such that X is a retract of 2X .
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The paper consists of five chapters. After an introduction and preliminaries, hyper-

space retractions are studied in Chapter 3. We start by showing that if a curve X admits

such a retraction from either 2X or C(X), then X is a uniformly arcwise connected den-

droid (Theorems 3.1 and 3.3). This is an extension of a statement in [34]. We also give

some conditions for the inverse limit X of finite dendrites to admit a retraction from 2X

onto X (Theorem 3.19). We conclude that the Mohler–Nikiel universal smooth dendroid

admits the considered retraction (Theorem 3.21).

The fourth chapter is devoted to selections for the hyperspace C(X). A sufficient

condition is given in Corollary 4.3 for the restriction of a retraction of Theorem 3.3 to

C(X) to be a selection. Extra conditions are formulated that imply smoothness of the

dendroid X . In Example 4.4 a noncontractible (thus nonsmooth) dendroid is constructed

admitting a retraction from 2X onto X whose restriction to C(X) is a selection.

Chapter 5 is devoted to means. It is shown that for each continuum X the existence

of a retraction from 2X onto X implies the existence of a mean on X (Propositions 5.11

and 5.16). It is known that if a fan X (i.e., a dendroid having just one ramification point)

is smooth, then X is a deformation retract of 2X [34, Theorem 2.9, p. 125]. A fan X that

admits no mean is presented in [5, Example 3.7, p. 42]; so there is no retraction from 2X

onto X . One of the most important results of Chapter 5 is Example 5.52 which shows

a smooth dendroid admitting no mean. The example answers in the negative several

questions concerning means asked in the literature (see Remarks 5.54). These results can

be considered as steps towards finding a characterization of continua (of curves) which

admit a mean. This problem was the starting point of the present investigations.

2. Preliminaries

All spaces considered are assumed to be metric. We denote by N the set of positive

integers, and by R the space of reals. A continuum means a compact connected space,

and a mapping means a continuous function. If Y ⊂ X , then Y is a retract of X means

that there exists a mapping r : X → Y (called a retraction) such that the restriction

r|Y is the identity on Y . Given a continuum X we let 2X denote the hyperspace of all

nonempty closed subsets of X with the Hausdorff metric (equivalently: with the Vietoris

topology; see e.g. [62, (0.1), p. 1, and (0.12), p. 10]). Further, we denote by C(X) the

hyperspace of all subcontinua of X , i.e., of all connected elements of 2X , and for each

n ∈ N we put

Fn(X) = {A ∈ 2X : A has at most n elements}.

In particular, F1(X) is the hyperspace of singletons, i.e.,

F1(X) = {A ∈ 2X : A is a singleton}.

Note that F1(X) is homeomorphic to X . We identify X and F1(X), and we consider

X as a subspace of 2X under the natural embedding. Similarly, we think of C(X) as a

subspace of 2X . Hence, in particular, we shall consider a retraction r : 2X → X rather

than a retraction r : 2X → F1(X), although the former notation is perhaps less formal.
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A curve means a one-dimensional continuum. A continuum is said to be unicoherent

if the intersection of any two subcontinua whose union is the whole continuum is connec-

ted. A property of a continuum X is hereditary provided that the whole space X has the

property, as well as every subcontinuum of X also has this property. Thus, in particular,

a continuum is said to be hereditarily unicoherent provided that each its subcontinuum is

unicoherent. If S is an arbitrary set in a continuum X , we denote by I(S) a continuum in

X containing S whose no proper subcontinuum contains S, i.e., I(S) means a continuum

in X which is irreducible about the set S⊂X . It is known (see [10, Theorem T1, p. 187])

that in hereditarily unicoherent continua X the continuum I(S) is unique (equal to the

intersection of all subcontinua containing S); moreover, the above uniqueness charac-

terizes hereditarily unicoherent continua (see [56, Theorem 1.1, p. 179]). Therefore, for

hereditarily unicoherent continua, the assignment I described above can be considered

as a function I : 2X → C(X). For its application to characterizations of some curves see

[31, Theorems 1 and 8, pp. 3 and 7].

A space is said to be uniquely arcwise connected provided that for any two points

there is exactly one arc joining these points. A dendrite means a locally connected conti-

nuum that contains no simple closed curve. A dendroid means an arcwise connected and

hereditarily unicoherent continuum. It follows that the concept of a dendrite coincides

with that of a locally connected dendroid. An end point of a dendroid X is defined as a

point p of X which is an end point of each arc containing p. By a ramification point of

a dendroid X we understand a point which is the centre of a simple triod contained in

X . A dendroid having at most one ramification point v is called a fan, and v is called its

top. The cone over the closure of the harmonic sequence of points is called the harmonic

fan. The cone over the Cantor middle-thirds set is called the Cantor fan. A dendrite is

said to be finite provided that the set of all its end points is finite.

A continuum X is said to be uniformly pathwise connected provided that it is a

continuous image of the Cantor fan. The original definition of this concept, given in [45,

p. 316], is more complicated, but it agrees with the one above by Theorem 3.5 of [45,

p. 322]. A space X is said to be uniformly arcwise connected provided that it is arcwise

connected and that for each ε > 0 there is a k ∈ N such that every arc in X contains k

points that cut it into subarcs of diameters less than ε. By Theorem 3.5 in [45, p. 322],

each uniformly arcwise connected continuum is uniformly pathwise connected (but not

conversely) and it is easy to see that for uniquely arcwise connected continua these two

notions coincide (compare [45, p. 316]). In particular, this holds for dendroids.

A dendroid X is said to be smooth at a point v ∈ X provided that for each sequence of

points an ∈ X which converges to a point a ∈ X the sequence of arcs van ⊂ X converges

to the arc va. A dendroid X is said to be smooth provided it is smooth at some point

v ∈ X . Then the point v is called an initial point of X . It is known that every smooth

dendroid is uniformly arcwise connected (see [20, Corollary 16, p. 318]).

The following observation is a consequence of the definition.

2.1. Observation. If a sequence {an} in a smooth dendroid X with an initial point v

converges to a 6= v, then there is a sequence of homeomorphisms hn : [0, 1]→ van which

converges (uniformly) to a homeomorphism h : [0, 1]→ va.
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A continuum X is said to have the property of Kelley provided that for each point x

of X , for each sequence of points xn converging to x, and for each subcontinuum K of X

containing the point x, there exists a sequence of subcontinua Kn containing the points

xn such that K is its limit (see [41, Property (3.2), p. 26]).

We have the following result [25, Corollary 5, p. 730].

2.2. Theorem (Czuba). Each dendroid having the property of Kelley is smooth.

The opposite implication is not true: consider a harmonic fan with the limit segment

prolonged beyond the limit point of end points.

A subset A of a space X is said to be planable if it is embeddable in the plane, i.e., if

there is a homeomorphism φ : A→ φ(A) ⊂ R
2.

A mapping f : X → Y from a topological space X onto a topological space Y is

called:

• monotone provided that the inverse image of each subcontinuum of Y is a subcon-

tinuum of X ;

• monotone relative to a point p ∈ X provided that for each subcontinuum Q of Y

such that f(p) ∈ Q the inverse image f−1(Q) is connected;

• confluent provided that for each subcontinuum Q of Y each component of the inverse

image f−1(Q) is mapped onto Q under f .

A mapping is monotone if and only if it is monotone relative to each point of its

domain [53, Theorem 2.1, p. 720], and open as well as monotone mappings between

continua are confluent [11, V and VI, p. 214].

We use the symbols Li, Ls and Lim to denote the lower limit, the upper limit and

the limit of a sequence of subsets of a metric space, according to the notation given in

Kuratowski’s monograph [46, §29, pp. 335–340]. Further, we write f = lim fn to denote

that a sequence of mappings fn converges uniformly to the limit f .

3. Hyperspace retractions

It is observed in [34, p. 122] that if a one-dimensional continuum X is a retract of

either 2X or C(X), then it is a dendroid. The only argument used is Theorem (6.9) of [62,

p. 272], which leads to Vietoris homology theory or to other homology theories (see [62,

Theorems (1.172)–(1.180), pp. 176–179]). We present here another (and more complete)

argument, to obtain a stronger result. Both these arguments are based on the possibility

to represent the hyperspace 2X or C(X) as the intersection of a decreasing sequence of

Hilbert cubes [62, Theorem (1.171), p. 175].

3.1. Theorem. Let X be a curve. If

(3.2) there exists a retraction from C(X) onto X,

then X is a uniformly arcwise connected dendroid.

P r o o f. For every continuum X the hyperspace C(X) has trivial shape (see [62, Co-

rollary (1.182), p. 180]). Trivial shape is preserved under retraction (simply by definition),
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and therefore (3.2) implies that X has trivial shape. Since every curve having trivial shape

is treelike [44, Theorem 2.1(B), p. 237], it follows that X is treelike. Every treelike conti-

nuum is hereditarily unicoherent (see [9, Theorem 1, p. 74] and [47, §57, II, Theorem 2,

p. 437] and treelikeness is a hereditary property; compare [14, (2.1) and (4.3), pp. 144

and 147]), so we infer that X is hereditarily unicoherent. Further, for each continuum X

the hyperspace C(X) is a continuous image of the Cantor fan ([41, Theorem 2.7, p. 25];

compare [62, Theorem (1.33), p. 81]), i.e., it is uniformly pathwise connected. Therefore so

is X , uniform pathwise connectedness being a continuous invariant. Thus the conclusion

follows by the definition of a dendroid.

3.3. Theorem. Let X be a curve. If

(3.4) there exists a retraction r : 2X → X,

then X is a uniformly arcwise connected dendroid.

P r o o f. It follows from (1.2) that (3.4) implies (3.2). Indeed, the restriction r|C(X)

is a retraction from C(X) onto X . Thus the conclusion follows from Theorem 3.1.

3.5.Remark. The converses to Theorems 3.1 and 3.3 are not true. This can be shown

by one example. Recall the following construction. Let X1 be the geometric cone in the

plane with vertex v1 = (−1, 0) and the base consisting of the points (1, 0) and (1, 2−n)

for n ∈ N. Similarly, let X2 be the geometric cone in the plane with vertex v2 = (1, 0)

and the base consisting of the points (−1, 0) and (−1,−2−n) for n∈N. Thus X1 and X2

are harmonic fans having the limit segment v1v2 in common. Put

X = X1 ∪X2.

Thus X is a uniformly arcwise connected dendroid. It is known [63, Theorem 2, p. 372]

that C(X) does not admit a selection. The proof of this property given in [62, (5.10),

p. 258], uses the fact that C(X) is contractible. However, the argument for the contrac-

tibility is not correct (as observed in [34, Example 2.13, p. 128]; see also [25]) because

it is based on a false statement that X , being obviously nonsmooth, has the property

of Kelley, which contradicts Theorem 2.2. The proof of contractibility of C(X) has been

repaired by J. T. Goodykoontz, Jr. in [34, Example 2.13, p. 128]. It follows that 2X is also

contractible (in fact both these properties are equivalent, [41, Lemma 3.1, p. 25]). Since

contractibility is preserved under retractions [47, §54, V, Theorem 3, p. 371] and since

X is not contractible (because it is of type N between v1 and v2, see [64, Theorem 2.1,

p. 838], it follows that there is no retraction from either 2X or C(X) onto X .

3.6.Remark. If the converse to Theorem 3.3 is under consideration only (so, if we pay

no attention to existence of a retraction from C(X) onto X), then counterexamples can be

even more specialized. Apart from the dendroid X of Remark 3.5, other uniformly arcwise

connected dendroids X for which there is no retraction from 2X onto X are known. An

example of a plane fan with no such retraction is constructed in [5, Example 3.7, p. 42]. A

smooth dendroid X with no retraction from 2X onto X is constructed in Example 5.52. It

obviously is a retract of C(X), since each smooth dendroid X is a retract (even a strong

deformation retract) of C(X) (see [34, Proposition 2.14, p. 129]).
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Now we shall prove a partial converse to Theorem 3.3. We need some auxiliary defi-

nitions and propositions.

Let X be a continuum. A retraction r : 2X → X is said to be associative provided

that

(3.7) r(A ∪B) = r({r(A)} ∪B) for every A, B ∈ 2X .

Let X be hereditarily unicoherent. A retraction r : 2X→X is said to be internal provided

that

(3.8) r(A) ∈ I(A) for each A ∈ 2X .

The next proposition says that this property is hereditary.

3.9. Proposition. Let Y be a hereditarily unicoherent continuum. If a retraction

r : 2Y → Y is internal , then for every subcontinuum X of Y the restriction of r to 2X is

also an internal retraction of 2X onto X.

P r o o f. For an arbitrary subcontinuum X of a hereditarily unicoherent continuum Y

the condition A ⊂ X implies I(A) ⊂ X for each set A in Y . Hence, if A is nonempty and

closed, then A ⊂ X implies r(A) ∈ I(A) ⊂ X by (3.8), and the conclusion holds by the

definition of a retraction.

3.10. Corollary. Let Y be a hereditarily unicoherent continuum. If a retraction

r : 2Y → Y is internal and associative, then for every subcontinuum X of Y the restriction

of r to 2X is also an internal and associative retraction of 2X onto X.

For the proof of the following result see [34, Theorem 2.9, p. 125].

3.11. Theorem (Goodykoontz). Every smooth fan X is a deformation retract of 2X .

3.12. Remarks. (a) In [5, Example 3.7, p. 42], a (nonsmooth) plane fan X is con-

structed such that there is no retraction from 2X onto X . Thus smoothness is an essential

assumption in Theorem 3.11.

(b) In Example 5.52 a (nonplanable) smooth dendroid X will be constructed for which

there is no retraction from 2X onto X . This shows that Goodykoontz’s Theorem 3.11

cannot be generalized to all smooth dendroids (i.e., that the property of X having just

one ramification point is indispensable).

In connection with Remark 3.12(b) we have the following question which is related to

Theorem 3.11.

3.13. Question. For what smooth dendroids X does there exist a deformation re-

traction from 2X onto X?

Our next goal is to show that a universal smooth dendroid Y admits an associative

retraction from the hyperspace 2Y onto Y . Since the dendroid is defined using inverse

limits, we need some auxiliary results on inverse limits of dendrites with open bonding

mappings.

3.14. Lemma. Let a dendrite X contain a point p and a subdendrite Y such that p ∈ Y

and X \Y is connected. Let f : X → Y be an open retraction which is monotone relative

to p, such that card f−1(y) ≤ 2 for each point y ∈ Y , and let λ : X → [0,∞) be such that
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λ(p) = 0, and , for each x ∈ X , λ(f(x)) = λ(x) and the restriction λ|px : px → [0, λ(x)]

is a homeomorphism.

If rY : 2Y → Y is an associative retraction such that

λ(rY (B)) = min{λ(y) : y ∈ B} for each B ∈ 2Y ,

then there exists an associative retraction rX : 2X → X satisfying

(3.15) λ(rX(A)) = min{λ(x) : x ∈ A} for each A ∈ 2X ,

and rX |2Y = rY .

P r o o f. Let A ∈ 2X . The set f−1(rY (f(A))) consists of at most two points. If it

consists of two points, then exactly one of them is in Y . Define rX(A) as a point satisfying

the following two conditions:

(3.16) rX(A) ∈ f−1(rY (f(A)))

and

(3.17) rX(A) ∈ Y if and only if A ∩ Y 6= ∅.

Observe that rX is well-defined, its restriction to 2Y is rY , and condition (3.15) holds by

the definition of rX . We shall prove continuity of rX .

By assumption the mapping f can be considered as the combination of two homeo-

morphisms: the identity on Y and f |(X \ Y ) on X \ Y . Note also that bd(X \ Y ) is a

one-point set, say {b}, and we have

(3.18) λ(x) ≥ λ(b) for each x ∈ X \ Y.

For each n ∈ N take An ∈ 2X and assume that the sequence {An} has A0 as its limit. If

either A0 ⊂ X \Y or An∩Y 6= ∅ for each n ∈ N, then the condition lim rX(An) = rX(A0)

is a consequence of the definitions. So, assume An ⊂ X \Y and A0∩Y 6= ∅. Then b ∈ A0

and, according to the convergence, we have

lim min{λ(x) : x ∈ An} ≤ λ(b).

On the other hand, (3.18) implies that λ(x) ≥ λ(b) for each x ∈ An, whence we get

lim min{λ(x) : x ∈ An} = λ(b). Therefore

lim λ(rX (An)) = λ(b) = λ(rX(A0)).

Since b is the only point of f−1(f(b)), we conclude that lim rX(An) = b = rX(A0), so rX

is continuous.

Now we shall prove that it is associative. We have to show (3.7). Let A, B ∈ 2X . The

definition of rX and associativity of rY imply that

rY (f(A ∪B)) = rY (f(A) ∪ f(B)) = rY ({rY (f(A))} ∪ f(B))

= rY (f({rX(A)} ∪B)) = f(rX({rX(A)} ∪B)).

Further,

rX(A ∪B) ∈ Y ⇔ (A ∪B) ∩ Y 6= ∅ ⇔ A ∩ Y 6= ∅ or B ∩ Y 6= ∅

⇔ rX(A) ∈ Y or B ∩ Y 6= ∅

⇔ ({rX(A)} ∪B) ∩ Y 6= ∅ ⇔ rX({rX(A)} ∪B) ∈ Y.
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Since rX was defined using (3.16) and (3.17), and since we showed appropriate associa-

tivity properties of both of them, the proof of associativity of rX is complete.

3.19. Theorem. Let {Xn, fn : n ∈ N} be an inverse sequence such that X1 is a

straight line segment with an end point p and , for each n ∈ N, the following conditions

are satisfied :

• Xn is a finite dendrite;

• Xn ⊂ Xn+1;

• the difference Xn+1 \Xn is connected ;

• the bonding mapping fn : Xn+1 → Xn is an open retraction which is also monotone

relative to p.

Then X = lim←−{Xn, fn : n ∈ N} is a smooth dendroid having the property of Kelley,

and there exists an associative retraction r : 2X → X.

P r o o f. Since the bonding mappings fn are retractions, we can consider the continua

Xn as subsets of X (and then X is known to be homeomorphic with the closure of

their union). Thus p ∈ X . Since the properties of being a dendroid and being smooth

are preserved under the inverse limit operation if the bonding mappings are monotone

relative to points forming a thread (see [18, Corollary 3, p. 145, and Theorem 1, p. 144])

we conclude that the continuum X is a dendroid which is smooth at p. Further, since each

dendrite Xn as a locally connected continuum has the property of Kelley, and since the

property of Kelley is preserved under the inverse limit operation if the bonding mappings

are confluent (see [23, Theorem 2, p. 190]), thus in particular if they are open, it follows

that X has this property, too (it is enough to show that X is a dendroid with the property

of Kelley; then its smoothness follows by Theorem 2.2).

Let π1 : X → X1 be the natural projection. Define λ : X → [0,∞) taking as λ(x) the

distance from p to π1(x) in X1 for each x ∈ X . To begin the inductive procedure observe

that an associative retraction r1 : 2X1 → X1 which agrees with the mapping λ, i.e., for

which the condition

(3.15) λ(r1(A)) = min{λ(x) : x ∈ A} for each A ∈ 2X1

holds, can be defined taking r1(A) as the point of A nearest to the end point p.

Assume that for some n ∈ N an associative retraction rn : 2Xn → Xn is defined.

Because of finiteness of the dendrite Xn+1 we can define intermediate dendrites

Xn = Xn,0 ⊂ Xn,1 ⊂ . . . ⊂ Xn,k ⊂ Xn,k+1 = Xn+1

and open retractions

fn,i : Xn,i+1 → Xn,i for i ∈ {0, . . . , k}

such that

1. the mappings fn,i are monotone relative to p;

2. card f−1

n,i (x) ≤ 2 for each x ∈ Xn,i;

3. fn = fn,0 ◦ fn,1 ◦ . . . ◦ fn,k.
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Since Xn,i+1 ⊂ X , the mapping λ|Xn,i+1 : Xn,i+1 → [0,∞) is defined. One can check

that the assumptions of Lemma 3.14 are satisfied with Xn,i+1 in place of X and Xn,i

in place of Y , as well as fn,i in place of f , and λ|Xn,i+1 in place of λ. Thus, for each

i ∈ {0, . . . , k} we can define an associative retraction rn,i : 2Xn,i → Xn,i by the inductive

procedure starting with rn,0 = rn. By Lemma 3.14 we then have

(3.20) rn,i+1|2
Xn,i = rn,i.

Putting rn+1 = rn,k+1 we can see by (3.20) that rn+1|2Xn = rn. The limit mapping

r = lim←− rn is the required associative retraction.

Let K be a class of continua. A continuum Y ∈ K is said to be universal in K provided

that every member of K can be embedded in Y .

By Theorem 3.19 there is a universal smooth dendroid Y admitting a retraction from

2Y onto Y . It is the one constructed by Mohler and Nikiel in [58], and it will be called

the Mohler–Nikiel universal smooth dendroid. We recall its construction.

The dendroid under consideration is defined as the inverse limit of an inverse sequence

of finite dendrites Yn, where n ∈ {0, 1, 2, . . .}, with bonding mappings gn : Yn+1 → Yn

which are finite compositions of mappings satisfying the assumptions of Theorem 3.19.

Let Y0 = [0, 1] and let p = 0 ∈ Y0. We define λ0 : Y0 → [0, 1] as the identity. Let

d1, d2, d3, . . . be a sequence of rationals in [0, 1) such that every rational in [0, 1) appears

infinitely many times in the sequence. Assume that for some n ∈ {0, 1, 2, . . .} we have

defined a finite dendrite Yn, a mapping λn : Yn → [0, 1] such that λn|Yk = λk for each

k ∈ {0, 1, . . . , n}, and open retractions gk : Yk+1 → Yk for k ∈ {0, 1, . . . , n− 1}. To define

Yn+1 consider two copies Yn × {0} and Yn × {1} of Yn. Now Yn+1 is obtained from the

free union of the two copies of Yn by identification of each two points (y, 0) and (y, 1) if

and only if λn(y) ≤ dn. Define gn : Yn+1 → Yn as the natural projection reidentifying the

doubled portion of Yn. Finally put λn+1(y, 0) = λn+1(y, 1) = λn(y) for each y ∈ Y . It is

shown in [58] that Y = lim←−{Yn, gn : n ∈ N} is a universal smooth dendroid. Because the

difference Yn+1 \ Yn has finitely many components, the mapping gn : Yn+1 → Yn can be

described as the composition of a finite number of intermediate mappings each of which

corresponds to the natural projection of one of the components of the difference Yn+1 \Yn

onto Yn.

Applying Theorem 3.19 we get the following result.

3.21. Theorem. The Mohler–Nikiel universal smooth dendroid Y has the property of

Kelley, and there exists an associative retraction r : 2Y → Y .

3.22. Remark. There is an example (viz. Example 5.52) of a (nonplanable) smooth

dendroid X for which there is no retraction from 2X onto X . By universality of the

Mohler–Nikiel universal smooth dendroid Y the dendroid X can be considered as a sub-

space of Y . Therefore it follows from Proposition 3.9 that the retraction r of Theorem 3.21

is not internal. In other words, the Mohler–Nikiel universal smooth dendroid admits an

associative retraction, while it does not admit any internal one.

3.23. Question. Let a dendroid X have the property of Kelley. Does there exist a

retraction r : 2X → X?
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4. Applications to selections

Let a continuum X and a family F ⊂ 2X be given. By a continuous selection (briefly

a selection) on F we mean a mapping s : F → X such that s(A) ∈ A for each A ∈ F .

Since F1(X) and X are homeomorphic, if F1(X) ⊂ F , a selection on F may be viewed as

a special kind of retraction from F onto X . A selection is said to be rigid provided that

(4.1) if A, B ∈ F and s(B) ∈ A ⊂ B, then s(A) = s(B).

Kuratowski, Nadler and Young proved in [48] that for every continuum X a selection

on the family 2X exists if and only if X is an arc. If one seeks a continuous selection on

the family C(X) of all subcontinua of X , then such a simple characterization of continua

which admit a selection (they are said to be selectible) is not known and seems to be a

rather hard problem. A very important step was made by Nadler and Ward, who proved

that each selectible continuum is a dendroid (see [63, Lemma 3, p. 370]), and that a

locally connected continuum is selectible if and only if it is a dendrite [63, Corollary,

p. 371]. Since a selection on C(X) is a retraction, the above result of Nadler and Ward

can be sharpened by Theorem 3.1 to the statement that if a continuum is selectible, then

it is a uniformly arcwise connected dendroid [13, Proposition 2, p. 110].

Consider now the restriction of the retraction r : 2X → X to the family C(X) ⊂ 2X

of all subcontinua of X . Note that if A ∈ C(X), then I(A) = A, whence condition (3.8)

implies r(A) ∈ A, i.e., r|C(X) is a selection on C(X).

Assume that the retraction r : 2X → X satisfies one more condition:

(4.2) if A, B ∈ 2X and r(B) ∈ A ⊂ B, then r(A) = r(B).

Observe that condition (4.2) implies (4.1), and hence it assures that this selection is rigid.

Ward proved [67, Theorem 2, p. 1043] that a continuum X admits a rigid selection on

C(X) if and only if X is a smooth dendroid. Thus Theorem 3.3 implies the following

corollary.

4.3. Corollary. Let X be a curve. If there exists an internal retraction r : 2X → X ,

then r|C(X) is a selection on C(X), and X is a selectible dendroid.

Moreover , if the retraction r satisfies the implication

(4.2) if A, B ∈ 2X and r(B) ∈ A ⊂ B, then r(A) = r(B),

then the selection r|C(X) is rigid , and the dendroid X is smooth.

Recall that the existence of a retraction from C(X) onto X does not suffice for the

existence of a selection from C(X) onto X . Namely A. Illanes has constructed in [39,

Section 4, p. 70] an example of a dendroid X2 which is a retract of C(X2), while C(X2)

does not admit any selection. Thus, by Corollary 4.3, there is no internal retraction from

2X2 onto X2. It will be shown in Theorem 5.58 that there is a retraction from 2X2 onto

X2. The dendroid X2 coincides with the dendroid D described by T. Maćkowiak in [55,

Example, p. 321]. Its various properties are collected in Theorem 5.78.

In the same paper [39] A. Illanes constructs a selectible dendroid X1 which is a

retract, but not a deformation retract, of its hyperspace C(X1). This permits replacing
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two question marks in row (7) of Table I of [34, p. 130] by “no”. It will be shown in the

next chapter that some other questions from this table also have negative answers.

Looking for a characterization of curves for which a retraction (3.4) exists (com-

pare Problem 1.6) one can ask if Theorem 3.3 can be sharpened to get smoothness of

the dendroid in question, or, in other words, if condition (4.2), which is responsible for

smoothness of the dendroid, can be deduced from conditions (3.4) and (3.8). We now

show, by constructing a proper example, that this is not the case.

Every contractible curve is a uniformly arcwise connected dendroid (a result which

corresponds to our Theorem 3.3, see [12, Propositions 1 and 4, p. 73]; see also [21, The-

orem 3, p. 94]), and each smooth dendroid is contractible (see [20, Corollary 12, p. 311];

cf. [21, Corollary, p. 93] and [57, Theorem 1.16, p. 371]).

4.4. Example. There exists a noncontractible dendroid X with an internal retraction

r : 2X → X which does not satisfy condition (4.2).

P r o o f. In the Cartesian rectangular coordinate system in the plane R
2 put v+ =

(0, 1), v− = (0,−1), and

H+ = {(0, 0)} ∪ {(1/n, 0) : n ∈ {1, 3, 5, . . .}},

H− = {(0, 0)} ∪ {(1/n, 0) : n ∈ {2, 4, 6, . . .}}.

Let X+ denote the cone over H+ with vertex v+, let X− have the corresponding meaning

(with H− and v−), and let

X = X+ ∪X−.

Thus X is a plane dendroid having only two ramification points v+ and v− by con-

struction, and it is known to be noncontractible and selectible (see [13, Proposition 3,

p. 110]).

We distinguish maximal straight line segments in X , i.e., segments in X joining either

the two ramification points of X or a ramification point to an end point of X , and we

label them with elements of the closure H of the harmonic sequence

H = {0} ∪ {1/n : n ∈ N} = {0, 1, 1/2, 1/3, . . .}

as follows. S0 denotes v−v+. For each h ∈ H \ {0}, let Sh denote a maximal straight

line segment in X that ends at (h, 0), i.e., Sh joins either v− or v+ to (h, 0) = (1/n, 0).

Therefore

X =
⋃

{Sh : h ∈ H}

is another description of X .

To define the required retraction we introduce two auxiliary mappings. The first of

them, π0 : X→ [−1, 1], is defined by π0(x, y) = y for each point (x, y)∈X . It corresponds

to the projection of X onto the straight line segment v−v+. The domain of the other one,

f , is the triangle

T = {(x, y) ∈ R
2 : x ∈ [−1, 1] and x ≤ y ≤ 1},
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and f : T → [−1, 1] is defined for each (x, y) ∈ T by

f(x, y) =







x for x ∈ [−1, 0] and x ≤ y ≤ 0,
x + y for x ∈ [−1, 0] and y ∈ [0, 1],
y for x ∈ [0, 1] and x ≤ y ≤ 1.

Now we are ready to define r : 2X → X . We put

r({v−}) = v− and r({v+}) = v+,

and for A ∈ 2X \ {{v−}, {v+}} we describe r(A) = (x, y) by indicating a segment Sk to

which the point r(A) belongs and by determining its coordinate y. We put

k = inf{h ∈ H : I(A) ∩ (Sh \ {v
−, v+}) 6= ∅}.

In this way the segment Sk to which r(A) belongs is fixed. We localize r(A) = (x, y) in

Sk putting

(4.5) y = f(min π0(A), max π0(A)).

Thus r : 2X → X is defined. Observe that for each point p of X we have r({p}) = p, i.e.,

r is a retraction.

Now we prove continuity of r. Take A ∈ 2X and a sequence {Am ∈ 2X : m ∈ N} such

that A = Lim Am. If A = {v−} or A = {v+}, continuity of r at A follows directly from

the definition of r. So let A ∈ 2X \ {{v−}, {v+}}. We define two auxiliary sets. Let

Y − = X− \ (S0 \ {v
−}) =

⋃

{Sh : h ∈ {1/2, 1/4, 1/6, . . .}},

and similarly

Y + = X+ \ (S0 \ {v
+}) =

⋃

{Sh : h ∈ {1, 1/3, 1/5, . . .}}.

Thus Y − and Y + are connected and dense, but not closed, subsets of X− and X+

respectively.

We examine four cases.

Case 1. k > 0, min π0(A) 6= −1, max π0(A) 6= 1. Then I(A) ⊂ Y + or I(A) ⊂ Y −,

and I(A) is a finite fan, an arc or a point. Similarly, the sets Am have the same properties

for almost all m ∈ N, and we have k = min{h ∈ H : I(Am) ∩ (Sh \ {v−, v+}) 6= ∅}. Thus

continuity of r follows from continuity of f .

Case 2. A ⊂ X+ and max π0(A) = 1, or A ⊂ X− and min π0(A) = −1. By symmetry

we fix our attention on the first possibility. Then we have min π0(A) ≥ 0. Therefore if

r(A) = (x, y), then y = 1 by (4.5) and the definition of f . Thus r(A) = v+. It follows

that if Am’s converge to A, then

lim min π0(Am) ≥ 0 and lim max π0(Am) = 1,

which implies, again by continuity of f , that the sequence r(Am) converges to v+.

Case 3. A ∩ S0 = ∅ and k = 0. Then

A ∩ (Y − \ {v−}) 6= ∅ 6= A ∩ (Y + \ {v+}),

and the same two inequalities hold for almost all sets Am, i.e., Am ∩ (Y − \ {v−}) 6= ∅ 6=

Am ∩ (Y + \ {v+}) for all but finitely many indices m ∈ N. Thus by the definition of r

we have r(Am) ∈ S0 for almost all m ∈ N, and therefore continuity of r at A follows
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from continuity of the second coordinate y of r(A), which in turn is a consequence of

continuity of π0 and of f by (4.5).

Case 4. A ∩ S0 6= ∅. Then obviously k = 0. Take a point p0 ∈ A ∩ S0. Choose a

sequence of points pm ∈ Am with p0 = lim pm and let an index km be determined by

r(Am) ∈ Skm
. If pm ∈ Sjm

for some jm ∈ H, then we obviously have km ≤ jm. Therefore,

according to the definition of r, we have Ls{r(Am)} ⊂ S0, and so continuity of r at A

follows from that of π0 and of f as previously.

Since Cases 1 through 4 cover all possibilities, continuity of r is shown.

Observe that implication (3.8) easily follows from the definition of r. Finally, it is

immediate to see that the dendroid X is nonsmooth. Therefore the retraction r does not

satisfy (4.2) by Corollary 4.3.

4.6. Remark. Since the dendroid X of Example 4.4 satisfies assumptions (3.4) and

(3.8) of Corollary 4.3, it follows that r|C(X) is a selection on C(X). In Proposition 3 of

[13, pp. 110 and 111], a selection on C(X) is explicitly defined.

5. Applications to means

Given a Hausdorff space X , a mean µ on X is defined as a (continuous) mapping

µ : X ×X → X such that for each x, y ∈ X we have

µ(x, x) = x;(5.1)

µ(x, y) = µ(y, x).(5.2)

More generally, by an n-mean on X we understand a mapping µn : Xn → X which is

the identity on the diagonal and which is symmetric in the sense that it takes the same

values for each permutation of the variables. Further, by a strong n-mean we understand

a mapping µn : Xn → X which is the identity on the diagonal of the product, and which,

for any two elements

(a1, . . . , an), (b1, . . . , bn) ∈ Xn

such that {a1, . . . , an} = {b1, . . . , bn}, satisfies the equality

µn(a1, . . . , an) = µn(b1, . . . , bn).

Every strong n-mean is an n-mean, and any 2-mean is strong. The 3-mean µ3 : [0, 1]3 →

[0, 1] defined by µ3(x, y, z) = (x + y + z)/3 is not strong.

For a continuum X and n ∈ N, the existence of a strong n-mean

µn : Xn → X

is equivalent to the existence of a retraction

rn : Fn(X)→ X,

where the two concepts are related to each other by the equality

(5.3) µn(a1, . . . , an) = rn({a1, . . . , an}).

A mean is said to be associative provided that

(5.4) µ(x, µ(y, z)) = µ(µ(x, y), z) for every x, y, z ∈ X.
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A space X equipped with an associative mean µ is a semilattice, i.e., µ can be considered

as an idempotent, commutative and associative operation. In particular, when X is a

continuum, the semilattice (X, µ) is compact and connected. The reader is referred to

Chapter 6 of [28] for more detailed information on compact topological semilattices.

A semilattice (X, µ) defines a partial order ≤ by

(5.5) x ≤ y if and only if µ(x, y) = y.

The supremum of a nonempty set A ⊂ X is defined as a point z = sup A such that

(5.6) for each x ∈ A we have x ≤ z,

and

(5.7) for each t ∈ X, if x ≤ t for each x ∈ A, then z ≤ t.

Then

(5.8) sup{x, y} = µ(x, y) for every x, y ∈ X.

Therefore a supremum of a finite set does exist, and it is continuous as a function from

Xn onto X . Note that this supremum is a strong n-mean. Thus we have the following

result.

5.9. Proposition. If a continuum X admits an associative mean µ, then for each

n ∈ N it admits a strong n-mean µn : Xn → X with

(5.10) µn(a1, . . . , an) = sup{a1, . . . , an}.

The existence of a mean on a continuum is related to the existence of a retraction.

One implication is considered in the next proposition. Another will be discussed later

(see Proposition 5.25).

5.11. Proposition. Let X be a continuum. If

(3.4) there exists a retraction r : 2X → X,

then, for each n ∈ N, there exists a strong n-mean

µn : X × . . .×X → X.

Further , for n = 2, if the retraction r is associative, then the 2-mean is associative, too,

and

(5.12) r(A) = sup A for each A ∈ 2X .

P r o o f. It is enough to define

(5.13) µn(a1, . . . , an) = r({a1, . . . , an}).

If n = 2 and r is associative, then by (3.7) we have

r({x, y, z}) = r({x} ∪ {r({y, z})}) = r({r({x, y})} ∪ {z}),

whence (5.4) follows by (5.13).

To show (5.12) note that, by (3.7), for each x ∈ A we have

r(A) = r(A ∪ {x}) = r({r(A)} ∪ {x}) = µ(r(A), x),
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whence x ≤ µ(r(A), x) = r(A) by (5.5), so (5.6) holds with z = r(A). Take t ∈ X such

that

(5.14) x ≤ t for each x ∈ A.

Consider a sequence of finite sets An ⊂ A with An ∈ Fn(X) and A = Lim An. Thus for

each n ∈ N we have r|Fn(X) = rn, whence

r(An) = rn(An) = µn(An) = sup An

by (5.3) and (5.10). It follows from (5.14) that for each n ∈ N we have r(An) ≤ t, whence

by continuity of r we infer r(A) ≤ t, i.e., (5.7) holds with z = r(A).

A mean µ : X ×X → X on a dendroid X is said to be internal provided that

(5.15) µ(a1, a2) ∈ a1a2 for every a1, a2 ∈ X.

The next proposition is related to the previous. Its proof is left to the reader.

5.16. Proposition. Let X be a dendroid. If

(3.4) there exists a retraction r : 2X → X,

then, for each n ∈ N, the mapping

µn : X × . . .×X → X

defined by

(5.13) µn(a1, . . . , an) = r({a1, . . . , an})

is a strong n-mean on X. Moreover , if the retraction r is internal (associative), then the

mean µ2 = µ is also internal (associative, respectively).

Recall that a continuum X is said to be arc-smooth at a point p ∈ X provided that

there exists a mapping α : X → C(X) satisfying the following conditions:

(5.17) α(p) = {p};

(5.18) α(x) is an arc from p to x, for each x ∈ X \ {p};

(5.19) if x ∈ α(y), then α(x) ⊂ α(y).

A continuum X is said to be arc-smooth provided that it is arc-smooth at some point p.

The reader is referred to [27] for more detailed information.

As a consequence of Theorems 5.11(4) and 5.12 of Chapter 6 of [28, p. 300], we have

the following theorem.

5.20. Theorem. If a continuum admits an associative mean, then it is arc-smooth.

Using a partial order structure on the hereditarily unicoherent continua (see [42,

Theorem, p. 680]) M. Bell and S. Watson have observed in the proof of Example 4.8 of

[5, p. 45] that a dendroid which admits an associative mean is smooth. A much more

general result can be shown, which is a consequence of Theorem 5.20.

5.21. Theorem. Let a continuum X be either one-dimensional or hereditarily unico-

herent. If X admits an associative mean µ : X ×X → X , then X is a smooth dendroid.

P r o o f. By Theorem 5.20 the continuum X is arc-smooth. Assume it is one-dimen-

sional. Since each arc-smooth one-dimensional continuum is a smooth dendroid (see [27,



Hyperspace retractions 21

Theorem II-4-B, p. 559]), the conclusion follows. Assume that X is hereditarily unicohe-

rent. Being arc-smooth it is arcwise connected, so it is a dendroid by the definition. Thus

it is one-dimensional (see e.g. [10, T24, p. 197]), and the previous case applies.

A topological semilattice X is said to have small semilattices at a point x ∈ X pro-

vided that the point x has a basis of neighbourhoods which are subsemilattices of X . A

semilattice is said to have small semilattices provided that it has small semilattices at ev-

ery point. Equivalently, a topological space X with an associative mean µ : X ×X → X

has small semilattices if for each point x ∈ X and for each open neighbourhood U of x

there exists a set V such that x ∈ int V ⊂ V ⊂ U and that µ(V × V ) = V . An example

of a one-dimensional metric compact semilattice which has no basis of subsemilattices is

described in [28, Section 4 of Chapter 6, pp. 293–296]. See in particular Theorem 4.5,

p. 296, and Notes, p. 297, of [28].

5.22. Proposition [28, Chapter 6, Exercise 2.9(2), p. 279]. If a continuum X admits

an associative mean, then the supremum sup A exists for each A ∈ 2X .

5.23. Proposition [28, Chapter 6, Exercise 3.20, p. 289]. Let X be a compact topolo-

gical semilattice. The function r : 2X → X defined by

(5.24) r(A) = sup A for each A ∈ 2X

is continuous if and only if X has small semilattices.

Note that r : 2X → X defined by (5.24) is a retraction. Thus, as an immediate con-

sequence of Proposition 5.23 we have the following partial converse to Proposition 5.11.

5.25. Proposition. Let a continuum X admit an associative mean µ : X×X → X. If

(5.26) the semilattice (X, µ) has small semilattices,

then there exists a retraction r : 2X → X , namely the one defined by (5.24).

It is tempting to get a more general result by deleting condition (5.26) from the

assumptions of Proposition 5.25 in the following sense. Given a continuum X admitting

an associative mean, we are looking for µ′ such that the induced partial order determines

a semilattice having small semilattices. Then applying Proposition 5.25 to µ′ we get a

retraction from 2X onto X . Thus the following question is of some interest.

5.27.Question. Let a continuum X admit an associative mean. Does there exist an

associative mean µ′ : X×X → X such that the semilattice (X, µ′) has small semilattices?

A natural question that comes with the definition of a mean is: which spaces, especially

metric continua, admit such means? For more than half a century this question has been

answered for a very small class of spaces. So, the following problems can be considered

as main ones, constituting a research program.

5.28. Problems. Characterize topological spaces (in particular metric continua) that

admit a mean (or an associative mean).

Means on [0, 1], even in a more general setting, were studied by A. N. Kolmogoroff

who described a structural form of these mappings in [43]. An extensive study of this

topic was the subject of the habilitation thesis of G. Aumann, and was developed in
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some of his papers [1], [2] and [3] and in papers of other authors. In particular, Aumann

showed [3, Theorems 1 and 2, pp. 211 and 212] that the circle S1 and, more generally, the

k-dimensional sphere Sk, where k ≥ 1, does not admit any mean, while every dendrite

does [3, Theorem 7, p. 214]. An outline of a quite different proof that S1 does not admit

any mean is given in [62, (0.71.1), p. 50]. These fundamental results were generalized

later in various ways.

K. Borsuk showed in [7, p. 184] that if a locally connected continuum is not unicohe-

rent, then it contains a simple closed curve (i.e., a homeomorphic image of the circle S1)

as its retract. Since each retract of a space admitting a mean also admits a mean [66,

Lemma, p. 85] and since no simple closed curve admits a mean [3, Theorem 1, p. 211],

we get the following result (see [66, Theorem, p. 85]).

5.29. Proposition (Sigmon). If a locally connected continuum admits a mean, then

it is unicoherent.

Since every locally connected unicoherent curve is a dendrite (see [47, §57, III, Corol-

lary 8, p. 442]), and since each dendrite admits a mean [3, Theorem 7, p. 214], a corollary

follows [66, p. 85].

5.30. Proposition (Sigmon). A one-dimensional locally connected continuum admits

a mean if and only if it is a dendrite.

The above result, as well as Nadler’s one (see Corollary 1.5) can be supplemented as

follows:

5.31. Theorem. Let a continuum X be locally connected. Then the following condi-

tions are equivalent :

(5.32) X is an absolute retract ;

(5.33) there exists a retraction r : 2X → X.

Moreover , if X is one-dimensional , then each of them is equivalent to any of the

following:

(5.34) X is a dendrite;

(5.35) there exists an associative retraction r : 2X → X ;

(5.36) there exists an associative mean µ : X ×X → X ;

(5.37) there exists a mean µ : X ×X → X.

P r o o f. Assume (5.32). Since X can be embedded into 2X , the retraction r exists by

the definition of an absolute retract. Assume (5.33). Since X is locally connected, 2X is

an absolute retract [62, Theorem (1.96), p. 136], and thus X is a retract of an absolute

retract. So, the first part of the result is shown.

Now assume (5.34). Then the function I : 2X → C(X) that assigns to a set A ∈ 2X

the continuum I(A) irreducible with respect to containing A is continuous by Theorem 1

of [31, p. 3]. Further, if we fix a point p ∈ X , then X can be partially ordered by the

relation ≤p defined by x ≤p y provided that x ∈ py; it is well-known that this partial

order is continuous and it has p as the least element compare e.g. [42, Theorem, p. 680]).

Since X is a smooth dendroid with p as an initial point (see [20, Corollary 4, p. 298]), the
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function min : C(X)→ X that assigns to a continuum K its minimal point with respect

to ≤p, i.e., such a point q of K that pq ∩K = {q} is a continuous selection (see the proof

of Theorem 2 in [67, p. 1043]). Putting r = min ◦I we get a retraction r : 2X → X (see

Corollary 1.5) for which associativity condition (3.7) is satisfied by its definition. Thus

(5.35) follows.

Further, (5.35) implies (5.36) by Proposition 5.11, and the implication from (5.36)

to (5.37) is trivial. Next, (5.37) implies (5.34) by Corollary 5.30. Finally, (5.35) trivially

implies (5.33), and since each one-dimensional absolute retract is a dendrite (see [8,

Corollary 13.5, p. 138]), conditions (5.32) and dim X = 1 imply (5.34). The proof is

complete.

5.38. Question. Assume that the continuum X is locally connected. Does (5.37)

imply (5.36)? Does (5.36) imply (5.32)?

Most of the results about means are related to locally connected spaces. Little is known

on ones that are not locally connected. P. Bacon [4] has shown that the sin(1/x)-curve

admits no mean. M. Bell and S. Watson [5] obtained criteria for the existence and for

the non-existence of means on continua. Their non-existence criterion [5, Theorem 3.5,

p. 42] has been generalized by K. Kawamura and E. D. Tymchatyn in [40] as follows. Let

a continuum X contain an arc-like subcontinuum A with opposite end points a and b of

A. A sequence {An : n ∈ N} of subcontinua of X is called a folding sequence with respect

to the point a provided that it satisfies the following conditions: for each n ∈ N there are

two subcontinua Pn and Qn of An such that An = Pn ∪Qn and

Lim(Pn ∩Qn) = {a} and Lim Pn = Lim Qn = A.

5.39. Theorem (Kawamura and Tymchatyn, [40, Theorem 2.2, p. 99]). Let a here-

ditarily unicoherent continuum X contain an arc-like subcontinuum A with opposite end

points a and b of A. If there exist folding sequences {An} and {Bn} with respect to a and

b respectively, then X admits no mean.

The concept of a folding sequence is a generalization of Oversteegen’s concept of type

N [64, p. 837] which in turn generalizes Graham’s concept of a zigzag [36, p. 78], and is

related to Maćkowiak’s notion of a bend set [54, p. 548]. These concepts were exploited

to obtain some criteria for noncontractibility and nonselectibility of dendroids (see [36,

Theorem 2.1, p. 81]; [49, Theorem 2, p. 416]; [50, Corollary 6, p. 126]; [64, Theorem 2.1,

p. 838]; [65, Theorem 3.4, p. 393]). Namely, replacing in the assumptions of Theorem 5.39

the continua A, An and Bn in a dendroid X by arcs, we get just the concept of a dendroid

X of type N between points a and b, which means that there is an arc A = ab ⊂ X and

two sequences of arcs An and Bn in X with end points an, a′

n and bn, b′n respectively,

and two sequences of points a′′

n ∈ Bn \ {bn, b′n} and b′′n ∈ An \ {an, a′

n} such that

A = Lim An = Lim Bn, a = lim an = lim a′

n = lim a′′

n, b = lim bn = lim b′n = lim b′′n.

Thus Theorem 5.39 leads to the following corollary.

5.40. Corollary. If a dendroid is of type N between some two points , then it admits

no mean.
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A. Illanes in [38] constructs a continuum X which is a retract of C(X) but not of 2X .

To show that there is no retraction from 2X onto X he proves that X does not admit any

mean. This result shows that three question marks in column (4) of Table I of [34, p. 130],

have to be replaced by “no”. It is also a negative answer to the question on equivalence

of (6.28.1) and (6.28.2) in [62, p. 290].

Our aim now is to present some results concerning means on some special continua,

mainly curves, which are not locally connected in general. In particular, we construct

in Example 5.52 a smooth dendroid having the same properties as the above mentioned

continuum X (for which dim X > 1) of Illanes [38].

As a consequence of Theorem 3.11 and Proposition 5.16 we have the following corol-

lary.

5.41. Corollary. Every smooth fan admits an associative and internal mean.

5.42. Remarks. (a) The result of Corollary 5.41 has independently been obtained by

M. Bell and S. Watson in [5, Proposition 4.2, p. 43].

(b) Recall that there exists a contractible and selectible fan that admits a mean while

it admits neither an internal nor an associative one (see [5, Example 4.8, p. 45]; for a

picture see [19, Fig. 7, p. 69]).

5.43. Remark. In the light of Proposition 5.16 one can say that, roughly speaking,

for dendroids X the existence of a retraction r : 2X → X is stronger than the existence of

a mean µ : X×X → X . However, the authors do not know to what extent it is stronger,

or even whether it is essentially stronger. More precisely, we have the following question.

5.44.Question. Does there exist a dendroid X which admits a mean µ : X×X → X

and for which there is no retraction r : 2X → X?

The next proposition is an analog of Proposition 3.9 for retractions. Its proof runs in

the same way, so it is left to the reader.

5.45. Proposition. If a dendroid Y admits an internal mean µ : Y × Y → Y , then

for every subdendroid X of Y the restriction µ|X ×X is an internal mean on X.

5.46. Corollary. If a dendroid Y admits an internal and associative mean µ : Y ×

Y → Y , then for every subdendroid X of Y the restriction µ|X × X is an internal and

associative mean on X.

The existence of a mean on a curve X does not imply the existence of a retraction

from 2X to X nor arcwise connectedness of X . As the authors have been informed by

Murray Bell, the following example is due to John M. Franks.

5.47. Example (J. M. Franks). The dyadic solenoid admits a mean.

P r o o f. Let S1 be the unit circle, and let f : S1 → S1 be defined by f(z) = z2.

Put Xn = S1 and fn = f for each n ∈ N. Then X = lim←−{Xn, fn : n ∈ N} is the

dyadic solenoid. Define the shift mapping h : X → X by h(x1, x2, . . .) = (x2, x3, . . .).

Then µ(x, y) = h(x · y), where the dot denotes the usual complex multiplication of the

coordinates, is a mean on X .
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The next questions, which are related to Theorem 3.3, concern the existence of a mean

on a dendroid.

5.48. Question. Let a dendroid X admit a mean. Must X be uniformly arcwise

connected?

5.49. Question. Let a dendroid X have the property of Kelley. Does there exist a

mean µ : X ×X → X?

5.50. Problem. Characterize dendroids admitting a mean.

5.51. Remarks. (a) Using an argument that is very close to Corollary 5.40, M. Bell

and S. Watson showed in [5, Example 3.7, p. 42] that the planar fan X of Example 1.2

of [64, p. 838] (which is of type N between some two points; see e.g. [21, p. 95], for

its picture) admits no mean. It follows from Proposition 5.16 that there is no retraction

from 2X onto X . Furthermore, Kawamura and Tymchatyn’s result (Theorem 5.39), and—

consequently—Corollary 5.40, present such dendroids (or fans) in profusion.

(b) Smoothness is a necessary assumption in Corollary 5.41. This can be seen by the

above mentioned example of a nonsmooth uniformly arcwise connected plane fan X that

admits no mean [5, Example 3.7, p. 42].

(c) The same example shows by Proposition 5.16 that condition (3.4) cannot be

satisfied for this X , i.e., that there is no retraction r from 2X onto X . Therefore the

converse to Theorem 3.3 is not true.

5.52. Example. There exists a smooth dendroid admitting no mean.

P r o o f. If p and q are points in the Euclidean 3-space R
3, we denote by pq the straight

line segment joining p and q, and we use z : R
3 → R for the third coordinate of points.

Figure 1
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Take in the 3-space a simple triod T which is the union of three straight line segments

ad, bd, cd pairwise disjoint except for d. The triod T can be situated in the space so that

z(b) = z(c) = 0, z(d) = 1/2 and z(a) = 1

(see Figure 1). Let e, g and h stand for the midpoints of the segments ad, bd and cd

respectively. Further, let f be the midpoint of the segment ae. For each n ∈ N choose

points cn, gn and dn such that

z(cn) = 0, z(gn) = 1/4 and z(dn) = 1/2,

c = lim cn, g = lim gn and d = lim dn.

Similarly, for each n ∈ N define points b′n, h′′

n, d′n, d′′n and e′n such that

z(b′n) = 0, z(h′′

n) = 1/4, z(d′n) = z(d′′n) = 1/2, z(e′n) = 3/4,

lim b′n = b, lim h′′

n = h, lim d′n = lim d′′n = d, lim e′n = e.

For each n ∈ N consider the triods

Tn = adn ∪ gndn ∪ cndn.

Define fn as the point in adn with z(fn) = 7/8 and consider the triods

T ′

n = (b′nd′n ∪ d′ne′n) ∪ (h′′

nd′′n ∪ d′′ne′n) ∪ e′nfn

having the points e′n as their centres. All these points can be chosen in such a way that

the union

D = T ∪
⋃

{Tn ∪ T ′

n : n ∈ N}

is a smooth dendroid.

In the set D × {0, 1} we identify the points (x, 0) and (y, 1) if and only if

1. x ∈ ad and x = y, or

2. x ∈ bd and y ∈ cd and z(x) = z(y), or

3. x ∈ cd and y ∈ bd and z(x) = z(y).

The resulting space Y is again a smooth dendroid. To simplify notation, let us put

x = (x, 0) for x ∈ D, so that D is considered as contained in Y . Note that there is a

natural autohomeomorphism α of Y such that

α|ad is the identity, α(b) = c and α(c) = b.

Consider now a sequence of embeddings βi : Y → R
3 with i ∈ N such that

(i) βi(Y ) ∩ βj(Y ) = ∅ if i 6= j;

(ii) z(βi(y)) = z(y) for each point y ∈ Y ;

(iii) lim βi(y) = (0, 0, z(y)) for each point y ∈ Y ;

(iv) βi(a) = (1/i, 0, 1) for each i ∈ N.

Define

X = {(u, 0, 1) : u ∈ [0, 1]} ∪ {(0, 0, v) : v ∈ [0, 1]} ∪
⋃

{βi(Y ) : i ∈ N}.

Observe that X is a dendroid which is smooth at the point (0, 0, 1). We will show that

X admits no mean. Assume on the contrary that there is a mean µ : X ×X → X . Since
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µ((0, 0, v), (0, 0, v)) = (0, 0, v) for v ∈ [0, 1], there is an index k ∈ N such that if p and q

are points of Y with z(p) = z(q), we have

(5.53) z(µ(βk(p), βk(q))) ∈ (z(p)− 1/16, z(p) + 1/16).

We will say that two points p and q of X are near provided that if A denotes the arc

joining p and q in X , then diam z(A) < 1/16.

Now we prove several claims that will lead to a contradiction.

Claim 1. µ(βk(b), βk(c)) is near βk(b) or near βk(c).

To show the claim we denote, for each t ∈ [0, 1/2], by b(t) and c(t) the points in the

segments βk(bd) and βk(cd) respectively, satisfying z(b(t)) = z(c(t)) = t. Put

M = {µ(b(t), c(t)) : t ∈ [0, 1/2]}.

Thus M is a continuum containing the point βk(d) (for t = 1/2) and such that z(M) ⊂

[0, 1/2 + 1/16), therefore M ⊂ βk(T ). Note that for t = 0 we have µ(βk(b), βk(c)) ∈ M ,

and by (5.53) we see that

z(µ(βk(b), βk(c))) ∈ [0, 1/16],

and so the conclusion follows.

Taking into account the autohomeomorphism α : Y → Y we can fix one of the two

possibilities mentioned in Claim 1. Thus we can assume that the following claim holds.

Claim 2. µ(βk(b), βk(c)) is near βk(b).

Claim 3. µ(βk(b′n), βk(cn)) is near βk(b′n) for sufficiently large n ∈ N.

Really, arguing as for Claim 1, we see that

µ(βk(b′n), βk(cn)) ∈ βk(Tn ∪ T ′

n),

and by continuity of µ the conclusion follows from Claim 2.

Claim 4. If p ∈ βk(Tn), q ∈ βk(T ′

n) and z(p) = z(q) ∈ [0, 3/4], then µ(p, q) ∈ βk(T ′

n)

for sufficiently large n ∈ N.

Indeed, we can find, for each t ∈ [0, 1], points p(t) and q(t) such that p(0) = βk(cn),

q(0) = βk(b′n), p(1) = p, q(1) = q, and z(p(t)) = z(q(t)). Denoting M = {µ(p(t), q(t)) :

t ∈ [0, 1]} we see that the point µ(p(0), q(0)) ∈ M is near βk(b′n) according to Claim 3,

and that z(M) ⊂ [0, 3/4 + 1/16]. Thus M ⊂ βk(T ′

n), and taking t = 1 the conclusion

follows.

For each n ∈ N denote by hn the midpoint of the segment cndn. As a consequence of

Claim 4 and of continuity of µ we have the next claim.

Claim 5. µ(βk(hn), βk(h′′

n)) is near βk(h′′

n) for sufficiently large n ∈ N.

Arguing as previously, using Claim 5 we get the next results.

Claim 6. µ(βk(dn), βk(d′′n)) is near βk(d′′n) for sufficiently large n ∈ N.

Claim 7. µ(βk(gn), βk(h′′

n)) is near βk(h′′

n) for sufficiently large n ∈ N.

Taking the limit for n→∞ we have the following.

Claim 8. µ(βk(g), βk(h)) is near βk(h).
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Again arguing in the same way as in the proof of Claim 4 we infer from Claim 8 the

next claim.

Claim 9. µ(βk(b), βk(c)) is near βk(c).

Now Claim 9 contradicts Claim 2. The proof is complete.

5.54. Remarks. (a) Since a dendroid X is smooth if and only if there exists a rigid

selection on C(X) [67, Theorem 2, p. 1043] which is obviously a retraction from C(X)

onto X , and since nonexistence of a mean on X implies nonexistence of a retraction from

2X onto X by Proposition 5.16, the dendroid X constructed in Example 5.52 has all the

properties of the continuum described in [38]. In particular, it answers in the negative

the three questions in column (4) of Table 1 of [34, p. 130], even for a much narrower

class of continua.

(b) The same example answers in the negative the following questions: Question 2.16

of [34, p. 129] whether any smooth dendroid X is a retract of 2X ; Problem 4.1 of [5,

p. 42] whether any smooth dendroid admits a mean; Problem 4.3 of [5, p. 43] whether any

selectible dendroid has a mean (since each smooth dendroid is selectible, [67, Theorem 2,

p. 1043]) and whether any contractible dendroid has a mean (since each smooth dendroid

is (hereditarily) contractible, [20, Corollary 12, p. 311] and [22, Proposition 14, p. 235]).

(c) Since the Mohler–Nikiel universal smooth dendroid admits a mean (even an asso-

ciative one) by Theorem 3.21 and Proposition 5.16, while the dendroid of Example 5.52

does not, it follows that having a mean is not a hereditary property even for a class as

narrow as that of smooth dendroids.

Example 5.52 and Proposition 5.45 imply the following result.

5.55. Proposition. No universal smooth dendroid admits an internal mean.

In connection with Example 5.52 the following problems are of some interest.

5.56. Problem. Characterize smooth dendroids admitting a mean.

5.57. Problem. Characterize smooth dendroids X admitting a retraction from 2X

onto X .

Now we shall discuss some properties of a special dendroid, viz. the dendroid defined

and investigated by T. Maćkowiak in [55, Example, p. 321]. The dendroid coincides with

the dendroid X2 studied by A. Illanes in [39, Section 4, p. 70], who proved that there exists

a retraction from C(X2) onto X2. M. Bell and S. Watson proved in [5, Example 4.10, p. 47]

that it admits a mean. Maćkowiak showed in [55, (4), p. 323] that it is contractible. Since

contractibility of any continuum X implies its g-contractibility, which in turn implies

that X is a continuous image of 2X [60, Theorem 3.4, p. 193], we infer that there is a

mapping from 2X2 onto X2. However, a much stronger result can be shown which is a

common generalization of the Illanes and Bell–Watson results mentioned above, namely

that there exists a retraction from 2X2 onto X2. To show that, we start with recalling

the definition of the example, following Sections 4 and 5 of [39], which is much simpler

than the one in [55].
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In the Cartesian coordinates in the 3-space R
3 let p = (1, 0, 0) and T = ({0}×[−1, 1]×

{0}) ∪ ([0, 1]× {(0, 0)}). For n ∈ N put pn = (0, (−1)n, 1/n). Let φ : [1,∞)→ R
3 be the

function which maps linearly the intervals of the form [n, n + 1] onto the straight line

segment pnpn+1 sending n to pn. For each n ∈ N put

Ln = φ([6n + 1, 6n + 3]) ∪ φ(6n + 3/2)p

and

Mn = φ([6n + 9/2, 6n + 6]) ∪ φ(6n + 9/2)p,

where φ(6n + 3/2)p and φ(6n + 9/2)p are both understood as straight line segments.

Define

X2 = T ∪
(

⋃

{Ln : n ∈ N}
)

∪
(

⋃

{Mn : n ∈ N}
)

.

Then X2 is a dendroid. We will refer to X2 as to the Illanes–Maćkowiak dendroid (see

Figure 2).

Figure 2

Further, for each n ∈ N consider the following sets:

An = φ([6n + 2, 6n + 3]) ⊂ Ln,

Bn = φ([6n + 1, 6n + 2]) ∪ φ(6n + 3/2)p ⊂ Ln,

Cn = φ([6n + 5, 6n + 6]) ⊂Mn,

Dn = φ([6n + 9/2, 6n + 5]) ∪ φ(6n + 9/2)p ⊂Mn.

Thus we have Ln = An ∪ Bn and Mn = Cn ∪ Dn, whence it follows that X2 can be

redefined as
X2 = T ∪

(

⋃

{(An ∪Bn) ∪ (Cn ∪Dn) : n ∈ N}
)

.

Note that T = Lim Ln = Lim Mn.
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5.58. Theorem. For the Illanes–Maćkowiak dendroid X2 there exists a retraction

r : 2X2 → X2.

P r o o f. We define the projections

π : R
3 → R

2 × {0}, π1 : R
3 → R, and π2 : R

3 → R

by the formulas

π(x, y, z) = (x, y, 0), π1(x, y, z) = x, π2(x, y, z) = y.

For A ∈ 2X2 we put s1(A) = min π1(A), s2(A) = min π2(A), t1(A) = max π1(A), t2(A) =

max π2(A). We will write s1, s2, t1 or t2 if A is understood. Thus s1 ≤ t1 and s2 ≤ t2.

We define a retraction for the limit triod T first. Namely for A ∈ 2T satisfying s1 = 0

we consider the following six cases:

(5.59) if t1 ∈ [0, 1/4] and s2 ≤ t2 ≤ 0, then r0(A) = (0, s2, 0);

(5.60) if t1 ∈ [0, 1/4] and s2 ≤ 0 and t2 ≥ 0, then r0(A) = (0, (1−4t1)(1−s2)t2 +s2, 0);

(5.61) if t1 ∈ [0, 1/4] and t2 ≥ s2 ≥ 0, then r0(A) = (0, 4t1(s2 − t2) + t2, 0);

(5.62) if t1 ∈ [1/4, 1/2], then r0(A) = (0, (1− 4t1)(1 + s2) + s2, 0);

(5.63) if t1 ∈ [1/2, 3/4], then r0(A) = (0, 4t1 − 3, 0);

(5.64) if t1 ∈ [3/4, 1], then r0(A) = (4t1 − 3, 0, 0).

Thus for all subsets A ∈ 2T with s1 = 0 the point r0(A) is determined. Note the

following:

(5.65) if s1 = 0 and t1 = 1, then r0(A) = p = (1, 0, 0);

(5.66) if s1 = 0 and A is a singleton {q}, then r0(A) = q.

Recall that a space Y is called an absolute extensor for spaces of a class K provided

that for every space X ∈ K and for every closed subspace A of X , every mapping

f : A → Y can be continuously extended over X . It is known that a compact metric

space Y is an absolute extensor for metric spaces (or—equivalently—for compact metric

spaces) if and only if Y is an absolute retract [37, Chapter 3, Theorems 3.1 and 3.2, pp. 83

and 84]. Thus T is an absolute extensor. Consider the following three closed subsets of

2T :

S = {A ∈ 2T : s1(A) = 0}, T = {A ∈ 2T : t1(A) = 1}, F = F1(T ),

and note that for A ∈ S the point r0(A) has already been defined by conditions (5.59)–

(5.64). We further define:

(5.67) if A ∈ T , then r0(A) = p = (1, 0, 0);

(5.68) if A = {q} ∈ F , then r0(A) = q.

Thus r0 is defined on the union S∪T ∪F . Since T is an absolute extensor, there exists

an extension of r0 from S ∪ T ∪F over 2T (which is still denoted by r0), i.e., a mapping

r0 : 2T → T which satisfies conditions (5.59)–(5.64) and (5.67)–(5.68). Thus r0 : 2T → T

is a retraction.

Now we define a retraction r : 2X2 → X2. Let A ∈ 2X2 , and put r(A) = v. Then

(5.69) if A ∈ 2T , then v = r0(A);

(5.70) π(v) = r0(π(A));
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(5.71) if A ⊂ An, or A ⊂ Bn, or A ⊂ Cn, or A ⊂ Dn, then v ∈ An, or v ∈ Bn, or

v ∈ Cn, or v ∈ Dn, respectively;

(5.72) if A ⊂ An ∪Bn and A ∩An 6= ∅ 6= A ∩Bn, then v ∈ Bn;

(5.73) if A ⊂ Cn ∪Dn and A ∩ Cn 6= ∅ 6= A ∩Dn, and

(a) if t1 ∈ [0, 1/2], then v ∈ Cn;

(b) if t1 ∈ [1/2, 1], then v ∈ Dn;

(5.74) for all other cases we put v ∈ T .

Therefore r : 2X2 → X2 just defined is a retraction. The proof is complete.

5.75. Corollary (A. Illanes, [39, Section 5, p. 70]). For the Illanes–Maćkowiak den-

droid X2 there exists a retraction from C(X2) onto X2.

As a consequence of Theorem 5.58 and Proposition 5.11 we obtain the following result.

5.76. Corollary (M. Bell and S. Watson, [5, Example 4.10, p. 47]). The Illanes–

Maćkowiak dendroid X2 admits a mean.

5.77. Remark. The retraction r : 2X2 → X2 of Theorem 5.58 is a modification of

the retraction from C(X2) onto X2 defined by A. Illanes in [39, Section 5, pp. 70–71].

However, it is not an extension of the Illanes retraction. And what is more, it can be shown

that the Illanes retraction from C(X2) onto X2 cannot be extended to any retraction from

2X2 onto X2.

Properties of the dendroid X2 are summarized below.

5.78. Theorem. The Illanes–Maćkowiak dendroid X2 has the following properties :

(5.79) X2 is contractible;

(5.80) X2 is not hereditarily contractible;

(5.81) the hyperspaces 2X2 and C(X2) are both contractible;

(5.82) if Y is an open image of X2, then the hyperspaces 2Y and C(Y ) are both con-

tractible;

(5.83) X2 is a retract of C(X2);

(5.84) there is no selection on C(X2);

(5.85) X2 admits a mean;

(5.86) X2 admits no internal mean;

(5.87) X2 admits no associative mean;

(5.88) there is a retraction from 2X2 onto X2;

(5.89) there is no internal retraction from 2X2 onto X2;

(5.90) there is no associative retraction from 2X2 onto X2;

(5.91) X2 is not planable.

P r o o f. (5.79) was shown in [55, (4), p. 323]. (5.80) is proved in [15, Observation 8,

p. 29]. (5.81) follows from (5.79) and Corollary (16.8) of [62, p. 537]. It implies (5.82)

by [62, Theorem (16.39), p. 559]. (5.83) and (5.84) are proved in Sections 5 and 6 of

[39, p. 70]; for (5.83) see our Corollary 5.75; for (5.84) see also [55, (3), p. 322]. (5.85) is

shown in Example 4.10 of [5, p. 47]. Since X2 contains a homeomorphic image of a fan

that admits no internal mean, viz. the one of [5, Example 4.8, p. 45] (mentioned here in
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Remark 5.42(b)), (5.86) is a consequence of Proposition 5.45. Since X2 is not smooth,

(5.87) follows from Theorem 5.21. (5.88) is just our Theorem 5.58. (5.89) is a consequence

of (5.86) and Proposition 5.16; and (5.90) follows from (5.87) again by Proposition 5.16.

Finally, for (5.91) see [15, Observation 4, p. 28].

5.92. Remark. For other structural properties of the dendroid X2 see [17, Rem-

ark 2.28, p. 569].
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[53] T. Maćkowiak, Confluent mappings and smoothness of dendroids, Bull. Acad. Polon.

Sci. Sér. Sci. Math. Astronom. Phys. 21 (1973), 719–725.
[54] —, Continuous selections for C(X), ibid. 26 (1978), 547–551.
[55] —, Contractible and nonselectible dendroids, Bull. Polish Acad. Sci. Math. 33 (1985),

321–324.
[56] H. C. Mil ler, On unicoherent continua, Trans. Amer. Math. Soc. 69 (1950), 179–194.
[57] L. Mohler, A characterization of smoothness in dendroids, Fund. Math. 67 (1970),

369–376.
[58] L. Mohler and J. Nikiel, A universal smooth dendroid answering a question of J. Krasinkiewicz ,

Houston J. Math. 14 (1988), 535–541.
[59] S. B. Nadler, Jr., Inverse limits and multicoherence, Bull. Amer. Math. Soc. 76 (1970),

411–414.
[60] —, Some problems concerning hyperspaces, in: Lecture Notes in Math. 375, Springer,

1974, 190–194.
[61] —, A characterization of locally connected continua by hyperspace retractions, Proc. Amer.

Math. Soc. 67 (1977), 167–176.
[62] —, Hyperspaces of Sets, M. Dekker, 1978.
[63] S. B. Nadler, Jr. and L. E. Ward, Jr., Concerning continuous selections, Proc. Amer.

Math. Soc. 25 (1970), 369–374.
[64] L. G. Oversteegen, Non-contractibility of continua, Bull. Acad. Polon. Sci. Sér. Sci.

Math. Astronom. Phys. 26 (1978), 837–840.
[65] —, Internal characterization of contractibility of fans, Bull. Acad. Polon. Sci. Sér. Sci.

Math. 27 (1979), 385–389.
[66] K. Sigmon, A note on means in Peano continua, Aequationes Math. 1 (1968), 85–86.
[67] L. E. Ward, Jr., Rigid selections and smooth dendroids, Bull. Acad. Polon. Sci. Sér.

Sci. Math. Astronom. Phys. 19 (1971), 1041–1044.
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