Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Cover of the book
Tytuł książki

Geometry of Orlicz spaces

Autorzy

Seria

Rozprawy Matematyczne tom/nr w serii: 356 wydano: 1996

Zawartość

Warianty tytułu

Abstrakty

EN
Preface
60 years ago, in 1932, there appeared both the famous book on functional analysis by S. Banach, Théorie des opérations linéaires, and the article on spaces, later called Orlicz spaces, by W. Orlicz, Über eine gewisse Klasse von Räumen vom Typus B in Bull. Internat. Acad. Polon. Sci. Sér. A. The latter notion was an important extension of the notion of $L_p$ and $l_p$ spaces, introduced by F. Riesz in 1910 and 1913, respectively. The investigations of geometric properties of Banach spaces, i.e., properties which are invariant with respect to linear isometries, date back to 1936, when J. A. Clarkson introduced the notion of uniformly rotund spaces in the paper Uniformly convex spaces in Trans. Amer. Math. Soc. 40, and it was shown that $L_p$ with 1 < p < ∞ are examples of such spaces. Between the two notions of uniform rotundity and rotundity of a Banach space, a number of intermediate geometric properties have recently been investigated. Applications were found in such seemingly distant branches of mathematics as approximation theory and probability theory. Now, the scale of $L_p$ spaces seems to be too narrow in order to provide a good model for distinguishing subtleties connected with various geometric properties of Banach spaces. A much richer field of examples is obtained by considering Orlicz spaces $L_M$ of functions and $l_M$ of sequences, where M is an Orlicz function. Also, one distinguishes in Orlicz spaces two norms, the Orlicz norm ⃦· ⃦° and the Luxemburg norm ⃦· ⃦, which are equivalent, but the identity operator from ($L_M$, ⃦· ⃦°) to ($L_M$, ⃦· ⃦) is not a linear isometry, which implies that from the point of view of geometric properties, these spaces differ essential.
The importance of this book lies in the fact that it is the first book in English devoted to the problem of geometric properties of Orlicz spaces, and that it provides complete, up-to-date information in this domain. In most cases the theorems concern necessary and sufficient conditions for a given geometric property expressed by properties of the function M which generates the space $L_M$ or $l_M$. Some applications to best approximation, predictors and optimal control problems are also discussed.
This book shows the great role played recently by the Harbin School of Functional Analysis in problems of geometric properties of Orlicz spaces. There are many results in this book which have so far been published only in Chinese.
Anyone interested in the domain of geometric properties of Banach spaces will certainly find the present book indispensable.

Miejsce publikacji

Warszawa

Copyright

Seria

Rozprawy Matematyczne tom/nr w serii: 356

Liczba stron

204

Liczba rozdzia³ów

Opis fizyczny

Dissertationes Mathematicae, Tom CCCLVI

Daty

wydano
1996
otrzymano
1994-08-16
poprawiono
1995-07-04

Twórcy

autor
  • Department of Mathematics, Harbin Normal University, 150080 Harbin, P.R. China

Bibliografia

  • [1] G. Alherk, On the non-$l_n^(1)$ and locally uniformly non-$l_n^(1)$ properties, and $l¹$ copies in Musielak-Orlicz spaces, Comment. Math. Univ. Carolin. 31 (1990), 435-443.
  • [2] G. Alherk and H. Hudzik, Uniformly non-$l^(1)_n$ Musielak-Orlicz spaces of Bochner type, Forum Math. 1 (1989), 403-410.
  • [3] G. Alherk and H. Hudzik, Copies of l¹ and c₀ in Musielak-Orlicz sequence spaces, Comment. Math. Univ. Carolin. 35 (1994) 9-19.
  • [4] T. Ando, Linear functionals on Orlicz spaces, Nieuw. Arch. Wisk. 8 (3) (1960), 1-16.
  • [5] T. Ando, Weakly compact sets in Orlicz spaces, Canad. J. Math. 14 (1962), 170-176.
  • [6] R. M. Aron and R. H. Lohman., A geometric function determined by extreme points of the unit ball of a normed space, Pacific J. Math. 2 (1987), 209-231.
  • [7] B. Beauzamy, Introduction to Banach Spaces and Their Geometry, Elsevier, Amsterdam, 1985.
  • [8] F. Bombal, On l¹ subspaces of Orlicz vector-valued function spaces, Math. Proc. Cambridge Philos. Soc. 107 (1987), 107-112.
  • [9] F. Bombal, On embedding l¹ as a complemented subspace of vector-valued function spaces, Rev. Math. 3 (1988), 13-17.
  • [10] J. M. Borwein and B. Sims, Nonexpansive mappings on Banach lattices and related topics, Houston J. Math. 10 (1984), 339-356.
  • [11] D. W. Boyd, Indices for Orlicz spaces, Pacific J. Math. 38 (1971), 315-328.
  • [12] S. Chen, Some rotundities of Orlicz spaces with Orlicz norm, Bull. Polish Acad. Sci. Math. 34 (1986), 585-596.
  • [13] S. Chen, Smoothness of Orlicz spaces, Comment. Math. 27 (1987), 49-58.
  • [14] S. Chen, Non-squareness of Orlicz spaces, Chinese Ann. Math. 6A (1985), 607-613 (in Chinese).
  • [15] S. Chen, On vector valued Orlicz spaces, Chinese Ann. Math. 5B (1984), 293-304.
  • [16] S. Chen, Uniform rotundity of vector valued Orlicz spaces, Pure Appl. Math. 3 (1987), 13-21 (in Chinese).
  • [17] S. Chen, Extreme points and strict convexity of vector valued Orlicz spaces, J. Math. (Wuhan) 5 (1985), 9-14.
  • [18] S. Chen, Delta condition for some generalized Orlicz spaces, Nature J. 4 (1981), 793 (in Chinese).
  • [19] S. Chen, Locally uniform rotundity of Orlicz spaces, Natur. Sci. J. Harbin Normal Univ. 1983 (2), 48-56 (in Chinese).
  • [20] S. Chen, Local non-squareness of sequence Orlicz spaces, Natur. Sci. J. Harbin Normal Univ. 3 (1) (1987), 1-5 (in Chinese).
  • [21] S. Chen, Smooth points of Orlicz spaces with Orlicz norm, Natur. Sci. J. Harbin Normal Univ. 5 (2) (1989), 1-4 (in Chinese).
  • [22] S. Chen, On properties of locally uniform k-rotundity and uniform rotundity in every direction for Banach spaces, Natur. Sci. J. Harbin Normal Univ. 3 (3) (1987), 1-7 (in Chinese).
  • [23] S. Chen, Some advances and problems on geometry of Orlicz spaces, J. Baoji Teachers College 12 (2) (1989), 22-28 (in Chinese).
  • [24] S. Chen and Y. Duan, WM property of Orlicz spaces, Northeast. Math. J. 8 (1992), 498-502.
  • [25] S. Chen and Y. Duan, WM property of Orlicz spaces with Orlicz norm, Acta Math. Sci. (English Ed.) 14 (1994), 1-8.
  • [26] S. Chen and Y. Duan, On convex functions on sequence Orlicz spaces, in: Collected Youth Sci. Articles, Heilongjiang Sci.&Tech. Press, 1990, 1-2.
  • [27] S. Chen and Y. Duan, Normal structure and weakly normal structure of Orlicz spaces, Comment. Math. Univ. Carolin. 32 (1991), 219-225.
  • [28] S. Chen and Y. Duan, On block basis of sequence Orlicz spaces, to appear.
  • [29] S. Chen and H. Hudzik, On some convexities of Orlicz and Orlicz-Bochner spaces, Comment. Math. Univ. Carolin. 29 (1988), 13-29.
  • [30] S. Chen and H. Hudzik, On some properties of Musielak-Orlicz spaces and their subspaces of order continuous elements, Period. Math. Hungar. 25 (1992), 13-20.
  • [31] S. Chen and H. Hudzik, $E^Φ$ and $h^Φ$ fail to be M-ideals in $L^Φ$ and $l^Φ$ in the case of the Orlicz norm, Boll. Un. Mat. Ital., to appear.
  • [32] S. Chen, H. Hudzik and A. Kamińska, Support functionals and smooth points in Orlicz function spaces equipped with the Orlicz norm, Math. Japon. 39 (1994), 271-279.
  • [33] S. Chen, H. Hudzik and H. Sun, Complemented copies of l¹ in Orlicz spaces, Math. Nachr. 159 (1992), 299-309.
  • [34] S. Chen, H. Hudzik and M. Wisła, Geometry of the dual and higher order duals of Orlicz spaces, to appear.
  • [35] S. Chen and B. Lin, On strongly extreme points in Köthe-Bochner spaces, to appear.
  • [36] S. Chen, B. Lin and X. Yu, Rotund reflexive Orlicz spaces are fully convex, in: Contemp. Math. 85, Amer. Math. Soc., 1989, 79-86.
  • [37] S. Chen, Y. Lu and B. Wang, On property (WM), (CLUR) and (LKR) of Orlicz sequence spaces, Fasc. Math. 22 (1991), 19-25.
  • [38] S. Chen and Y. Shen, Extreme points and rotundity of sequence Orlicz spaces, Natur. Sci. J. Harbin Normal Univ. 1 (2) (1985), 1-6 (in Chinese).
  • [39] S. Chen and Y. Shen, Locally uniform rotundity of sequence Orlicz spaces, Natur. Sci. J. Harbin Normal Univ. 1 (2) (1985), 1-5 (in add.) (in Chinese).
  • [40] S. Chen and H. Sun, On weak topology of Orlicz spaces, Collect. Math. 44 (1993), 71-79.
  • [41] S. Chen and H. Sun, On weak topology of sequence Orlicz spaces, Adv. in Math. (China) 23 (1994), 469-471.
  • [42] S. Chen and H. Sun, Weak convergence and weak compactness in abstract M spaces, Proc. Amer. Math. Soc. 123 (1995), 1441-1447.
  • [43] S. Chen and H. Sun, Reflexive Orlicz spaces have uniformly normal structure, Studia Math. 109 (1994), 197-208.
  • [44] S. Chen and H. Sun, λ-Properties of Orlicz sequence spaces, Ann. Polon. Math. 59 (1994), 239-249.
  • [45] S. Chen, H. Sun and C. Wu, λ-property of Orlicz spaces, Bull. Polish Acad. Sci. Math. 39 (1991), 63-69.
  • [46] S. Chen and T. Wang, Uniformly rotund points of Orlicz spaces, Natur. Sci. J. Harbin Normal Univ. 8 (3) (1992), 5-10 (in Chinese).
  • [47] S. Chen and Y. Wang, H property of Orlicz spaces, Chinese Ann. Math. 8A (1987), 61-67 (in Chinese).
  • [48] S. Chen and Y. Wang, On definition of non-square normed spaces, Chinese Ann. Math. 9A (1988), 68-72 (in Chinese).
  • [49] S. Chen and Y. Wang, Locally uniform rotundity of Orlicz spaces, J. Math. (Wuhan) 5 (1985), 9-14 (in Chinese).
  • [50] S. Chen and M. Wisła, Extreme compact operators from Orlicz spaces to C(Ω), Comment. Math. Univ. Carolin. 34 (1993), 63-77.
  • [51] S. Chen and X. Yu, Smooth points of Orlicz spaces, Comment. Math. 31 (1991), 39-47.
  • [52] Y. Cui, Locally uniform k-rotundity of sequence Orlicz spaces, to appear.
  • [53] Y. Cui, Mid point locally uniform rotundity of Orlicz spaces, Nature J. 9 (1986), 230-231 (in Chinese).
  • [54] Y. Cui, MLUR of sequence Musielak-Orlicz spaces, Northeast. Math. J., to appear.
  • [55] Y. Cui, LUR of sequence Musielak-Orlicz spaces, Chinese Ann. Math., to appear.
  • [56] Y. Cui, Coefficients of convexity on sequence Orlicz spaces $l_(M)$, to appear.
  • [57] Y. Cui, K-M approximation in Orlicz spaces, Chinese Appl. Math. J., to appear.
  • [58] Y. Cui, On Kantorovitch approximation operators, Pure Appl. Math. (in Chinese), to appear.
  • [59] Y. Cui and T. Wang, Strongly extreme points of Orlicz spaces, J. Math. (Wuhan) 7 (4) (1987), 335-340 (in Chinese).
  • [60] Y. Cui and T. Wang, The roughness of the norms on Orlicz spaces, Comment. Math. 31 (1991), 49-57.
  • [61] Y. Cui and T. Wang, Convexity of Orlicz spaces, Comment. Math. 31 (1991), 49-57.
  • [62] Y. Cui and T. Wang, Roughness of sequence Orlicz spaces, J. Harbin Sci. Tech. Univ., to appear.
  • [63] Y. Cui and Y. Zhang, K-smooth points and K-extreme points of sequence Orlicz spaces, J. Baoji Teachers College, to appear.
  • [64] R. B. Darst and G. A. Deboth, Two approximation properties and a Radon-Nikodym derivative for lattices of sets, Indiana Univ. Math. J. 21 (1971), 355-362.
  • [65] R. G. Darst, D. A. Legg and D. W. Townsend, Prediction in Orlicz spaces, Manuscripta Math. 35 (1981), 91-103.
  • [66] M. Denker and H. Hudzik, Uniformly non-$l^(1)_n$ Musielak-Orlicz sequence spaces, Proc. Indian Acad. Sci. Math. Sci. 101 (1991), 71-86.
  • [67] M. Denker and R. Kombrink, On B-convex Orlicz spaces, in: Lecture Notes in Math. 79, Springer, 1979, 87-95.
  • [68] J. Diestel, Geometry of Functional Analysis--Selected Topics, Springer, 1975.
  • [69] J. Diestel, Sequences and Series in Banach Spaces, Springer, 1984.
  • [70] J. Diestel and J. J. Uhl, Jr., Vector Measures, Math. Surveys 15, Amer. Math. Soc., 1977.
  • [71] M. Doman, Weak uniform rotundity of Musielak-Orlicz spaces, Comment. Math. Univ. Carolin. 32 (1991), 441-446.
  • [72] M. Doman, Weak uniform rotundity of Orlicz sequence spaces, Math. Nachr. 162 (1993), 145-151.
  • [73] fails fixed point property, to appear.
  • [74] P. N. Dowling, C. J. Lennard and B. Turett, Reflexivity and fixed point property for nonexpansive maps, to appear.
  • [75] Y. Duan and S. Chen, On best approximation operators in Orlicz spaces, J. Math. Anal. Appl. 178 (1993), 1-8.
  • [76] D. V. Dulst and V. D. Valk, (KK)-properties, normal structure and fixed points of nonexpansive mapping in Orlicz sequence spaces, Canad. J. Math. 38 (1986), 728-750.
  • [77] R. Fleming, J. E. Jamison and A. Kamińska, Isometries of Musielak-Orlicz spaces, in: Proc. Conf. on Function Spaces, Edwardsville 1990, Lecture Notes Pure Appl. Math. 136, Marcel Dekker, 1992, 139-154.
  • [78] V. F. Gaposhkin, On the existence of unconditional bases in Orlicz spaces, Funktsional. Anal. i Prilozhen. 1 (4) (1967), 26-32 (in Russian).
  • [79] J. Globevnik, On complex strict and uniform convexity, Proc. Amer. Math. Soc. 47 (1975), 175-178.
  • [80] A. S. Granero, λ-property in Orlicz spaces, Bull. Polish Acad. Sci. Math. 37 (1989), 421-431.
  • [81] A. S. Granero, Stable unit ball in Orlicz spaces, Proc. Amer. Math. Soc. (in press).
  • [82] A. S. Granero and M. Wisła, Closedness of the set of extreme points in Orlicz spaces, Math. Nachr. 157 (1992), 319-334.
  • [83] R. Grząślewicz, Extreme points in $C(K,L^φ(μ))$, Proc. Amer. Math. Soc. 98 (1986), 611-614.
  • [84] R. Grząślewicz and H. Hudzik, Smooth points of Orlicz spaces equipped with the Luxemburg norm, Math. Nachr., 155 (1992), 31-45; Erratum, Math. Nachr. 167 (1994), 330.
  • [85] R. Grząślewicz, H. Hudzik and W. Kurc, Extreme and exposed points in Orlicz spaces, Canad. J. Math. 44 (1992), 505-515.
  • [86] R. Grząślewicz, H. Hudzik and W. Orlicz, Uniform non-l¹ₙ property in some normed spaces, Bull. Polish Acad. Sci. Math. 34 (1986), 161-171.
  • [87] M. He, K-rotundity of sequence Orlicz spaces, J. Qiqihar Normal College, to appear.
  • [88] F. L. Hernández, Continuous functionals on a class of Orlicz spaces, Houston J. Math. 11 (1985), 171-181.
  • [89] F. L. Hernández, A note on the Hahn-Banach approximation property in Orlicz spaces, Ann. Sci. Math. Québec 9 (1985), 23-29.
  • [90] F. L. Hernández and V. Peirats, Orlicz function spaces without complemented copies of lₚ, Israel J. Math. 56 (1986), 355-366.
  • [91] F. L. Hernández and B. Rodríguez-Salinas, Remarks on the Orlicz function spaces $L^φ(0,∞)$, Math. Nachr. 156 (1992), 225-232.
  • [92] F. L. Hernández and B. Rodríguez-Salinas, On lₚ-complemented copies in Orlicz spaces, Israel J. Math. 62 (1988), 37-55.
  • [93] F. L. Hernández and B. Rodríguez-Salinas, On lₚ-complemented copies in Orlicz spaces II, Israel J. Math. 68 (1989), 27-55.
  • [94] F. L. Hernández and C. Ruiz, On Musielak-Orlicz spaces isomorphic to Orlicz spaces, Comment. Math. 32 (1992), 55-60.
  • [95] F. L. Hernández and C. Ruiz, Universal classes of Orlicz function spaces, Pacific J. Math. 155 (1992), 87-98.
  • [96] R. B. Holmes, Geometric Functional Analysis and its Applications, Springer, 1975.
  • [97] J. Hu, An embedding problem in Orlicz sequence spaces, Natur. Sci. J. Xiangtan Univ. 1985 (2), 56-61 (in Chinese).
  • [98] Z. Hu and B. L. Lin, Strongly exposed points in Lebesgue-Bochner function spaces, Proc. Amer. Math. Soc. 120 (1994), 1159-1165.
  • [99] H. Hudzik, Locally uniformly non-$l^(1)_n$ Orlicz spaces, Suppl. Rend. Circ. Mat. Palermo 10 (1985), 49-56.
  • [100] H. Hudzik, Uniformly non-$l^(1)_n$ Orlicz spaces with Luxemburg norm, Studia Math. 81 (1985), 271-284.
  • [101] H. Hudzik, Orlicz spaces containing a copy of l₁, Math. Japon. 34 (1989), 747-759.
  • [102] H. Hudzik, On some equivalent conditions in Musielak-Orlicz spaces, Comment. Math. 24 (1984), 57-64.
  • [103] H. Hudzik, Strict convexity of Musielak-Orlicz spaces with Luxemburg's norm, Bull. Acad. Polon. Sci. Sér. Sci. Math. 29 (1981), 235-247.
  • [104] H. Hudzik, Convexity in Musielak-Orlicz spaces, Hokkaido Math. J. 14 (1985), 85-96.
  • [105] H. Hudzik, Uniform convexity of Musielak-Orlicz spaces with Luxemburg's norm, Comment. Math. 24 (1984), 57-64.
  • [106] H. Hudzik, A criterion of uniform convexity of Musielak-Orlicz spaces with Luxemburg norm, Bull. Polish Acad. Sci. Math. 32 (1984), 303-313.
  • [107] H. Hudzik, Musielak-Orlicz spaces isomorphic to strictly convex spaces, Bull. Polish Acad. Sci. Math. 29 (1981), 465-470.
  • [108] H. Hudzik, Flat Musielak-Orlicz spaces under Luxemburg's norm, Bull. Polish Acad. Sci. Math. 32 (1984), 203-208.
  • [109] H. Hudzik, Some class of uniformly non-square Orlicz-Bochner spaces, Comment. Math. Univ. Carolin. 26 (1985), 269-274.
  • [110] H. Hudzik, Lower and upper estimations of the modulus of convexity in some Orlicz spaces, Arch. Math. (Basel) 57 (1991), 80-87.
  • [111] H. Hudzik, Orlicz spaces without strongly extreme points and without H-points, Canad. Math. Bull. 36 (1993), 173-177.
  • [112] H. Hudzik, On some renorming problems, Arch. Math. (Basel) 48 (1987), 505-510.
  • [113] H. Hudzik, An estimation of the modulus of convexity in a class of Orlicz spaces, Math. Japon. 32 (1987), 227-237.
  • [114] H. Hudzik, On some renorming problems, Arch. Math. (Basel) 52 (1989), 365-366.
  • [115] H. Hudzik, On smallest and largest Orlicz spaces, Math. Nachr. 141 (1989), 109-115.
  • [116] H. Hudzik, Every nonreflexive Banach lattice has the packing constant equal to 1/2, Collect. Math. 44 (1993), 129-134.
  • [117] H. Hudzik and A. Kamińska, On uniformly convexifiable and B-convex Musielak-Orlicz spaces, Comment. Math. 25 (1985), 59-75.
  • [118] H. Hudzik, A. Kamińska and W. Kurc, Uniformly non-l¹ₙ Musielak-Orlicz spaces, Bull. Polish Acad. Sci. Math. 35 (1987), 411-448.
  • [119] H. Hudzik, A. Kamińska and J. Musielak, On the convexity coefficient of Orlicz spaces, Math. Z. 197 (1988), 291-295.
  • [120] H. Hudzik and W. Kurc, Strict monotonicity and uniform monotonicity of Orlicz spaces equipped with the Orlicz norm, to appear.
  • [121] H. Hudzik, W. Kurc and M. Wisła, Strongly extreme points in Orlicz function spaces, J. Math. Anal. Appl. 189 (1995), 651-670.
  • [122] H. Hudzik and T. Landes, Characteristic of convexity of Musielak-Orlicz function spaces equipped with the Luxemburg norm, Comment. Math. Univ. Carolin. 33 (1992), 615-621.
  • [123] H. Hudzik and T. Landes, Packing constant in Orlicz spaces equipped with the Luxemburg norm, Boll. Un. Mat. Ital. A (7) 9 (1995), 225-237.
  • [124] H. Hudzik and M. Mastyło, Almost isometric copies of $l_∞$ in some Banach spaces, Proc. Amer. Math. Soc. 119 (1993), 209-215.
  • [125] H. Hudzik and M. Mastyło, Strongly extreme points in Köthe-Bochner spaces, Rocky Mountain J. Math. 23 (1993), 899-909.
  • [126] H. Hudzik and D. Pallaschke, On some convexity properties of Orlicz sequence spaces equipped with the Luxemburg norm, Math. Nachr., to appear.
  • [127] H. Hudzik, T. Wang and B. Wang, On the convexity characteristic of Orlicz spaces, Math. Japon. 37 (1992), 691-699.
  • [128] H. Hudzik and M. Wisła, On extreme points of Orlicz spaces with Orlicz norm, Collect. Math. 44 (1993), 135-146.
  • [129] H. Hudzik and M. Wisła, On strongly exposed points in Orlicz spaces, to appear.
  • [130] H. Hudzik, C. Wu and Y. Ye, Packing constant in Musielak-Orlicz sequence spaces equipped with the Luxemburg norm, Rev. Mat. Univ. Complut. Madrid 7 (1994), 13-26.
  • [131] H. Hudzik and Y. Ye, Support functionals and smoothness in Musielak-Orlicz sequence spaces endowed with the Luxemburg norm, Comment. Math. Univ. Carolin. 31 (1990), 661-684; Correction, Comment. Math. Univ. Carolin. 35 (1994), 209.
  • [132] H. Hudzik and Z. Zbąszyniak, Smooth points of Musielak-Orlicz sequence spaces equipped with the Luxemburg norm, Colloq. Math. 65 (1993), 157-164; Erratum, Colloq. Math. 66 (1994), 335.
  • [133] J. E. Jamison, A. Kamińska and P.-K. Lin, Isometries of Orlicz spaces of vector valued functions, Math. Z. 193 (1986), 363-371.
  • [134] N. J. Kalton, Orlicz sequence spaces without local convexity, Math. Proc. Cambridge Philos. Soc. 81 (1977), 253-277.
  • [135] N. J. Kalton, Minimal and strongly minimal Orlicz sequence spaces, to appear.
  • [136] A. Kamińska, On uniform convexity of Orlicz spaces, Indag. Math. A85 (1982), 27-36.
  • [137] A. Kamińska, The criteria for local uniform rotundity of Orlicz spaces, Studia Math. 74 (1984), 201-215.
  • [138] A. Kamińska, On some convexity properties of Musielak-Orlicz spaces, Suppl. Rend. Circ. Mat. Palermo 2 (1984), 63-72.
  • [139] A. Kamińska, Uniform rotundity in every direction of sequence Orlicz spaces, Bull. Polish Acad. Sci. Math. 32 (1984), 589-594.
  • [140] A. Kamińska, Flat Orlicz-Musielak sequence spaces, Bull. Polish Acad. Sci. Math. 30 (1982), 347-352.
  • [141] A. Kamińska, Rotundity of sequence Musielak-Orlicz spaces, Bull. Polish Acad. Sci. Math. 29 (1981), 137-144.
  • [142] A. Kamińska, On some compactness criteria for Orlicz subspace $E_φ(Ω)$, Comment. Math. 22 (1981), 245-255.
  • [143] A. Kamińska, Strict convexity of sequence Musielak-Orlicz spaces with Orlicz norm, J. Funct. Anal. 50 (1993), 285-305.
  • [144] A. Kamińska, Some remarks on Orlicz-Lorentz spaces, Math. Nachr. 147 (1990), 29-38.
  • [145] A. Kamińska, Extreme points in Orlicz-Lorentz spaces, Arch. Math. (Basel) 55 (1990), 173-180.
  • [146] A. Kamińska, P.-K. Lin and H. Sun, Uniformly normal structure of Orlicz-Lorentz spaces, in: Proc. Conference in Functional Analysis, Harmonic Analysis and Probability, preprint.
  • [147] A. Kamińska and W. Kurc, Weak uniform rotundity in Orlicz spaces, Comment. Math. Univ. Carolin. 27 (1986), 651-664.
  • [148] A. Kamińska and B. Turett, Type and cotype in Musielak-Orlicz spaces, in: London Math. Soc. Lecture Note Ser. 158, Cambridge Univ. Press, 1990, 165-180.
  • [149] M. A. Khamsi, W. M. Kozłowski and S. Chen, Some geometrical properties and fixed point theorems in Orlicz spaces, J. Math. Anal. Appl. 155 (1991), 393-412.
  • [150] S. J. Kilmer, W. M. Kozłowski and G. Lewicki, Best approximants in modular spaces, J. Approx. Theory 63 (1990), 338-367.
  • [151] S. J. Kilmer, W. M. Kozłowski and G. Lewicki, Sigma order continuity and best approximation in $L_ϕ$-spaces, Comment. Math. Univ. Carolin. 32 (1991), 241-250.
  • [152] A. Kozek, Orlicz spaces of functions with values in Banach spaces, Comment. Math. Univ. Carolin. 19 (1977), 259-288.
  • [153] W. Kozłowski, Modular Function Spaces, Marcel Dekker, New York and Basel, 1988.
  • [154] M. A. Krasnosel'skiĭ and Ya. B. Rutickiĭ, Convex Functions and Orlicz spaces, Noordhoff, Groningen, 1961.
  • [155] W. Kurc, Strongly exposed points in Orlicz spaces of vector-valued functions, Comment. Math. 27 (1987), 121-133.
  • [156] W. Kurc, Extreme points of the unit ball in Orlicz spaces of vector-valued fuctions with the Amemiya norm, Math. Japon. 38 (1993), 277-288.
  • [157] W. Kurc, Strictly and uniformly monotone Musielak-Orlicz spaces and applications to best approximation, J. Approx. Theory 69 (1992), 173-187.
  • [158] T. Landes, Normal structure and weakly normal structure of Orlicz sequence spaces, Trans. Amer. Math. Soc. 285 (1984), 523-534.
  • [159] T. Landes and L. Rogge, Best approximants in $L_φ$-spaces, Z. Wahrsch. Verw. Gebiete 51 (1980), 251-237.
  • [160] T. Landes and L. Rogge, Characterization of p-predictors, Proc. Amer. Math. Soc. 76 (1979), 307-309.
  • [161] T. Landes and L. Rogge, A characterization of best φ-approximants, Trans. Amer. Math. Soc. 267 (1981), 259-264.
  • [162] B. Lao and X. Zhu, Extreme points of Orlicz spaces, J. Zhongshan Univ. 1983 (2), 97-103 (in Chinese).
  • [163] H. Li, On smooth modulars of Orlicz spaces and applications, J. Jiangxi Inst. Tech. 1981 (2), 11-20 (in Chinese).
  • [164] R. Li, General representation theorem of bounded linear functionals in Orlicz spaces, J. Harbin Inst. Tech. 12 (3) (1980), 91-94 (in Chinese).
  • [165] Y. Li, Weakly uniformly rotundity of sequence Orlicz spaces, Nature J. 9 (1986), 471-472 (in Chinese).
  • [166] Y. Liang, On smooth set of sequence Orlicz spaces, Natur. Sci. J. Harbin Normal Univ. 7 (3) (1991), 8-15 (in Chinese).
  • [167] K. J. Lindberg, On subspaces of Orlicz sequence spaces, Studia Math. 45 (1973), 119-146.
  • [168] B.-L. Lin and P.-K. Lin, Property (H) in Lebesgue-Bochner function spaces, Proc. Amer. Math. Soc. 95 (1985), 581-584.
  • [169] P.-K. Lin, k-Uniform rotundity of Lorentz-Orlicz spaces, to appear.
  • [170] P.-K. Lin and H. Sun, Some geometric properties of Orlicz-Lorentz spaces, Arch. Math. (Basel) 64 (1995), 500-511.
  • [171] P.-K. Lin and H. Sun, Normal structure of Lorentz-Orlicz spaces, preprint.
  • [172] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I, Springer, 1977.
  • [173] J. Lindenstrauss and L. Tzafriri, On Orlicz sequence spaces, I, Israel J. Math. 10 (1971) 379-390.
  • [174] J. Lindenstrauss and L. Tzafriri, On Orlicz sequence spaces, II, Israel J. Math. 11 (1972), 355-379.
  • [175] J. Lindenstrauss and L. Tzafriri, On Orlicz sequence spaces, III, Israel J. Math. 14 (1973), 368-389.
  • [176] H. Liu, A study on vector-valued Orlicz spaces, J. Harbin Inst. Tech. (Math. Issue) 1984, 70-78 (in Chinese).
  • [177] G. Lumer, On the isometries of reflexive Orlicz spaces, Ann. Inst. Fourier (Grenoble) 13 (1963), 99-109.
  • [178] W. A. J. Luxemburg, Banach Function Spaces, Thesis, Delft, 1955.
  • [179] R. P. Maleev and S. L. Troyanski, On the moduli of convexity and smoothness in Orlicz spaces, Studia Math. 54 (1975), 131-141.
  • [180] R. P. Maleev and S. L. Troyanski, Smooth norms in Orlicz spaces, Canad. Math. Bull. 34 (1991), 74-82.
  • [181] H. W. Milnes, Convexity of Orlicz spaces, Pacific J. Math. 7 (1957), 1451-1486.
  • [182] J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Math. 1034, Springer, 1983.
  • [183] N. I. Niesen, On the Orlicz function spaces $L_M(0,∞)$, Israel J. Math. 20 (1975), 237-259.
  • [184] M. Nowak, Singular linear functionals on non-locally convex Orlicz spaces, Indag. Math. 3 (1992), 337-351.
  • [185] A. J. Pach, M. A. Smith and B. Turett, Flat Orlicz spaces, Proc. Amer. Math. Soc. 81 (1981), 528-530.
  • [186] R. Phelps, Convex Functions, Monotone Operators and Differentiability, Lecture Notes in Math. 1364, Springer, 1989.
  • [187] R. Płuciennik, On some criteria for compactness of sets in space $E_{ps}$, Comment. Math. 21 (1979), 207-217.
  • [188] R. Płuciennik, On some properties of the superposition operator in generalized Orlicz spaces of vector-valued functions, Comment. Math. 25 (1985), 133-149.
  • [189] R. Płuciennik, Some remarks on compactness in Musielak-Orlicz spaces of vector-valued functions, Fasc. Math. 18 (1986), 11-17.
  • [190] R. Płuciennik, Representation of additive functionals on Musielak-Orlicz spaces of vector-valued functions, Kodai Math. J. 10 (1987), 49-54.
  • [191] R. Płuciennik, Boundedness of the superposition operator in generalized Orlicz spaces of vector-valued functions, Bull. Polish Acad. Sci. Math. 33 (1985), 531-540.
  • [192] R. Płuciennik, On $E_N$-weak convergence and $E_N$-weak continuity in Orlicz spaces of vector valued functions, Fasc. Math. 13 (1981), 5-13.
  • [193] R. Płuciennik, T. Wang and Y. Zhang, H-points and denting points in Orlicz spaces, Comment. Math. 33 (1993), 135-151.
  • [194] R. Płuciennik and M. Wisła, Linear functionals on some non-locally convex generalized Orlicz spaces, Comment. Math. Univ. Carolin. 29 (1988), 103-116.
  • [195] R. Płuciennik and Y. Ye, Differentiability of Musielak-Orlicz spaces, Comment. Math. Univ. Carolin. 30 (1989), 699-711.
  • [196] A. M. Olevskiĭ, Fourier series and Lebesgue functions, Uspekhi Mat. Nauk 22 (3) (1967), 237-239 (in Russian).
  • [197] M. M. Rao and Z. Ren, Theory of Orlicz Spaces, Marcel Dekker, New York, 1991.
  • [198] Z. Ren, Weakly sequentially compact embedding theorems of Orlicz spaces, Nature J. 9 (1986), 313-314 (in Chinese).
  • [199] Z. Ren, Reflexive Orlicz spaces and J. L. Lions' lemma, Chinese Sci. Bull. 31 (1986), 1474-1475 (in Chinese).
  • [200] Z. Ren, On some theorems involving comparison of Orlicz spaces, Natur. Sci. J. Xiangtan Univ. 1986 (2), 22-31 (in Chinese).
  • [201] Z. Ren, On modulars and norms in Orlicz spaces, Adv. in Math. (China) 15 (1986), 315-320 (in Chinese).
  • [202] Z. Ren, Packing in Orlicz function spaces, Ph.D. Dissertation, Univ. of California, Riverside, 1993.
  • [203] Z. Ren, Packing spheres in Orlicz function spaces with Luxemburg norm, Natur. Sci. J. Xiangtan Univ. 1985 (1), 51-60 (in Chinese).
  • [204] Z. Ren and S. Chen, Jung constants of Orlicz function spaces, to appear.
  • [205] Z. Ren and T. Wang, Reflexivity and ball-packing constants, to appear.
  • [206] S. Rolewicz, Metric Linear Spaces, Polish Sci. Publ., Warszawa, 1984.
  • [207] E. M. Semenov, A method for establishing interpolation theorems in symmetric spaces, Dokl. Akad. Nauk SSSR 185 (1969), 1243-1246 (in Russian).
  • [208] Z. Shi, K-uniform rotundity of Orlicz spaces, J. Heilongjiang Univ. Natur. Sci. 4 (2) (1987), 41-44 (in Chinese).
  • [209] Z. Shi and Y. Fan, Locally uniform k-rotundity of Orlicz spaces, to appear.
  • [210] H. Sun and S. Chen, Stable points of Orlicz spaces with Orlicz norm, J. Harbin Inst. Tech. Add. 1991, 134-135 (in Chinese).
  • [211] K. Sundaresan, Uniformly non-square Orlicz spaces, Nieuw. Arch. Wisk. 14 (1966), 31-39.
  • [212] K. Sundaresan, Orlicz spaces isomorphic to strictly convex spaces, Proc. Amer. Math. Soc. 17 (1966), 1353-1356.
  • [213] L. Tao, Rotundity of sequence Orlicz spaces, Natur. Sci. J. Harbin Normal Univ. 2 (1) (1986), 11-15 (in Chinese).
  • [214] L. Tao, Smoothness of Orlicz sequence spaces, Natur. Sci. J. Harbin Normal Univ. 4 (1) (1988), 13-18 (in Chinese).
  • [215] B. Turett, Rotundity of Orlicz spaces, Indag. Math. A79 (1976), 462-468.
  • [216] B. Wang, Exposed points of Orlicz spaces, J. Baoji Teachers College 12 (2) (1989), 43-49 (in Chinese).
  • [217] B. Wang, Strongly exposed property of Orlicz spaces, to appear.
  • [218] B. Wang and T. Wang, (KK), (UKK) and (weak) sum properties of direct sums of Orlicz spaces, J. Harbin Univ. Sci. Tech. 14 (1) (1990), 66-73 (in Chinese).
  • [219] B. Wang and Y. Zhang, The smooth points of Orlicz sequence spaces, Natur. Sci. J. Harbin Normal Univ. 7 (3) (1991), 18-22 (in Chinese).
  • [220] T. Wang, Property (G) and (K) of Orlicz spaces, Comment. Math. Univ. Carolin. 31 (1990), 307-313.
  • [221] T. Wang, Girth and reflexivity of Orlicz sequence spaces, Chinese Ann. Math. 6A (1985), 579-586 (in Chinese).
  • [222] T. Wang, P-convexity of Orlicz spaces, Chinese Quart. J. Math. 7 (1992), 18-21 (in Chinese).
  • [223] T. Wang, Ball-packing constants of sequence Orlicz spaces, Chinese Ann. Math. 8A (1987), 508-513 (in Chinese).
  • [224] T. Wang, Uniformly convex condition of sequence Orlicz spaces, J. Harbin Univ. Sci. Tech. 7 (2) (1983), 1-8 (in Chinese).
  • [225] T. Wang, Uniform non-l¹ₙ property of Orlicz spaces, J. Math. Res. Exposition 5 (1985), 125-126 (in Chinese).
  • [226] T. Wang, Constant dₙ on sequence Orlicz spaces, Pure Appl. Math. 3 (1987), 31-38 (in Chinese).
  • [227] T. Wang and S. Chen, K-rotundity of Orlicz spaces, Natur. Sci. J. Harbin Normal Univ. 1 (4) (1985), 11-15 (in Chinese).
  • [228] T. Wang and S. Chen, K-rotundity of sequence Orlicz spaces, Canad. Math. Bull. 34 (1991), 128-135.
  • [229] T. Wang and S. Chen, Smoothness and differentiability of Orlicz spaces, Chinese J. Engrg. Math. 1 (1987), 113-115 (in Chinese).
  • [230] T. Wang and Y. Cui, KUR points of Orlicz spaces, to appear.
  • [231] T. Wang and Y. Cui, Coefficients of weakly convergent sequence in Orlicz sequence spaces, to appear.
  • [232] T. Wang, Y. Cui and D. Ji, Characterization of Orlicz spaces with Mazur's intersection property, Funct. Approx. Comment. Math. 23 (1994), 69-76.
  • [233] T. Wang, Y. Cui and Y. Li, Packing constants and strongly extreme points in Orlicz spaces, Adv. in Math. (China) 15 (2) (1986), 217-218.
  • [234] T. Wang, Y. Cui and Q. Wang, Coefficients of roughness of Orlicz spaces, to appear.
  • [235] T. Wang and D. Ji, The criterion of Orlicz spaces to be U-spaces, to appear.
  • [236] T. Wang, D. Ji and Y. Li, Prediction operator in Orlicz spaces, Chinese Sci. Bull. 40 (1995), 1592-1595.
  • [237] T. Wang, D. Ji and Z. Shi, The criteria of strongly exposed points in Orlicz spaces, Comment. Math. Univ. Carolin. 35 (1994), 721-734.
  • [238] T. Wang, Y. Li and Y. Zhang, UR points and WUR points of sequence Orlicz spaces, Southeast Asian Bull. Math., in press.
  • [239] T. Wang and Y. Liu, Packing constant of a type of sequence spaces, Comment. Math. 30 (1990), 197-203.
  • [240] T. Wang, Z. Ren and Y. Zhang, UR points and WUR points of Orlicz spaces, J. Math. (Wuhan) 13 (1993), 443-452.
  • [241] T. Wang and Z. Shi, On the uniformly normal structure of Orlicz spaces with Orlicz norm, Comment. Math. Univ. Carolin. 34 (1993), 433-442.
  • [242] T. Wang and Z. Shi, Some notes on structure of Orlicz spaces, to appear.
  • [243] T. Wang and Z. Shi, Criteria for KUC, NUC and UKK of Orlicz spaces, Northeast. Math. J. 3 (1987), 160-172 (in Chinese).
  • [244] T. Wang and Z. Shi, KUR of sequence Orlicz spaces, Southeast Asian Bull. Math. 14 (1990), 33-44.
  • [245] T. Wang and Z. Shi, Uniform rotundity in weakly compact directions of Orlicz spaces, J. Harbin Univ. Sci. Tech. (in Chinese), to appear.
  • [246] T. Wang and Z. Shi, Some notes on Orlicz spaces, Fasc. Math. 24 (1993), 5-11.
  • [247] T. Wang and Z. Shi, LW*UR of Orlicz spaces, J. Heilongjiang Univ. Natur. Sci. (in Chinese), to appear.
  • [248] T. Wang and Z. Shi, URED of sequence Orlicz spaces, Acta Sci. Math. (Szeged), to appear.
  • [249] T. Wang, Z. Shi and Y. Cui, Uniform rotundity in every direction of Orlicz spaces, Comment. Math., to appear.
  • [250] T. Wang, Z. Shi and Y. Li, On uniformly nonsquare points and nonsquare points of Orlicz spaces, Comment. Math. Univ. Carolin. 33 (1992), 477-484.
  • [251] T. Wang, Z. Shi and Q. Wang, On W*UR points and VR point of Orlicz spaces with Orlicz norm, Collect. Math. 44 (1993), 279-299.
  • [252] T. Wang and B. Wang, Normal structure, sum-property and LD property of sequence Orlicz spaces, J. Math. Res. Exposition, to appear.
  • [253] T. Wang and B. Wang, The (weakly) normal structure and LD property of Orlicz sequence spaces, J. Math. (Wuhan) 14 (1994), 339-345 (in Chinese).
  • [254] T. Wang and B. Wang, Strongly (very) smooth points of Orlicz spaces, Northeast. Math. J. 8 (1992), 223-230 (in Chinese).
  • [255] T. Wang and Q. Wang, On the weak star uniformly rotund points of Orlicz spaces, Collect. Math. 44 (1993), 301-306.
  • [256] T. Wang and Q. Wang, Some notes on $k_x$ for Orlicz spaces, Chinese J. Engrg. Math. 14 (1994), 7-14 (in Chinese).
  • [257] T. Wang and Y. Wang, Minimum Orlicz norm control for distributed parameter systems, Acta Math. Phys. (Chinese) 10 (1990), 273 (in Chinese).
  • [258] T. Wang, Y. Wang and Y. Li, Weakly uniform convexity of Orlicz spaces, J. Math. (Wuhan) 6 (1986), 209-214 (in Chinese).
  • [259] T. Wang, Y. Wu and Y. Zhang, W*-uniform rotundity of Orlicz spaces, J. Heilongjiang Univ. Natur. Sci. 9 (1) (1992), 10-16 (in Chinese).
  • [260] T. Wang and Y. Zhang, Coefficients of convexity on Orlicz spaces, J. Harbin Univ. Sci. Tech. 15 (4) (1991), 70-78 (in Chinese).
  • [261] T. Wang and Y. Zhang, $l_N$-Weak compactness of sequence Orlicz spaces, J. Harbin Univ. Sci. Tech. 16 (3) (1992), 1-6 (in Chinese).
  • [262] T. Wang, Y. Zhang and B. Wang, Fully k-convexity of Orlicz spaces, Natur. Sci. J. Harbin Normal Univ. 5 (3) (1989), 19-21 (in Chinese).
  • [263] Y. Wang, Limits of sequences of predictors in Banach spaces, J. Harbin Univ. Sci. Tech. 5 (1) (1981), 18-26 (in Chinese).
  • [264] Y. Wang, Weakly sequential completeness of Orlicz spaces, Northeast. Math. J. 1 (1985), 241-246.
  • [265] Y. Wang, Uniform non-squareness and flatness in Orlicz spaces, J. Math. Res. Exposition 4 (1984), 94 (in Chinese).
  • [266] Y. Wang and S. Chen, Approximation operators in Orlicz spaces, Pure Appl. Math. 1 (1986), 44-51 (in Chinese).
  • [267] Y. Wang and S. Chen, An optimal control problem in Orlicz spaces, Chinese J. Engrg. Math. 3 (1986), 137-141 (in Chinese).
  • [268] Y. Wang and S. Chen, Non-squareness, flatness and B-convexity of Orlicz spaces, Comment. Math. 28 (1988), 159-169.
  • [269] Z. Wang, Extreme points of sequence Orlicz spaces, J. Daqing Oil Inst. 7 (1) (1983), 112-121 (in Chinese).
  • [270] M. Wisła, Extreme points and stable unit balls in Orlicz sequence spaces, Arch. Math. (Basel) 56 (1991), 482-490.
  • [271] M. Wisła, A full description of extreme points in $C(Ω,L^φ(μ))$, Proc. Amer. Math. Soc. 113 (1991), 193-200.
  • [272] M. Wisła, On completeness of Musielak-Orlicz spaces, Chinese Ann. Math. 10B (3) (1989), 292-299.
  • [273] M. Wisła, Some remarks on the Kozek condition (B), Bull. Polish Acad. Sci. Math. 32 (1984), 407-415.
  • [274] M. Wisła, Continuity of the identity embedding of some Orlicz spaces I, Comment. Math. 24 (1984), 171-184.
  • [275] M. Wisła, Continuity of the identity embedding of some Orlicz spaces II, Bull. Polish Acad. Sci. Math. 31 (1983), 143-150.
  • [276] M. Wisła, Convergence in Musielak-Orlicz spaces, Bull. Polish Acad. Sci. Math. 33 (1985), 517-529.
  • [277] M. Wisła, Boundedness of the identity embedding of some Musielak-Orlicz spaces, Comment. Math. 27 (1988), 359-371.
  • [278] M. Wisła, Stable points of unit ball in Orlicz spaces, Comment. Math. Univ. Carolin. 32 (1991), 501-515.
  • [279] M. Wisła, Strongly extreme points in Orlicz sequence spaces, to appear.
  • [280] W. Wnuk, Orlicz spaces cannot be renormed analogously to $L^p$-spaces, Indag. Math. 46 (1984), 357-359.
  • [281] C. Wu and S. Chen, Extreme points and rotundity of Musielak-Orlicz spaces, Northeast. Math. J. 2 (1986), 138-149.
  • [282] C. Wu and S. Chen, Extreme points and rotundity of sequence Musielak-Orlicz spaces, J. Math. Res. Exposition 8 (1988), 195-200.
  • [283] C. Wu, S. Chen and Y. Wang, H property of sequence Orlicz spaces, J. Harbin Inst. Tech. Math. issue 1985, 6-11 (in Chinese).
  • [284] C. Wu, S. Chen and Y. Wang, Geometric characterization of reflexivity and flatness of sequence Orlicz spaces, Northeast. Math. J. 2 (1986), 49-57 (in Chinese).
  • [285] C. Wu and H. Sun, On the λ-property of Orlicz space $L_M$, Comment. Math. Univ. Carolin. 31 (1991), 731-741.
  • [286] C. Wu and H. Sun, Norm calculation and complex convexity of the Musielak-Orlicz sequence space, Chinese Ann. Math. 12A (1991), suppl., 98-102 (in Chinese).
  • [287] C. Wu and H. Sun, On complex extreme points and complex convexity of Musielak-Orlicz spaces, J. Systems Sci. Math. Sci. 7 (1) (1987), 7-13 (in Chinese).
  • [288] C. Wu and H. Sun, On the complex convexity of Orlicz-Musielak sequence spaces, Comment. Math. 28 (1989), 397-408.
  • [289] C. Wu and H. Sun, On the complex convexity of Orlicz spaces $L*_M(X)$, J. Harbin Inst. Tech. 20 (1) (1988), 101-102 (in Chinese).
  • [290] C. Wu and H. Sun, On complex uniform convexity of Musielak-Orlicz spaces, Northeast. Math. J. 4 (1988), 389-396 (in Chinese).
  • [291] C. Wu and T. Wang, Orlicz Spaces and Applications, Heilongjiang Sci. & Tech. Press, 1983 (in Chinese).
  • [292] C. Wu and T. Wang, Research of Orlicz spaces in China, Southeast Asian Math. Bull. 14 (2) (1990), 75-85.
  • [293] C. Wu and T. Wang, Advances on research of Orlicz spaces (I), J. Math. Res. Exposition 6 (1986), 155-161 (in Chinese).
  • [294] C. Wu and T. Wang, Advances on research of Orlicz spaces (II), J. Math. Res. Exposition 6 (1986), 143-148 (in Chinese).
  • [295] C. Wu, T. Wang, S. Chen and Y. Wang, Theory of Geometry of Orlicz Spaces, Harbin Inst. of Tech. Press, 1986 (in Chinese).
  • [296] C. Wu, S. Zhao and J. Chen, On calculation of Orlicz norm and rotundity of Orlicz spaces, J. Harbin Inst. Tech. 10 (2) (1978), 1-12 (in Chinese).
  • [297] Y. Wu, Sequential compactness and weak convergence of Orlicz spaces, Nature J. 5 (1982), 234 (in Chinese).
  • [298] Y. Wu, Continuous linear functionals on generalized Orlicz spaces, J. Heilongjiang Univ. Natur. Sci. 6 (3) (1989), 14-17 (in Chinese).
  • [299] Y. Wu and T. Wang, Convergence on the unit sphere of Orlicz spaces, J. Heilongjiang Univ. Natur. Sci. 5 (4) (1988), 1-4 (in Chinese).
  • [300] H. Ye, Sequential compactness condition of Orlicz spaces, J. Chinese Univ. Sci. Tech. 13 (1983), 399-400 (in Chinese).
  • [301] Y. Ye, Ball packing values of sequence Orlicz spaces, Chinese Ann. Math. 4A (1983), 487-493 (in Chinese).
  • [302] Y. Ye, Geometric equivalence condition for reflexivity of sequence Orlicz spaces, Northeast. Math. J. 2 (1986), 309-323 (in Chinese).
  • [303] Y. Ye, Differentiability and gradient of sequence Orlicz spaces, J. Harbin Univ. Sci. Tech. 11 (2) (1987), 114-118 (in Chinese).
  • [304] Y. Ye, N. He and R. Płuciennik, P-convexity of Orlicz spaces with Luxemburg norm, Comment. Math. 31 (1991), 203-216.
  • [305] X. Yu, Theory of Geometry of Banach Spaces, East China Normal Univ. Press, 1986 (in Chinese).
  • [306] Z. Zbąszyniak, Smooth points of the unit sphere in Musielak-Orlicz function spaces equipped with the Luxemburg norm, Comment. Math. Univ. Carolin. 35 (1994), 95-102.
  • [307] Y. Zhang, T. Wang and B. Wang, Stability of sequence Musielak-Orlicz spaces, J. Daqing Oil Inst. 14 (1990), 96-101 (in Chinese).

Języki publikacji

EN

Uwagi

1991 Mathematics Subject Classification: 46B20, 46E30

Identyfikator YADDA

bwmeta1.element.zamlynska-2f35e537-32f4-45ab-b650-3551b58d5e12

Identyfikatory

ISSN
0012-3862

Kolekcja

DML-PL
Zawartość książki

rozwiń roczniki

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.