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Introduction

The main purpose of this paper is to present a general point of view on the
construction of projection-difference operators with prescribed properties.
Another purpose is to construct projection-difference analogs of certain
differential operators coinciding with their simplest difference analogs.

Projection-difference (finite element) methods combine the best properties
of general projection (such as Ritz, Galerkin, moments, etc.) and difference
methods. These methods lead to sparse algebraic problems and keep rate-of
convergence optimality typical for projection methods.

In many cases the construction of these methods may be described in the
following way. Let a(-, ) be a coercive bilinear form on the linear normed
space V and let V* be adjoint space of V. For given feV* it is required to find
ueV such that

(0.1) au,v)= f(@) for all veV.

Problems of the type (0.1) arise, for example, in finding generalized solutions of
‘boundary value problems including nonlinear ones (certainly, in this case the
form a(-,-) is linear relative to the second argument only and satisfies some

natural conditions).
Let now V" be a subspace of V (finite-dimensional as a rule) and let ufe V*

be a solution of problem
(0.2) a@Wh, o) = f(" for all v"eV"
If {*} is the basis of V" then the approximate solution is of the form

h_ B g h
u' =Y ulv,.
3

Let us choose subspaces V" < V in such a way that two rather contradictory
conditions are satisfied:

[355]
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(1) the sequence of subspaces V" approximates V' in some sense,

(2) the resulting algebraic problem for determining unknown parameters
u" has merits of difference method.

The method (0.2) for the solution of problem (0.1) where subspaces V*
satisfy conditions (1)—(2) will be called PDM-projection-difference method (as
a matter of fact it is the conformal finite element method [1]).

If we disengage ourselves from the fact that PDM is a particular case of
general projection methods and treat PDMs as difference schemes whose
coefficients are functionals of data then PDMs may be embedded into the class
of general difference schemes considered in [2].

On the other hand, for the investigation of PDMs it is reasonable to
disengage onesell from the grid character of these methods and treat PDMs as
particular cases of general projection methods. Hence we may analyse PDM in
the manner typical for general projection methods which is not connected with
the concept of local approximation typical for difference schemes. By means of
this approach it is possible to obtain error estimates in sufficiently strong
norms under comparatively weak a priori assumptions about the smoothness
of the unknown solution.

However, we must note that though difference and projection-differen-
ce methods are similar, nevertheless the projection-difference analogs of
differential operators are comparatively extensively dispersed on the grid.
For example, two-dimensional PDM for the equation 4%u = f with Ste-
klov’s double averaging of characteristic functions of grid cells leads to a
linear algebraic system with a linear combination of 25 unknowns in every
equation whereas the pattern of usual difference analog of A* consists of 13
points.

Thus PDMs possess an undisputable advantage over difference methods
connected with the [act that all the treatments are carried out in the initial
functional space and the questions of construction and investigation of
resulting difference problems are essentially facilitated. At the same time PDMs
are inferior to usual difference schemes in the simplicity of their structure.

In this connection the possibility of construction of PDMs whose
structure coincides with that of usual difference schemes looks highly attractive.
The existence of such PDMs allows us to establish new optimal error bounds
for some well-known difference schemes. On the other hand, it is posible to use
efficient iterative methods for the solution of resulting algebraic systems typical
for difference approximations. Moreover, if the original problem is symmetric,
positively defined, etc. then the corresponding property is automatically
retained for the approximate problem. Let us also note that PDM application
to problems with natural [3] boundary conditions leads to exactly those
discrete approximations (frequently not so obvious) which guarantee the
optimum rate of convergence.



DIFFERENCE AND PROJECTION-DIFFERENCE METHODS 357

The first analyses of this kind were given in [4], where the projec-
tion-difference analog of 2-dimensional Laplace operator coinciding with its
5-point difference analog of “cross” type was constructed. The n-dimensional
generalization of Courant’s construction based on the special simplicial
partitioning of r-dimensional parallelepiped is given in [5], [6] (in this
connection see also [7]-[9]). These results are further developed in [8],
[10]-[12] where PDMs coinciding with simplest difference schemes are
constructed for certain 2-dimensional differential equations.

The general point of view on these PDMs is formulated in a theorem (see
[13], [14]) which states necessary and sufficient conditions of coincidence of
projection-difference analog of the given differential operator with its a priori
given difference analog. Moreover, it is possible to use this theorem for the
construction of PDMs coinciding with ordinary difference schemes.

The paper consists of 6 sections the first ol which describes necessary and
sulficient conditions of coincidence of difference and projection-difference
operators, These conditions are similar to those of [13], [14] but they are more
convenient for application and remain valid under weaker assumptions. The
results of Section 1 are extensively used in other sections.

The family of prolongation operators of grid functions generating the
projection-difference analog of n-dimensional Laplace operator coinciding with
its simplest (2n+ 1)-point difference analog of “cross” type is constructed in § 2.

In Section 3, prolongation operators for a plane case are constructed;
these operators ensure the coincidence of projection-difference and difference
analogs of 4-th order differential operators (of biharmonic operator in
particular).

The operator B = D"+ D3" which is canonical for the construction of
efficient two-stage iterative methods for the solution of 2m-th order boundary
value problems is considered in Section 4; a special prolongation of grid
functions is described so that projection-difference analog of operator B co-
incides with its simplest (4m+ 1)-point difference analog.

Some special interpolation formulae for entire functions of exponential
type are constructed in § 5. These formulae are a convenient tool for obtaining
representations of entire functions which have zeroes of given multiplicity at
the points 2na, o€ Z, (just the same functions are Fourier images of functions
generating prolongation operators with optimal approximation properties).

Finally, a complete description of projection-difference analogs of 2-dimen-
sional Laplace operator which are generated by prolongation operators with
optimal approximation properties is given in §6 by using results of §1 and § 5.

§ 1. The necessary and sufficient conditions of coincidence
of difference and projection-difference operators

Let us consider the following problem. Let P(D) be a differential operator and
let Q(8) be a difference analog of P(D). It is required to find the prolongation
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operator R so that the projection-difference analog of P(D) constructed by
means of this prolongation operator coincides exactly with the operator Q(d).
In this section, conditions which are necessary and sufficient for such
a coincidence are formulated in terms of Fourier transform of function
generating the prolongation operator R.

Let E, be n-dimensional Euclidean space, Z, a set of integer vectors in E,,
Z} a set of vectors in Z, with nonnegative components, Z) a rectangular grid
in E, characterized by the vector h = (h;,..., h)eE, with positive com-
ponents; then any vector a = (¢4, ... , &,) € Z, generates the node «* € Z% of the
form a" = («, hy, ..., a,h,). If the grid function u" is defined in Z)) then u}, is the
value of " at the node o’ Z.

Let @%(x) = @(x/h—a) where @ is the characteristic function of the cube
{xeE, |xJ <1/2, k=1,...,n}.

Remark 1.1. Here and below for xe E,, he E, the expression x/h denotes
vector (x;/hy, ..., x,/h,)€E,.

For any grid function «" we define its piecewise constant prolongation #(x)
by means of equality

(1.1) u(x) =}, ugf(x).

acZn

We shall identify grid functions and their piecewise constant prolongations of
the type (1.1) below. Furthermore we shall assume that #e L,(E,), in other
words,

Y lui? < .

a€Zn

Alongside with piecewise constant prolongations (1.1) we shall consider
smoother prolongations constructed as follows. Let m be a natural number and
let ¥(x) be a function satisfying the following conditions:

(A) its support is compact;
(B)  YeWi(E).

Here WY (E,) is the Sobolev space (see, for instance, [16]). The function
i generates the linear prolongation operator R such that

(1.2) Ri(x) = ¥ uly(x)

asZ,

for every grid function @ of the form (1.1) where

(1.3) Valx) =y ()—;—a)-
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Let P(D) be a linear differential operator with constant coefficients of the
following form:

(14) PD)= Y aD.

l7|€2m

The order of P is less or equal to 2m (recall that y e W%(E,)).

Remark 1.2. In (1.4) and below y = (y;, ..., y)€ZS, Pl = v+ ... +v,,
0
'=Dy}...D), D,=—  k=1,...,n
D 1 k axk n
Let us consider difference operator Q(d) with constant but possibly

depending on h coefficients:
(1.5) Q(d) = Y b8
?
where &' =0y ... 8", 3, f(x) = hy L[S (x +ihe) —f(x—3he)], {e;,...,e,} is

orthonormal basis for E,.

Let us consider the problem of finding function y with properties A and
B such that prolongations of the form (1.2) generated by this function satisfy
also the following conditions of approximation and isornetry:

(C) for any ue W45 *!(E,) there exists a grid function i of the form (1.1)
such that

||'1||L2(E,,) <K “u"Lz(E,.)a

SO e, O<s<m.

lu—~Ru| .
W3(E (En)

n,

where K and C, do not depend on u and h;

(D) for all grid functions # and o
(1.6) (P (D) R, Rb)Lyk,y = (Q (D), D)ryie-

Remark 1.3. In (1.6) and below there is the expression (P (D) Ril, Ri).,,);
let us explain its sense. The matter is that Rie WJ'(E,) and the order of
operator P(D) is equal to 2m therefore generally speaking P(D)Ru¢ L, (E,).
Thus the expression (P(D)Ru, Ri)p,g,, must be treated as the value of
P(D)Riie Wy ™(E,) = (W5'(E,))* at the element Rie W' (E,). In other words it
is necessary to apply Green's formula and to write (P (D) Ril, Ri)y,,, in the
form
(1.7) (P(D) Rit, Rb)L ey = 2,(A; (D) RiZ, Bf (D) RO)ryz)

J
where Zj A;(D)B;(D) = P(D) and orders of differential operators A;(D) and
B;(D) are not greater than m. Then A4;(D)Riie L,(E,), B;(D)RveL,(E,) and
the right-hand side of (1.7) is the sum of ordinary scalar products in L, (E,).
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Remark 1.4. The identity (1.6) means the coincidencé of the projec-
tion-difference analog of operator P (D) constructed with the help of prolon-
gation operator R with the difference operator Q(d). Really if in (0.1)
V = Wi"(E,), a(u, v) = (P(D)u, v)., (see remark 1.3) and V" = {yi},.;, where

" is of the form (1.3) then (0.2) and (1.6) imply that if u* = Riae V" is the
approximate solution then for the grid function @ the identity
(Q (@)1, D)., = f(Rd) is true for all grid functions & of the type (1.1). The latter
identity means that the unknown grid function # is the solution of difference
problem with operator 0 9).

There are a number of prolongations satisfying conditions A, B, C (see for
instance [1], [15]); at the same time the prolongation operators satisfying also
the condition D which is important for the numerical realisation of PDM and
means the coincidence of projection-difference analog of P (D) with premedi-
tated difference operator Q(d) are constructed for some particular cases only
(these cases were mentioned above).

The next assertion in terms of Fourier transform of function ¥ formulates
conditions which are necessary and sufficient for the implementation of
requirements A, B, C, D.

Let

b= [y@e“de
En
be the Fourier transform of  (here (¢, x) =t x,+ ... +1,X,).

THEOREM 1.1. The conditions A, B, C, D are equivalent to the following
four conditions respectively:

(A) W (z) is an entire function of exponential type [16];
(B) ¥ () (1 +|x])™? e L, (E,);

(C) (0) # 0 and i has zeroes of multiplicity at least m+1 at the points
2no, O # e, ie.
DPJi(2na) = 0 for any BeZ;, |Bl<m and for all acZ,, a #0;
(D) 3 F(x+2ma)= G(x) for all xeE, where

acZn

(19 Foo = (%),

(1.9) G()=Yb, (i sin x)” (COS f)-Zlvlzl
¥ h 2

Remark 1.5. In (1.8), (1.9) and below for xe€E,, yeE, the following
notations are used:

X =x{'...x"eE, sinx=(sinx,,...,sinx)ekE,

cosx = (cosxy, ..., cosx,)eE,, [x]=(x,],...,[x,])€E,
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where [x,] is the integral part of x,,

(x9 y):xl y1+ +xn.))ne.El’ xy=(x1y1!‘“7 ann)EEn’

x (xl x,,)
—-—=|— ..., — EE,,.
y yl yn

Remark 1.6. Note that if Q is a symmetric operator, i.e.

0(0) - Y¢, 0

Zising 29 2isin;
-ta(—) = o(7)

Proof of Theorem 1.1. First of all note that the equivalence of conditions
A and A’ follows from the Paley-Wiener theorem (see [16], p. 130); conditions
B and B’ are none other than two equivalent definitions of Sobolev’s space
W' (E,) (see for instance [17]). As [or the equivalence of C and C' then it is the
Strange-Fix theorem (see [15], [18], [19]).

Thus it remains to prove the equivalence of conditions D and D', Using
the Plancherel theorem (see for instance [16]) we deduce that condition D is
equivalent to the fact that identity

(1.10) (#P(D)Rit, FRO), = (FQ O, Fipy.

then

is true for all grid functions # and & of the form (1.1) where % is the Fourier
transform operator. Since

F [D,glt) = kag e N dy = it, F g (1),

FYLn) = | w’(%—a)e-“'*’ dx
En '
— Ej‘ y)e—i(t.yh+ah) dy Ee—;(l ah) w (Ih)
En

F oy (x) = he™ "W F o (th),
where h = h, ... h, and
F (0,910 = ] it [g(e+ b, e)—g (x—Fhye)] ™0 dx

En

— hk—l j‘ q(y) [e—f(t.y--&hkek)_e—i(f.y+-§hkek)] dy
En

t h
= 2ih ! k2 Fq(0),
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the condition (1.10) is equivalent to the fact that the identity
Y Y u, U _[ P (it) e~ =P\ 2y (th)|? di

weZn feZ,
2isin(th)/2\ _
-3 Tun]o(2HEE et o
acZn PeZy
is true for all u,, v;. The last condition is equivalent to the identity
2isin (th)/2 .
f {P (i) |7y (e~ Q (th(i) F o (thnz} e~ gt = 0
En
for any yeZ, or (which is the same)

(L11) [{Y H(x+2na)}e ™M dx = 0

N acZ,

[or all yeZ, where
ix 2isin x/2
00 = (2 )iFvoor -0 (2522 o o

Q={xeE;—n<x,<m k=1,..., n}

Since HeL, (E,), it follows that ) H(x+2na)eL,(2) and from the com-
aEZn

pleteness of the system {e”"*"} ., in L, (€2) and (1.11) we deduce that (1.10) is
equivalent to the identity

(1.12) Y H(x+2ma) =0, xeQ.

aeZp
It is easy to calculate that

Fol) = (2 sin x/Z)1

X

(here and below for any aeE, d=(a, ..., a)eE,). Thus, using (1.5), we find
that

> 0

aeZ,

(211 sin (x + 2moat)/2
h

) |F ¢ (x + 2na)|?

“Th Y [Zi sin (x}{Z + Tcoz):|y [sin SC/z + no:):r

~+
5 1o

_ 2isin x/2 e sin x/2 3
() g o (22

aeln
=+ T
2
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Since
®  sin?é ® (—=1)sin?¢

(1.13) kz (_—é+nk)2: , k;‘_‘w——————(c_l_nk)z =

= om

cos &

(see, for instance, [20]), we have

2i sl 2mo)/2 ? - 2[y/2]
y Q( zsm(x;— o)/ )l«/"fp X+ 2ma) Zb (zsmx) (Cosg)

aeZ,

The rest of the proof follows from (1.12),

Remark 1.7. If we require that the support of { in the condition A belongs
to the cube {xeE,: |x,| <(m+1)/2, k=1,...,n} (this is equivalent to the
following modification of the condition A”:  is the entire function’ of
exponential type (m+ 1)/2) then D’ is equivalent to the equalities
(1.14) Y D' F(2na) = D G(0)

acsn
for any feZ, such that 0 < B, < 2m, k=1, ..., n (see [14]). Note that owing
to the condition C’ some of derivatives in the left part of (1.14) are equal to zero
for o # 0.

Remark 1.8. If Q(d) is the operator of the type (1.5) and
00, a, 5 Zb [r/2]av 21y/2)

where b, are coeflicients of Q (J) and difference operators 9,, 0, d are defined
by the equalities

aku2=hk_l(ug+ek'—u2)r a'—l(ug:hl:l(uz_u:—ek)a h_Z(a +a-)
then for any aeZ, and for all grid functions u”

(1.15) 0,08 0u =ht (0 (9 a, fPZ)Lz(E,.)-

The latter equality establishes a connection between “traditional” difference
operators Q (4, 9, 0) and operators Q(d) acting on piecewise linear functions of
the form (1.1). The utilization of (1.15) allows us to reformulate Theorem 1.1 in
terms of operator Q (@, 7, 0) (only the formulation of the condition D will be
new).

§ 2. Piecewise linear prolongations generating
the simplest difference analog of Laplace operator

The n-dimensional generalization of Courant’s construction [4] will be
considered in this section. More precisely, we shall construct the family of
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prolongation operators generating projection-difference analogs of n-dimen-
sional Laplace operator coinciding with its simplest difference analog of “cross”

type.
Let us consider the function

2sint/2

g(t) = P

Note that g(0)=1, g(2rnk)=0, 0 #keZ,, g(0)=0. Let us define the
functions

(2.1) b2 =g@)... 9@z g0 20+ ... +7,2,)

depending on parameter y = (y,, ..., y,) € Z, where each of y, is equal to one of
two values: 1 or —1.

It is easy to see that | (z) is the entire function of exponential type 1 [16]
and  (x) (14 |x|)"?e L, (E,), ¥ (0) = 1,  (2ne) = O for any ae Z,, & # 0 while

Dy (2na) = g (2nay) ... g(2ﬁa,.)[vk9’(2ﬂ(vld1+ s Va )

g (2noy)
g (2ma,)

forallaeZ,, k = 1, ..., n. Thus the function V satisfies conditions A’, B/, C" § 1
with m = 1.
Now et

(2.2) P(Dy= 4= D}+ ... +D?,
(2.3) Qy=4=203+ ... +82.
Then the functions F and G of the types (1.8), (1.9) are

xl 2 xn 2 2 2 2
(24) F(X): - + + h— g (xl) g (xn)g (yj xl _{_ S +y:|xn))

h 1 n

2 2
(2.5) G (x) = —[(t-?sin%) 4o +(h3sin 52) ]

Let us prove-that

g(ZTE (y] al + .. +-y" an)):| = 0

Z F{x+2na) = G(x).

aedy

It 1s obvious that the last equality holds if

n

2 n "
26 Y (%’fmak) g (2 voxo+2m Y o) [T 97 (x,+ 2mar)
s=1 s=1 §

aeZ, =1

=sinzz;—" for all k=1, ..., n.
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While

Xy z 2%y
S T g* (x,+2ma,) = smzj

does not depend on o, and

Y (Y vexot2m Y ye) =1
a=—w s=1 s=1

(see (1.13)) then by calculating the sum in the left-hand side of (2.6) and taking
into account that

Y g*(x,+2me) =1

we prove equality (2.6). Therefore the condition D’ is satisfied for the functions
F and G of the forms (2.4), (2.5).

Thus the conditions A'-D’ and also the conditions A-D due to Theorem
1.1 are satisfied for m = 1 and for operators P and @ of the forms (2.2), (2.3).
Hence the prolongation operator satisfying conditions stated at the beginning
of this section is constructed.

For more details on properties of this prolongation operator see [6] (the
case y, = ... =%, =1) and [8], [9] (the case of arbitrary ).

Remark 2.1. The function f of the form (2.1) generates the prolongation
operator R acting on the grid functions & (see (1.1), (1.2)) such that
1/2
2.7) Ri(x)= | a(x+hyt)dr.
~172
The vector y =(y,,..., 7,) with components +1 defines the direction of
interval of averaging piecewise constant function .

Remark 2.2. Since the function g(t) is even and y, = + 1, there exist
exactly 2"~ ! vectors y generating different functions i of the form (2.1) (we may,
for example, fix y, = 1; then there exist 2"~ ' variants of distributing 1 or —1
among other n—1 components). Any vector y of this type generates somc
simplicial partition of every grid cell into n! elementary simplexes and the
function Rir is linear in every elementary simplex. Moreover, the properties
A-D remain valid if the triangulations of all grid cells are generated by not the
some fixed vector y but it is possible to vary vector y with the components + 1
from cell to cell (here is the analogy with 2-dimensional case where it is possible
to draw one of two diagonals in every grid cell). '

§3. The projection-difference analog of biharmonic operator
coinciding with its simplest difference analog -

Let us consider 2-dimensional case in detail. We shall use the notations of
previous sections for n = 2.
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Let us define the following averaging operators:

12 12
rf (x) = _‘l I SOxy+ty by, xy 8 hy)dedt,,

-1/2 -1/2
12

S, f= [ flx,+thy, x,+thy)de,
-1/2
1/2

S, f(xy= [ flx,+th, x,—thy)dt.
-1/2

Then, according to the results of [8], [9], for the arbitrary function i of the
form (1.1) ru is bilinear and S, &, S, & are piecewise linear prolongations of the
grid function i Note that S, # and S, # correspond to a pair of different natural
triangulations of grid cells.

Let us consider averaging operator

(3.1) R=(1+drS,+(1—c)rS,—S, S,

depending on the real parameter ¢. If &7 is a grid function of the form (1.1) then
Rii is a cubic piecewise-polynomial function (see [8], [9]). In addition, R# is of
the form (1.2) and the Fourier image of the function { generating the
prolongation operator R 1§

(3.2) U@ =G ) g @) (1 +0) g +2)+(L - g (z, —2,))
—g(z,)g(2)g9(z,+2,)9(z,—2,),
where z = (z,, z,), g(t) = (2sin (¢/2))/1.

In view of (3.2) V is the entire function of exponential type 3/2 and
¥ (x)(1+1x|*)e L, (E,), i.e. for every ¢ the conditions A’ and B’ § 1 are satisfied
for m = 2. It is easy to verify that for every ¢ i satisfies the condition C’' for
m=2.

Let us now find the parameter ¢ to satisfy the condition D’ for the case

P(D) = 4% = (D}+D3*, Q) = 4% = (51 +63)*.
Let h, = h, = h. Then
F(x) = h~* (et + x3)* 1 (x)?,
2
G(x)=h"%-2¢ (sinz%+sin2 %) ;

hence the condition D’ is equivalent to the equality

Xy 2 (% P 5 P TP A T
33) Y [ (FHme ) +{FHmay ) | W(x+2na)? = sin> T +sin? 2
acZa 2 2 2 2

By means of elementary but rather lengthy calculations one can show that the
equality (3.3) is true if and only if ¢ = 1/2.
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Thus the prolongation operator R of the form (3.1) with ¢ = 1/2 generates
projection-difference analog of biharmonic operator coinciding with its simp-
lest 13-point difference analog.

Remark 3.1. By means of analogous arguments we can obtain the
following assertion. If

(3.4) R=r(1-2a)r+(a+b)S, +(a—b)S,)

where a? = 11/4, b2 = 3/4 then the conditions A, B, C, D are satisfied with
m=2, P(D)=D%+D%, Q(0) = 6%+5%, ie. the prolongation operator (3.4)
generates projection-difference analog of the operator DY+ D% coinciding with
its simplest 9-point difference analog (see [8], [14], [or details).

Remark 3.2. By utilizing properties of the operator (3.1) it is possible to
obtain new error estimates of the difference method for the biharmonic
equation. These estimates are optimal for natural [3] boundary conditions and
near optimal for the main boundary conditions (see [8], [11]).

§4. On projection-difference analogs
of the operator D$™+ D3"

In this section the prolongation operator satisfying the conditions A, B, C,
D §1 with the operators

(4.1) P(D)=D¥"+D3",  Q(8) = B+ 83"

is constructed for every m.
Let us define the function

m s+1 z. -z
4.2) V(2) = [a(z)g(z)]""? (1 + Zl b‘kUz tgi,‘;tgié)
depending on an arbitrary set of real numbers b, ..., b,,, where z = (z,, z,),

g(t) = (2sin(t/2))/t.

Using some properties of the function g, we can easily verify that for
arbitrary b, ..., b,  (z) satisfies the conditions A’, B, C’ §1 (note that the
type of Y is equal to (m+1)/2).

Let us now determine the parameters b,,..., b, such that for the
operators P(D) and Q (&) of the form (4.1) the condition D’ is satisfied. This
condition implies that

2m Im
09 3 [(Gam) o (Frm) ez = snen S

For the calculation of the sum in the left-hand side of (4.3) we need the
following assertion (which is also of an independent importance).
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LEMMA 4.1. Let p be a nonnegative integer, a,, a, be a set of integers
each of which is equal to 0, 1 or 2. Then
1 if no one of o is equal to 1,

had sin z 2 r a: Z+Tck
(4.4) kzzv:w( -I—Ttk) IJ {0 otherwise.

Proof. If p = 0 then the assertion is true, because both sides of (4.4) are
equal to 1. Let us assume that (4.4) is true for every p < M and prove it for
p = M+ 1. Calculating the sum in the left-hand side of (4.4) separately for even

and odd k, we have

e sinz \*M*!  z4mk
tg*s
L () et

k=—mw Z+TCk s=1
© sinz \* M (z/2)+ nk
— t As+ 1
2(5) L
e sinz Az+m)/2+mk
k=z_:m(z+n+2nk) H g™ 2°
z & [sin(z/2) \* ¥ (z/2)+nk
— _'t ay —_ t L L2 UL
cos®3 te 2k_z_m((z/2)+nk) Il 2
wEtm & sin(z+m)2 ML Em2 4Tk
Fsin? Stgt _Z_w((z+n)/2+nk) 1l ¥
On the assumption of the induction,
i sin(z/2). ﬁ 0., (2/2) +1k
= \@2)+nk) L 28
i sin (z4+m)/2 \? 1"_‘[ , (z+m)/2+mk
ke o \(Z+M)/2+7k) 2°
_J0if at least one of «,, ..., ap+y is equal to 1,
|1 otherwise.
Thus
>z [ sinz \*M*l  zigk
4.5
( ) k=z—uo (Z+’H:k) 51:[1 tg 2Y

o+ 1S equal to 1,

{O if at least one of «,, ...,
= z z 4 Z+
cos?-tg*—4sin?=tg* ~——  otherwise.
5 g 2+ 3 g 3 erwis
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Since
z zZ ..,z _Z+T I tfa,=00ra =2
cos?=tg¥ —4sin? -ttt = t 1 ’
2T 0 e =
the assertion of the lemma follows from (4.5).
By 'means of Lemma 4.1 it is easy to show that for the validity of identity

(4.3) it suffices to find b,,..., b, so that

[5s) m s+1
(4.6) Y (g (x+2nk))2"'“(1+ Y. b2 1 tg2x+2nk) =1.

2P
k=-w 5=1 p=2
One can easily ascertain that if 0 < s < m then

ad U x+2nk

Y. {g(x+2mk))>m*? 1:[ 8’ —;

k=—a

p
X
. 2’
b%, ..., b from the condition (4.6) brings one to m x m linear algebraic system
(the matrix of this system is triangular); moreover, the specific character of this
system is such that bi, ..., b2 satisfying condition (4.6) are uniquely defined
and they are positive.

Thus there exists a unique (up to multiplying by —1) set of real numbers
b, ..., b, such that the function  with Fourier image { of the form (4.2)
satisfies the conditions A, B, C, D where operators P and Q are of the form
(4.1). Prolongations of the type (1.2) generated by the function  are
piecewise-polynomial functions of the degree at most m for each of the
variables.

Remark 4.1. The proved existence of projection-difference analog of
operator B = D?" 4 D3™ coinciding with its simplest (4m+ 1)-point difference
analog may be used for example in the following situation. Let us consider the
solution of boundary value problem for equation L(u) = f where L is 2m-th
order differential operator (generally speaking nonlinear). Under some restric-
tions on B and L (we assume that functions from the domain of B and L satisfy
some boundary conditions [21]) for the solution of projection-difference
analog L(if) '= f of the problem L(u) = f effective 2-stage iterative methods
[21] may be used. In spite of the fact that the operator L may be of complex
structure each step of these methods consists of some iterations in the interior
iterative process for the equation B5 = F with operator B of simple structure
(on the use of this approach for 4th order equations see {227, [23]).

is a linear combination of functions sin®*=, ..., smz"'i. Hence the finding of

§ 5. On the interpolation representations of
the entire functions of exponential type

It is necessary and sufficient for the construction of prolongation operators
with properties A-D § 1 to construct the function y whose Fourier image W

24 — Banach Center (. 24
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satisfies the conditions A'-D’. In particular  must be an entire function of
exponential type which belongs to L, (E,) as a function of real x and has zeroes
of some multiplicity at the points 2ma, o € Z,. Thus it is interesting to receive
representations of such functions using values of their derivatives at the points
2ne, a€ Z,. The well-known Kotelnikov’s theorem (see for instance [24]) gives
the interpolation representation of entire functions of exponential type o using
their values at the points (no)/o, aeZ,. In this section we study the
interpolation representations with multiple knotes of the form 2ra which are
consequences of more general assertions from [25], [26].

For the simplicity of notations we formulate our results only for n = 1; in
the case of arbitrary dimension n these representations (with necessary
modification of notations) are also true (see [26] and considerations for n = 2
at the end of this section). Thus let n =1 and let B, be a class of entire
functions of exponential type o which belong to L, (E,) as functions of real x.
For any natura] N and for all integer s, 0 < s < N—1 let us define polynomials

1 -5 & t Y 2ix
(51) P.sN (X) = ;.—‘2 %[(E) e :Ilzo.

The polynomials P,y (x) are connected with generalized Bernoulli’s poly-
nomials ([27], p. 256). There exist representations of P,y which differ from (5.1)
(see [257, [26]).

LemMMA 5.1. Let feB, and N be an arbitrary integer satisfying condition
N = 20. Then

(5.2) f(z)=(28m ) Z Z 2np)” -,

s=0 peZ.
where
(5.3) ¢ps = (—=1)"" Py (D) f{2np),
d
D= e Py are the polynomials of the form (5.1). Moreover
N-1
(5.4) Y, 2 lepl® < o0
s=0 peZ;

Conversely if ¢, is an arbitrary sequence satisfying the condition (5.4) then (5.2)
defines the function f € By, and the equality (5.3) holds.

The proof of Lemma 5.1 is based on the construction of a special
unconditional basis in L,(—o, 0); elements of this basis are products of
elements of the trigonometric system and derivatives of the Schoenberg
B-splines (see [25]).

If we use the representation (5.2) for the construction and analysis of
PDM:s it is necessary to choose such functions [ e B, that have zeroes of some
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multiplicity at the points 2na (see the condition C’ § 1), i.e. we are interested in
functions of the form (5.2) such that some of their coefficients c,, are zero (see
(5.3)). It is also necessary that the sequence {c,,} should satisfy some restrictions
for the condition B’ to be satisfied. Thus it is possible to describe the subclass of
class B, in terms of ¢, such that functions of this subclass (and only they) will
generate coordinate functions of PDM with the optimal order of approxima-
tion. Further analysis of functions of this subclass may go along several lines,
For example one of the ways is the construction of PDMs with the optimal rate
of convergence on the one hand and their coincidence with simplest difference
schemes on the other.

As an example of the application of Lemma 5.1 (more precisely, of its
2-dimensional analog) let us obtain a complete description of entire functions
belonging to B, and satisfying the conditions A’, B, C'§1 forn=2,m = 1. In
other words, we shall describe all operators R of the form (1.2) acting from the
space of grid functions into W, (E,) which are generated by functions s with
support {xe E,: —1 < x, <1,k =1, 2} and satisfy the approximation proper-
ty C§1in W7 (E,), i.e. for m = 1, n = 2. This description will be used in Section
6 for a complete description of projection-difference analogs of 2-dimensional
Laplace operator.

Let N =2, ¢ =1 Then Py,(x) =1, P;,(x) = x (see (5.1)). Using Lemma
5.1, we find that for any feB,

_ . _Z_l i Z’_z 2 f(znp)
(5.5) (@)= (2 s 2sin 2) pg;z {(zl—21cp1)2(zz—7"-7fi!72)2

D, f (2np) sz (2mp)
(2 _2’TP1)(22—2“P2)2 (2 —27’3.01)2(22_271172)

DD, f (2np) }
(zy —2mp,) (z, —27p,))

Il we require that
(5.6) f@np)=D, f(@2np)= D, f(2np) =0
forall pe Z,, p # (0, 0) (such is the condition C’ § I for m = 1) then (5.5) implies
2(1(0) D, f(O) D,f(0
57 f@)= <4sin%sinz—;) {/2( ) 2SO O
122

z z, 23 2}z,

D, D, f(2np) }
peEZ) (Zl —2Tcpl)(22 _2TEp2)

Note that if fe B, and (1 +|x|*)*f (x)e L, (E,) (see the condition B’ § I for

m = 1) then z, [ (z)€ B, z, f (z) € B, because the type of entire function doesn’t

change after multiplying it by polynomial. By Lemma 5.1, for z, f(z) and
z, f(z) and (5.6) we obtain the following representations:
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(58) 2z, f(e= (4sinilsinz—2)2 {f(O) +D2f(0)+ > 2np, D, D, f(2np) }

2 2 Zy 23 Z12Z, pezz(zl—Zﬂpl)(zz_znpz)

22)2 {f(O) DO, 21, D, D, 1 Crp) }
1

— (4sinZtsin22
(59) zfl@)= (48"1 2 st 2 ziz, 2,7, peZz(Zl —2mp,) (2, 2np,

Now let us multiply both sides of (5.7) by z, and subtract (5.8) from the
obtained equality. Then

0= (4sinz—1siniz-)2 {lez(o)+ 3 Dlsz(an)}

2 2 Z2 pEZz 22—21'Cp2

which results in D, f(0) =0 and

S D,D,f{(2np,, 2np,)=0 for any integer p,.

p=-w
Analogously, from the comparison of (5.7) and (5.9) we have that D, f(0) =0
and

>, DD, f(np,,2np,) =0 for any integer p,.

p=-o
Thus (5.7) implies
zy c

. .2 21
(5100  f(»= (43"173“17) {zg 2t L (zl—Zﬂpl).ZZz—Z“Pz)}

PeZ;

(here we use the notation ¢, =D, D, f(2rp) and require that the function
f should satisfy the additional condition f(0) = 1) where

Y Cppr=0 for all p,eZ,,
pr=—

(5.11)
Y Cppp=0 forall peZ,.
p2= -
Note that
(5.12) Y (pt+pdlcl? <o
peZa

because of (5.8), (5.9) and Lemma 5.1.

[t is easy to show that the converse is true, i.e. for any sequence {c,} with
the properties (5.11), (5.12) the function f(z) of the form (5.10) satisfies all the
necessary conditions.

Thus we have proved the following assertion.

LEMMA 52. Let f (z) be an entire function of exponential type 1 satisfying
the following conditions:
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(5.13) (1+x*)* f (x)e L, (E,),
(5.14) SO =1, f@np)=D,f(@2rp)=D, f(2np) =0,
for all peZ,, p#(0,0). Then
z 2\ (1 €
5.15 z) = 4sin—lsin~2—) { + 2 },
51978 ( 2 2] |2z Péz (zy —2mp ) (z, —2mp,)
where
(5.16) c,=D; D, f(2np).
Moreover,
(5.17) Y, pi+pdle)* < o0
pes
and
Z Cpipa =0 for all p,eZ,,
(5.18) prezy
Y Cpp,=0 for all peZ,.
p2eZy

Conversely, if {c,} is an arbitrary sequence satisfying conditions (5.17)-(5.18) then
(5.15) defines the function satisfying conditions (5.13), (5.14) and equality (5.16)
holds.

§ 6. Complete description of projection-difference
analogs of 2-dimensional Laplace operator

The purpose of this section is to describe the projection-difference analogs
of 2-dimensional Laplace operator generated by the prolongation operator
R of the form (1.2) with the function whose support belongs to square
[-1, 1Dx[-1,1]

More precisely, let h, =h, = h and let y be a function satisfying the
following conditions (see conditions A, B, C §1): '

(1) its support belongs to square {xeE,: —1<x, <1, k=1,2};

(2) ¥ e Wi (E,);

(3) W generates the prolongation operator R of the form (1.2} such that for
each ue W#(E,) there exists a grid function & of the type (1.1) such that

Nl Ly < K ull Lo,

S(jshl_s“uuwl > Ogssla

lu—Ruj ,
W2( AE2)

-2

where K and C, do not depend on u and h.
If W is a fixed function satisfying conditions (1)-(3) then it generates
operator Q(d) such that '

(6.1) (ARit, RD)p,e,y = (@ (D) i, D)y
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for all grid functions i, o (see the condition D §1 and Remark 1.3). Note that
operator Q(J) defined by (6.1) is projection-difference analog of Laplace
operator generated by the function ¥ (see Remark 1.4).
It is necessary to find the class of operators Q () defined by (6.1) where
Y may move within the set of functions satisfying the conditions (1), (2), (3).
First of all let us note that it follows from Lemma 5.2 that the function

¥ satisfies the conditions (1)3) if and only if its Fourier image \/ is of the
following form:

2 .
62 (2= (4sin%sin527i) { LI €y }

2122  pez, {z,~2mp,)(z,—2mp,)

Here {c,} = {¢p,,,} is an arbitrary sequence such that

(6.3) Y ¢pp=0 for all p,eZ,,
p1eZy
(6.4) Y Cpp=0 forall peZ,,
P2eZ)
(6.5) Y Gi+pd)lc,|* < w;
:554)

moreover we assume that the normalization condition i (0) = 1 is satisfied.

Let e E, and
(6.6) Q,(0) = 02+ 8% +nh? 3} 33,

THEOREM 6.1. For any n < 1/3 there exists a function \y with properties
(1)-(3) such that operator Q,,(é) of the form (6.6) satisfies condition (6.1).
Conversely, for any function y with properties (1)~(3) operator Q (9) generated by
Y and equality (6.1) is of the form (6.6} with some n < 1/3.

Proof. Using Theorem 1.1 and the representation (6.2) we deduce that in
order to describe operators Q (J) defined by (6.1) it is sufficient to consider the
behaviour of the function

Y F(x+2mo) where F(x)= —h™2(x2+x2) |y (x)2.

aeZs

It follows from (6.2), (6.3) that

2
xllﬁ(x) =(4Sin%sin%> { 1 + Z 2np,c, }

Xy x% peZs (x]. —2Tcp1)(x'2 —2mp,)

Then
> (g + 2me )2 (g +2mary, x,)|2
aje)
X x5 \* 1/2 np C 2
= 4sin—'sin—£) — = 1 P _
( 2 2 mzzl (x,/2 +mor,) x3 plez‘glxl/z—npl+1roc,mezélxz_anz

p1$0
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Since

i 1 _ sin(y—2)

€7 v 2o (y+nk)(z+mk)  (y—z)sinysinz

(see, for instance, [20]), we have

Z (x, +2TE°‘1)2 I':I;(xl +2nay, 3‘72)|2

xjeZy
L X, . % \* 1/4 n2 p? c 2
=(4sm?15m72) {——————/ + Z p; Z ~ — 7. —;np. },
xtztsinz_zl_ pxezxsin2_21 p2eZ, 72 2
whence
3 (xy +2ma)? Y (o + 2ma)?
acZa
5 %1 x 1/16 c 2
= 43sin? 2sn4 22 S {x—/———ﬂ—nz 2 pil X o }
a2eZy (._7:_*_“:“) P1EZ} szZl_z_np -+ T
2 2 2 2
Using (6.7) and the equality
i 1 1 2
o (y+mky*  sin*y 3sin?y
we have
Y, (g +2ma)? [ (x + 2mar)|?
aeZ>
8
= 4sin? %—5 sin® %sin2 x2_2+ 64n? sin® %sin2 %péz pile,i?.
Analogously
3 ey + 2mo,)? W (x + 2ma)?
aeZa
=4sin2ﬁ—§sin2x +64n sin® sm = Z pilc,|?
2 3 2 2 pEZz ? '
Thus
2 2 /2 2
(6.8) ang(erzm) (hsmizl-) ~(Esin);—2)
16 , _x, . ,x, |1
+h—23m271$1n2?2{§—47t2 Y (pi+p3) |0p|2}-

PEZ2

375
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Let us calculate now the function G(x) corresponding to difference
operator Q, () of the form (6.6) (see (1.9) and Remark 1.6):

2 2
(69) G(x) = —(%sin%) —(3sinﬂ) +77':l—fsinz%sinz%.

From the comparison of (6.8) and (6.9) we deduce that
> F(x+2na) = G(x)

asZ;
if and only if
1
(6.10) ] =§—4ﬂz Y, (pi+p3)le, P

peZ;y

It follows from (6.10) that by choosing {c,} with properties (6.3)-(6.5) we
may obtain any # from (—oo0, }].

Thus, on the one hand, every projection-difference analog of Laplace
operator is of the form (6.6) with # < 4 and, on the other hand, every difference
operator of the form (6.6) with n < % may be constructed by PDM with the
function  satisfying conditions (1)}-(3). Theorem 6.1 is proved.

Remark 6.1. The theorem asserts that none of the operators of the form
(6.6) with n > 4 is generated by PDM with coordinate functions satisfying the
conditions (1)~(3). Apparently there exists some interior property of operators
of the form (6.6) differentiating classes 7 <3 and 5 > 3.

Remark 6.2. By weakening the restrictions concerning i we may const-
ruct operators of the form (6.6) with ne(3, 1) by means of PDM. It may be
achieved at the expense of both optimal approximation in weaker norms and
extension of the support of function i (see [12]).
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