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A FACTORIZATION THEOREM AND ITS APPLICATION
TO EXTREMALLY DISCONNECTED RESOLUTIONS

BY

A. BLASZCZYK (KATOWICE)

The aim of this paper is to show a factorization theorem for skeletal
maps in the sense of Mioduszewski and Rudolf [9], i.e., pseudo-open
maps in the sense of Herrlich and Strecker [6] (see also this author [1]),
and to apply this theorem to the construction of the greatest extremally
disconnected resolution for any Hausdorff space; an extremally discon-
nected resolution is a (continuous) irreducible map of an extremally dis-
connected space onto a given one. It will be shown that each skeletal
map f: X—Y onto, where X is an extremally disconnected Hausdorff
space, has a factorization

X% zhy

such that the factor h: Z— Y is irreducible and Z is an extremally dis-
connected Hausdorff space.

In contrast to the compact case (see Gleason [4]), there are many
extremally disconnected resolutions for any Hausdorff space. The great-
est one coincides with the Iliadis resolution [7] modified in [9]. It is
also known from [9] that in the category of skeletal maps of Hausdorff
spaces the modified Iliadis resolution leads to a functor adjoint to the
full embedding of the category of extremally disconnected spaces into
the category of Hausdorff spaces. By the use of our factorization theorem
the construction of the greatest extremally disconnected resolution falls
under a general categorial schema for the construction of adjoints given
by Freyd [3].

In fact, our factorization theorem. is even more general than we
said, and its full statement is the main theorem (Theorem 1) of this paper.

1. Preliminaries. All maps are assumed tv be continuous. A map
f: X—>Y is skeletal if

(1) Int f~'(clU) = Intel f~'(U) for each U open in Y,
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or, equivalently, if

(1) cl f~!(IntF) = clInt f~(¥F) for each F closed in Y.
A map h:Z—Y onto is said to be irreducible iff

(2) clh(F) #Y  whenever F is closed and F # Z;

this notion (see this author [2]) is somewhat different from the usual
one: h(F) # Y whenever F is closed and F # Z. If h is closed, the dif-
ference vanishes, e.g. in the compact case. Irreducible maps are always
skeletal (see [9], p. 27). A map f: Z— Y is said to be r.0.-minimal (see [9],
p. 30) if the topology in Z is generated by sets f~'(U)NnV, whereU is open
in Y and V is regularly open in Z (regularly open, shortly, r.o., means
that V = InteclV).

A space is said to be extremally disconnected, shortly, e.d. (see Stone
[10]) if the closure of each open subset of it is open.

A map ¢g: X—Z is said to be e.d.-preserving if

(3) clg™'(@) = g '(c1G) for each G open in Z;

clearly, an e.d.-preserving map is skeletal.
The following lemmas are obvious:

LeMMA 1. If g: X—>Z 18 onto and e.d.-preserving, X is e.d. and Haus-
dorff, and Z is Hausdorff, then Z is e.d.

LeEMMA 2. If the composition X Lzh T s e.d.-preserving, and the
factor g: X—Z is onto, then the factor h: Z—T 1s e.d.-preserving.

LeEMMA 3. If a map h: Z—~Y is onto, e.d.-preserving, irreducible and
r.0.-minimal, and Z is a Ty-space, then h is a homeomorphism.

Proof. It is known (see [9], p. 27) that if h: Z— Y is irreducible,
and @ is a non-empty r.0. subset in Z, then @ = Inteclh~'(U) for a certain
U r.o. in Y. To prove Lemma 3 note that if W = Intel 2~'(U)n h~1(V),
where U is r.0., and V is open in Y, then W = r~Y(UNV).

2. Factorization theorems.

THEOREM 1. If a map f: X— Y 18 onto and skeletal, and Y is a Ty-3pace,
then there exists a unique factorization f: X-5>& % Y such that g: X—~2Z
is onto and e.d.-preserving, Z is & T,-space, and h: Z—Y is onto, irreducible
and r.o0.-minimal.

The factor h is a homeomorphism iff f is e.d.-preserving.

The factor g is a homeomorphism iff f is irreducible and r.o.-minimal.

Proof. Consider an equivalence on X assuming # ~ y whenever

(4) for each U r.o. and V open in Y, there is zeIntel f~'(U)Nf (V)
iff yeIntel f~1(U)Nf(V).
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Let [z] denote the equivalence class of x. Consider the topology
in X generated by

B = {f"Y(V)nIntel f~*(U): V open and U r.o. in Y}.

We have ' < J, where J is the given topology in X. Since 8B is
closed with respect to finite intersections, 8B is a base of J'. Let

¢: X' >X'|~=2
be the quotient map, where X’ is X with the topology J'. Let
g =qoc: X—>X'—>7Z,
where ¢: X— X’ is a contraction. To show that Z is a T,-space note that
(6) [#z]nIntel f~Y(U)Nf~Y(V) # @ implies [x] < Intel f~1(T)Nnf~1(V)

for each U r.o. and V open in Y, a fact which follows obviously from (4).
This means that each member of B is a union of equivalence classes of ~.
Thus the family

9(B) = {g(Intel f~1(U)nf~*(V)): U is r.o.and V is open in Y}

is a base of a topology in Z. Let a and b be two different points of Z.
Let # and y be such that ¢ = g(x) and b = g(y). There is [z] # [¥] and,
by (4), there exists a U r.o. and a V open in Y such that

zeIntel f~Y(U)NnfY(V) and gy¢Intel f~H(U)Nf(V),
or conversely. Then, by (5),
g(z)eg(Intel f~H(U)Nf~1(V)) and  g(y)¢g(Intel f~(U)Nf(V)),

or conversely; this means that Z is a T,-space.
To see that ¢ is e.d.-preserving it suffices to show that g~'(clH) <
c clg~!'(H) for an arbitrary H open in Z. Clearly,

H = U{g(Intel f~(U)nf(V)): Ue# and Vev},

where # is a family of r.o. sets in Y, and 7" is a family of open sets in Y.
Suppose that z¢clg~!(H). Then there exists an open neighbourhood W
of z such that

WAlIntel f~Y(U)nf (V) =@ for each Ue¥ and Ve¥ .
Hence

Intel f(W)NUNV =@ for each Ue% and Ve7 .
Since f is skeletal, hence, by (1’), W < Intcl f~'(Intel f(W)). Clearly,
Intel = (Intel f(W))nIntel f~1(T)nf~(V) = @
for each Ue% and Ve¥ .
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Hence g(Intcl f~!(Intel f(W))) is an open neighbourhood of g(x),
x¢g ' (clH). Since Y is T,, we infer that

(6) ¢ ~y implies f(x) = f(y).
Hence there _can be defined a map h: Z— Y such that

(7) h([x]) = f(x).
Clearly, h is continuous and the diagram
x—L >y
() l e
S h
Z
commutes.
We shall show that & is irreducible.
To do this, let G = g(Intel f~1(U)nf~'(V)), where U is r.0. and V
is open in Y, be an arbitrary open set of the base in Z. We have, f being
skeletal,

clh(Z\@) = elh(Z\ g(Intel f~(T)Nf~(V)))
= clh(g(X\ (Intel f*(U)N f-l(V))))
= ¢l f(X\Int f~ (1 U))uel f(f(X\V))
= cl f(el(X\f (el U)))uel(¥\ V)
=cl f(f~(¥\elD)jucl(Y\ V)
=cl(¥\(UNV)) =« T\TUNV.

Hence clh(Z\@G) # Y. Thus h is irreducible.

To prove that A is r.o.-minimal, let H be an r.o. set in Z. There exists U
r.0. in Y such that H = Intclh~!(U), h being irreducible (see [9], p. 27).
Since ¢ is e.d.-preserving,

H = g(¢7'(Intclh~*(U))) = g(Intelg™ (h~(T))) = g{Intel f(T)).

On the other hand, we have h~'(V) = g(f~'(V)) for each V open
in Y. Hence the family {h~(V)nH: V is open in Y and H is r.o. in Z}
coincides with ¢g(B) which is a base in Z. Thus & is r.o.-minimal.

Now we shall show the uniqueness of our construction. Suppose
that f admits another factorization

X5T15Y
such that ¢ is e.d.-preserving, v is irreducible and r.o.-minimal, and T
is a Ty-space. Clearly, sets of the form

W = Intcly~}(U)ny~(V),
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where U is r.o. and V is open in Y, form a base in 7'. Since ¢ is e.d.-pre-
serving,

(9) ¢~ (W) = Intelf~(TU)nf~(V).
Hence there exists a (continuous) map ¢’': X’'— T filling up the diagram

c
X
T

It is an easy consequence of (9), since 7' is a T-space, that ¢ ~y
implies ¢’ (x) = ¢'(y). Since ¢ is a quotient, there exists a map k: Z—-T
such that koq = ¢'. Hence, by (10), kog = ¢. Thus, by (8), we have
a commutative diagram

>X'

T

/ fk
(11) vzl
% gT

Y’<—T—X

Since ¢ is onto, we have, by (11), yok = h. Clearly, k is r.o.-minimal
as the inner factor of & being r.o.-minimal. The inner factor of an irredu-
cible map is irreducible (see [2]). Hence, by Lemmas 2 and 3, k is a homeo-
morphism.

To show the next thesis let us suppose that f is e.d.-preserving. Hence,
by Lemma 2, h is e.d.-preserving. Thus, by Lemma 3, it is a homeo-
morphism.

It remains to show that if f is irreducible and r.0.-minimal, then ¢
is a homeomorphism. Note that ¢ is irreducible and r.o.-minimal. Thus,
by Lemmas 2 and 3, g is a homeomorphism, which completes our proof.

Note. If a skeletal map f: X—Y is onto and admits a factorization
xLz8%y

such that ¢’ is e.d.-preserving, Z’' is Hausdorff and A’ is irreducible (in
general not r.o.-minimal), then there exists an e.d.-preserving contraction
c:Z'>7 (Z is the factor space constructed in the proof of Theorem 1).

We shall show that the space Z constructed in Theorem 1 is, in general,
not Hausdorff even for skeletal maps from a compact metric space onto
a segment.
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Example. Let X =[—1,0]x[0,1]U[0,1]x%[1,2] c R* with the
topology induced from the plane and let f: X—Y = [—1, 1] be the pro-
jection, i.e., f(z,y) = x. Clearly, f is skeletal. Consider three points:
»; = (0,0), p, = (0,1) and p; = (0,2). It is easy to see that no two
of them are equivalent in the sense of (4) and that each neighbourhood
(in the topology of the factor space constructed in the proof of Theorem 1)
of the point [p,] contains both [p,] and [p;]. Hence Z is not even a T',-space.

It will be shown in the following theorem that the assumption that X
is e.d. deletes the defect:

THEOREM 2. If a map f: E—~Y is onto and skeletal, Y is Hausdorff
and E 18 e.d. Hausdorff space, then there exists a unique factorization

f:BE%z%y

such that both g and h are skeletal, Z is e.d. Hausdorff space and h is irredu-
cible r.o.-minimal map.

The factor h is a homeomorphism iff f is e.d.-preserving.

The factor g is a homeomorphism iff f is irreducible and r.o.-minimal.

Proof. It suffices to show, in view of Theorem 1 and Lemma 1,
that Z is Hausdorff. Let [#] # [y] and let us suppose that f(r) # f(y).
In this case [z] and [y] are separated by disjoint open neighbourhoods
because Y is Hausdorff. If f(z) = f(y), then, by (4), there exists U r.o.
in Y such that xzeIntecl f~'(U) and y¢Intel f~!(U), or conversely. Since F
is e.d., ¢l f7!(U) is open and zecl f~'(U) and y¢cl f~!(U), or conversely.
Suppose that zecl f~'(U) and ye EN\ ¢l f~}(U). Considerr.o. set V =Y\ ¢l U.
Since f is skeletal and F is e.d.,

el f~1(V) = Excl f-Y(U).

Clearly, cl f~'(U) and cl f~'(V) are open and disjoint neighbourhoods
of [x#] and [y], respectively, which completes the proof.

3. Application to the construction of the greatest e.d. resolution.
Now the following construction of the greatest e.d. resolution is possible:

Let X be a Hausdorff space. Consider all skeletal maps f: Y —X onto,
where Y is e.d. Hausdorff space. These maps do not necessarily form a set.
By Theorem 2, for each skeletal map f: Y- X onto, where Y is e.d.,
there exists a factorization

YLzh x,

where h: Z—X is irreducible. It was proved in [9], p. 27, that for each
Hausdorff space X there exists a set of irreducible maps onto X such that
each irreducible map onto X is isomorphic to a map from this set. Hence
there exists a set §(X) of irreducible maps f: Y,—~X from e.d. space Y,
onto X such that each skeletal map f': Y'—>X, where Y’ is e.d., admits
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a decomposition
Y - Yf—f>X for some feS(X).

Let Y be the disjoint union of all ¥, for feS(X) and let f D, ¢
be the map induced by maps from S (X). Clearly, Y is e.d. and f is skeletal,
f1 X, being skeletal. There exists, by Theorem 2, a factorization

Y>aX"5 X,

where aX: aX— X is irreducible and r.o.-minimal, and aX is e.d. For each
skeletal map f: Y—X onto, where Y is e.d., there exists a unique map
u: Y—X such that a¥ou = f. This map is a composition of maps given
in the following diagram:

o X<—

&b

\f

Thus the map o«*: aX—X is the greatest e.d. resolution.

This construction of the greatest extremally disconnected resolution
depends on the existence of any skeletal map from e.d. space onto X.
The existence of such maps can be obtained by the Kuratowski-Zorn
Lemma, as was shown by Mioduszewski [8]; in fact, the map constructed
there is an e.d. resolution, but not necessarily the greatest one; a similar
construction for the compact case which leads to the, unique in that case,
e.d. resolution, was given by Hager [5].
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