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This will describe joint work with Andre Galligo on the universal topological
stratification for the Pham example as a prototype for multi-modal
singularities.

From several directions there has arisen a desire to understand how the
versal deformation n: #° — T of a singularity (X, 0) can be stratified by the
topological type of the germ of n at points of ¥". This includes the results of
Looijenga [L1, II], [L2], [L3] on the complement of the discriminant for
simple elliptic and unimodal hypersurface singularities, extending the results
of Brieskorn [B] and Slodowy [S]. In the case of C®™ germs where (X, 0) is a
complete intersection with isolated singularity, this is a°major question in
understanding topologically stable mappings. Thom and Mather have proven
the existence of such a stratification and used it to prove the density of
topologically stable mappings in all dimensions [T], [M 1], [M2]. In.[D 4]
and [D5] it is shown that the Thom—Mather stratification agrees with the
stratification by analytic (or C®) type for simple singularities; however
beyond this range, the work of Wall, Bruce, Giblin, and Gibson ([BG],
[BW], [GG], [Wa]) has shown just how difficult it is to determine the
Thom—Mather stratification even in the case of unimodal hypersurface
singularities.

Part of this difficulty was foresecen by Pham around 1970. In [Ph] he
showed that constant topological type in a family of singularities does not
imply constant topological type of the corresponding families of versal
deformations. He found an example of a complex curve singularity f,(x, y)
= y*+x° which has a two parameter family of deformations (with moduli
(s, 1)) '

fi(x, y,5, 1) =y>+tyx®+syx” +x°
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with constant Milnor number; and hence the family is topologically trivial.
However, the versal deformation of f, is not topologically a product along
the r-axis. In fact, he showed that for t = O there are fibers arbitrarily close
to fy ' (0) with both E¢; and Eg singularities in the fiber while this does not
happen for values t # 0.

In his work on the simple elliptic hypersurface singularities, Looijenga
[L1, IJ introduced an alternate approach to explicitly determining the
universal topological stratification. He directly proved the topological triviality
of the versal deformation along the direction of the modal parameter. This
was extended to other unimodal hypersurface singularnities by Wirthmilller
[W7 and to unimodal complete intersections by Ronga [R] and [D 1], [D 3].
The success of the results depends largely on the Gorenstein properties of the
Jacobian algebra for hypersurface singularities, and on a generalization of
this to a duality result for 7y in [D 3]. These results can all be understood in
terms of the finite .#/-determinacy of the deformations which are versal
except for the absence of the modal parameter [D 1]. It is exactly the general
failure of this condition for multi-modal singularities which forces a deeper
analysis.

Here we describe this analysis for the Pham example. In particular, we
determine how the (s, t) parameter space is stratified by the topological type
of the versal deformation. We believe this provides a framework for
understanding the other bimodal singularities and an approach to
investigating the higher-modality singularities.

Let ¥ — T denote the projection of the versal deformation for the
Pham example. Since ¥  is smooth, with respect to appropriate local
coordinates, n is given by the function

F(x,y,s, t,u,v) ={F(x,y, s, 1, u,0),s, 1, u,0)
where

s 7
Fx,y,s,t,bu, o) =fi(x, ¥, s, D+ Y u; x'y+ ), v x'.
= “~

A

Fig. 1
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Since the versal deformation is with respect to Jf -equivalence, we begin with
the .#-orbit structure of the (s, ¢)-subspace given by Figure 1. The missing
points on the r-axis correspond to the values 4:*+27 =0, where finite
X -determinacy fails.

We shall prove in either the smooth case or holomorphic case

THEOREM. The stratification of the (s, t)-subspace, such that the versal
unfolding (as a germ of a mapping) is topologically a product on strata is given
by: the s-axis, the punctured lines (for 4t>+27 = 0), and the complement (see
Fig. 2).

Fig. 2

By a result of Wirthmiiller [W], the versal deformation is topolo.gically
a product along any line parallel to the s-axis with 4t> +27 # 0. Hence, we
may assume s = 0 and ask when the unfolding restricted to this subspace is
locally topologically a product along the t-axis. We denote this restricted
unfolding with s = 0 by f. If we further restrict t = t, we denote the unfolding
by fi,- Then f viewed as an unfolding of f,/ by the parameter ¢, is an

unfolding of weight 0. If £, were finitely /-determined, we could use [D 1, I]

to deduce topological triviality along the r-axis. This turns out not be the
case and is the point of departure from the analysis of the unimodal
singularities.

1. The versality discriminant and topological triviality
For the germ f, , we let ¥, denote the set of points in the target at which f~
is not infinitesimally stable, i.e., not versal. Then V, is the germ of an analytic
set [D1, I; 5.1]. More generally let ¥ be the union of ¥, for ¢’ near t. Again
V is an analytic set. Then V,, respectfully V, is called the versality
discriminant of f., respectfully the unfolding f of Jio- To prove that f is
topologically trivial along the r-axis near ¢, it is sufficient to prove, using the

result in [D 2, I, that the restriction of fto a “conical neighborhood” of the
versality discriminant is topologically trivial in a certain stratified sense.
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This requires three steps:

1) geometrically identifying a candidate for the versality discriminant;

2) proving algebraically that this candidate is correct;

3) establishing the stratified topological triviality of the restriction of f.

To see that the versality discriminant is more than just a point (which
would imply finite «/-determinacy), we consider the family (¢t # 0)

Y H1(x—=xg)* (x4 2x0)? - y +{x — x0)° - (x + 2x,)*.
Near x = xo with X = x—x,, we have the germ
Y +1(3x0)% - x* +(3x0)* - X8
which is an Eg. While near x = —2x, with X = x+2x,, we obtain
V2 +1(3xp)* X2 4 (3x,)% - X3

Thus, along a curve u; = tc; x§%, v; = b;x* %, and z = by x3, where z denotes
the coordinate for f and x, denotes the parameter for the curve, there are EB
and D, singularities in a fiber. However, for fixed t # 0, the dimension of the
target space is 14 while the codimensions of Eg and D, are 10 and 4
respectively. Thus, if the multi-germ in this fiber were multi-transverse, the
set of points where it occurred would be isolated and not along a curve.
Thus the curve belongs to the versality discriminant of f,. The surprising fact
is

ProrosiTioN 1. The versality discriminant for f,, t #0, 463+27 #0 is
exactly the curve described above.

Remark. In fact as t varies (# 0) this curve is analytically trivial and a
simple change of coordinates makes it constant.

Using [D1, II; 4.1] and the preparation theorem, Proposition 1 will
follow by showing for fixed ¢

F o
éx’ dy

for a set of generators g of an ideal I defining the curve. Here %, , ., denotes
the algebra of holomorphic (respectively smooth) germs in x, y, u, v, etc. and

(*) g-yx% g-yx e%y.“{ + Gl X, Xy, o, yx)

Riw,, ..., w,} denotes the R-module generated by w;, ..., w,. On the other
hand, by the preparation theorem,

o o
(%*) gr.y.u.vzgx.y.u.v{a a +(uv11 X, x7a ) TR yx7}'

Thus the terms f*-¢; for @;e{l, ..., yx°}, i > 0, together with (=*) generate
relations

K} yx®+HP yx?e RHS. of ().
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Thus, the 2 x2 determinants of such elements g = det(h}’;}l) satisfy (=). It is

sufficient to compute enough such g to show they generate an ideal defining
the curve. This is carried out via symbolic computations using the computer

language MACSYMA and the generalized division theorem of Hironaka (see
[G1] or [G2)).

2. Stratified topological triviality

For fixed ¢+ we have the following picture of the versality discriminant
(Fig. 3).

Its inverse image in the critical set of f consists of a pair of nonsingular
curves. In a fiber over the point y' there are two points in y'. If we take a
section to y and its inverse image in Y we have a multi-germ of f at x’, x”

k13‘ yr

The structure of this multi-germ is given by the following proposition.

ProrosiTioN 2. By a local change of coordinates the multi-germ may be
written

2=V +({t+cwe) JX*+ X6 +tF(W + ... + W, X)+5, X+ ... +5, x4
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and

2= P XA+ T+ (W + We X)+ 55+ 55 X’
modulo terms of weight > 6, and > 6 in (X, y) (respectively (X', y), where:
wi(X)=1, wt(P) =2, wt(W))=5—i and wt(5;) =6—i for 1 <i<4, wt(X)
—wit(7) =2, we(W,) = 2(7T—i) and we(5) = 2(8—i), i = 5, 6. Also, c # 0.

To complete the proof of the theorem we extend Looijenga’s calculation
[L1, I] for E, to obtain that the multi-germ has finite graded
codimension (in an appropriate sense) with respect to the weight filtration.
Thus, Theorem 10.5 of [D 2, II] imples that the multi-germ is topologically
trivial along the r-axis. Moreover, this topological trivialization is
constructed from stratified vector fields in the sense of [D 2, I]. The vector lields
are stratified relative to the stratifications of the Eg-stratum by muiti-germs
involving Eg-germs and germs in the versal unfolding of D,.

First we may extend both the stratified vector fields and the control
functions defined on the sections to conical neighborhoods of y and ;" using
the k*-action (see Fig. 4). Next we extend the sections to compact manifolds
intersecting each of the R, -orbits once and take the product of these with the
t-axis. Then we may further extend the control functions for the stratified
vector fields to these manifolds so they are non-zero outside of smaller
conical neighborhoods of y and y'. Finally using the R,-action we may
extend the control functions to a neighborhood of 0.

Fig. 4

It can be checked that this data satisfies the condition for f to be
stratified topologically trivial in a conical neighborhood of the versality
discriminant. Thus, by Theorem 1 of [D2, I], f itself is topologically trivial
along the t-axis. Very briefly, the topological triviality is proven by
constructing stratified vector fields in neighborhoods of 0 which can be
integrated to give the topological trivializations. These vector fields are
constructed from three pieces: those described above in the conical
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neighborhoods, vector fields defined on a neighborhood of the discriminant
off of the versality discriminant (defined using (*)), and a vector field defined
off the critical set using the X -finite determinacy of f. These are finally
patched together using a partition of unity.

(B]
[BG]
[(BW]
[D1]
[D21}

[D 211}
{D3}

(D4]

(D 5]
[G1]
[G2]
[GG]

(L1]

[L2]
(L3]
(M1]
M2]

[Ph]
(R]

References

E. Brieskorn, Singular elements of semi-simple algebraic groups, in Proc. Internat.
Congr. Mathematicians, Nice 1970, vol. 2, 279 - 284.

J. W. Bruce and P. J. Giblin, A4 stratification of the space of plane quartic curves,
Proc. London Math. Soc. (3) 42 (1981), 270-298.

J. W. Bruce and C. T. C. Wall, On the classification of cubic surfaces, J. London
Math. Soc. (2) 19 (1979), 245-256.

J. Damon, Finite determinacy and topological triviality, 1, Invent. Math. 62 (1980),
299-324; I1: Sufficient conditions and topological stability, Compositio Math. 47 (1982),
101-132,

—, The versality discriminant and local topological equivalence of mappings, printed.

—, Topological triviality and versality for subgroups of sf and X ; I. Finite codimension
conditions, Memoirs Amer, Math. Soc., to appear.

~, Topological triviality of versal unfoldings of complete intersections, Ann. Inst. Fourier
(Grenoble) 34 (1984), 225-251.

—~, Topological properties of discrete algebra types; I: The Hiibert—Samuel function,
Adv. in Math. 5 (1978), 83-118; Il: Real and complex algebras, Amer. J. Math. 101
(1979), 1219-1248.

—, Topological properties of real simple germs, curves, and the nice dimensions n > p,
Math. Proc. Cambridge Philos. Soc. 89 (1981), 457-472.

A. Galligo, A propos du théoréme de préparation de Weierstrass, Lecture Notes in
Math. 409, Springer-Verlag, Berlin 1974, 543-579.

—, Théoréme de division et stabilité en géométrie analytique locale, Ann. Inst. Fourier
{Grenoble) 29 (1979), 107-184.

P. J. Giblin and C. G. Gibson, Regularity conditions over the exceptional uni-modular
Sfamilies, Quart. J. Math. Oxford Ser. (2) 32 (1981), 23-43.

E. Looijenga, Semi-universal deformation of a simple elliptic hypersurface singularity;
I: Unimodularity, Topoilogy 16 (1977), 257-262; Il: The discriminant, Topology 17
(1978), 23-40.

—, A period mapping for certain semi-universal deformations, Composito Math. 30
(1975), 299-1316.

—, Homogeneous spaces associated to certain semi-universal deformations, in Proc.
Internat. Congr. Mathematicians, Helsinki 1978, 529 - 536.

J. Mather, Stratifications and mappings, in M. Peixoto (ed), Dynamical Systems,
Academic Press, New York 1973, 195-232.

—, How to stratify mappings and jer spaces, in Singularités & Applications Différentiables,
Plans-sur-Bex, Lecture Notes in Math. 535, Springer-Verlag, Berlin and New York
1975, 128—-176.

F. Pham, Remarque sur Pequisingularité universelle, preprint, Université de Nice, 1970,
F. Ronga, Une application topologiquement stable qui ne peut pas ére approachée par
une application différentiablement stable, C. R. Acad. Sci. Paris Sér. A-B. 287 (1978),
779-782.



168

(§]
[T]
[Wa]

(W]

J. DAMON

P. Slodowy, Einfache Singularitidten und Einfach Algebraische Gruppen, Regensburger
Math. Schriften 2, Univ. Regensburg, Regensburg.

R. Thom, Ensembles et morphismes stratifies, Bull. Amer. Math. Soc. 75 (1969),
240- 284

C. T. C. Wall, The first canonical stratum, J. London Math. Soc. (2) 21 (1980),
419-433.

K. Wirthmtller, Universell topologische triviale Deformationen, Thesis, Univ.
Regensburg.

Presented to the semester
Singularities
15 February—15 June, 1985



