CONTENTS Introduction...................................................................................................................................................................5 1. Notation and some definitions...................................................................................................................................6 (a) Analytic families.....................................................................................................................................................6 (b) Coordinate neighbourhoods and the normal bundle of a submanifold..................................................................7 (c) A characteristic system for an analytic family.........................................................................................................9 (d) Mutual positions of submanifolds.........................................................................................................................10 2. Sufficient conditions for triviality of the normal bundle.............................................................................................11 (a) Formulations of the conditions.............................................................................................................................11 (b) Connection of condition $(**)_{[U_i]}$ with the normal bundle.............................................................................12 (c) Construction and some properties of functions $f_i$...........................................................................................14 (d) Proof of triviality of the normal bundle.................................................................................................................16 (e) Formulation of the results of Section 2................................................................................................................19 3. A maximum principle for 0-cochains of holomorphic functions on a connected compact complex manifold.............20 4. Construction of an analytic family............................................................................................................................21 (a) Formulation of the main theorem.........................................................................................................................21 (b) Construction of first coefficients of formal power series.......................................................................................23 (c) Some lemmas......................................................................................................................................................25 (d) The induction step - construction of the coefficients $φ_{i|ν+1}$........................................................................28 (e) Proof of the convergence of the formal power series..........................................................................................31 (0 Proof of the main theorem....................................................................................................................................33 Appendix....... .............................................................................................................................................................36 (a) Formulation of sufficient conditions for the convergence of formal power series.................................................36 (b) Some estimates...................................................................................................................................................38 (c) Proof of Proposition A.1.......................................................................................................................................42 References.................................................................................................................................................................44
[1] R. Dwilewicz, Some properties of complex compact submanifolds, Bull. Acad. Polon. Sci. Sér. sci. math. astr. phys. 25 (1977), pp. 957-960.
[2] R. Dwilewicz, Completeness of characteristic systems for analytic families of compact submanifolds of a complex manifold (Polish), Thesis, Institute of Mathematics, Warsaw University.
[3] K. Kodaira, Some results in the transcendental theory of algebraic varieties, Ann. of Math. 59 (1954), pp. 86-134.
[4] K. Kodaira, Characteristic linear systems of complete continuous systems, Amer. J. Math. 78 (1956), pp. 716-744.
[5] K. Kodaira, A theorem of completeness of characteristic systems for analytic families of compact submanifolds of complex manifolds, Ann. of Math. 75 (1962), pp. 146-162.
[6] K. Kodaira, Collected Works, Iwanami Shoten, Publishers and Princeton University Press, 1975.
[7] K. Kodaira, J. Morrow, Complex manifolds, Holt, Rinehart and Winston, Inc., 1971.
[8] K. Kodaira, D. C. Spencer, On deformations of complex analytic structures, I, II, Ann. of Math. 67 (1958), pp. 328-466.
[9] K. Kodaira, D. C. Spencer, A theorem of completeness of characteristic systems of complete continuous systems, Amer. J. Math. 81 (1959), pp. 477-500.
[10] O. Zariski, Algebraic surfaces. Second supplemented edition, Springer-Verlag, Berlin-Heidelberg-New York 1971.