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1. Motivation

In its beginning in the late fifties, theory of formal languages was motivated
linguistically. F'ro_m the algebraic point of view, a language is an ordered pair
(V, L) where V is a finite set and L is a subset of the free monoid V* over V.
The elements in V* are called strings, A denotes the empty string, xy the
string obtained by concatenation of strings x and y; |x| denotes the length of
the string x. The elements in V are interpreted to be word-forms, the
elements in L are considered to be correct sentences of the language. Hence,
considering a language (V, L) we are in a position similar to that of a linguist
who investigates an unknown language written in an unknown alphabet: he
recognizes only word-forms and correct sentences but does not under-
stand them.

Theory of formal languages developed in two directions. First of them,
which can be called analytic, tried to formalize the fundamental linguistic
notions as, e.g., morphologic categories [13] and syntactic configurations [5].
If we take an English sentence, eg.,

LITTLE CHILDREN DRANK OFTEN GOOD MILK,
then it can be developed from a simpler sentence

CHILDREN DRANK
by replacing the string CHILDREN of length 1 by the string LITTLE
CHILDREN of length 2 and, similarly, the string DRANK by the string
DRANK OFTEN MILK, and the string MILK by the string GOOD
MILK.

Then the string LITTLE CHILDREN is a syntactic configuration of
English and CHILDREN is its resultant. Similarlyy, DRANK OFTEN
MILK, GOOD MILK are syntactic configurations whose resultants are
DRANK, MILK, respectively. Configurations and their resultants are char-
acterized by the property that the resultant appearing in any correct
sentence may be replaced by the corresponding configuration in such a way
that the resulting string is a correct sentence; the reverse replacement of a
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configuration by its resultant in a correct sentence leads to a correct sentence
only under certain restrictions.

Thus, we imagine that we start with an arbitrary correct sentence
containing no configuration. If it contains a resultant of a configuration, we
replace the resultant by this configuration. If the resulting string contains a
resultant, we replace it by the corresponding configuration. All strings
obtained after a finite number of such steps are correct sentences.

Clearly, if starting with the string CHILDREN DRANK and if using
the ordered pairs (CHILDREN, LITTLE CHILDREN), (DRANK, DRANK
OFTEN MILK), (MILK, GOOD MILK) in the above described way, we
obtain, e.g.,

(1) LITTLE LITTLE CHILDREN DRANK OFTEN MILK OFTEN
GOOD GOOD GOOD MILK.

This and similar strings are consired to be correct. The string

(2) LITTLE GOOD CHILDREN DRANK OFTEN CACAO OFTEN
SWEET GOOD FRESH MILK '

is a correct sentence and string (1) is obtained from (2) by replacing any
word-form by another that is able to play the same grammatical role in all
correct sentences.

This idea leads us to the notion of a special [15] or a pure [4], [14],
[10] grammar. A pure grammar is an ordered triple G = <{V, S, R), where ¥,
S, R, are finite sets and S = V*, R = V* x V*. The set L(G) of all strings
generated by G is obtained by starting with a string seS, by taking an
ordered pair (or production) (y, x)e R such that s contains y, ie., s = uyv for
some u, ve V*, and by replacing y by x, i.e,, by forming the string uxv, then
by taking another production (y’, x)e R such that uxv contains y' and by
replacing y’ by the string x’, and so on; all strings obtained in this way form
the set L(G). Then (V, L(G)) is said to be the language generated by G.

In [5], [16], [17] some constructions of pure grammars for certain
families of languages can be found.

It is very surprising that no attempts of formalizing syntactic categories
can be found in the theory of formal languages till the end of seventies.

The synthetic direction in formal language theory dealt particularly with
classification of grammars (not only of pure grammars), with relations of
grammars to automata. In this direction a language is supposed to be
generated by a grammar [1], [2]), [3]. Grammars proved to be very
important tools for programming languages and formal language theory
became one of the theoretical backgrounds of computer science [9], [22].
This implies that effective methods were preferred in the study of formal
languages. Since the results obtained in the analytic direction were obtained
mostly by non-effective methods, both directions developed almost indepen-
dently.
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A group of mathematicians in Brno tried to find regions of common
interest between the analytic and synthetic direction. Various methods of
constructing grammars (in non-effective ways) were found [16], [17]. Syntac-
tic categories of formal languages were introduced and grammars were
defined on the basis of these categories for certain families of languages [11],
[12].

Some variants of effective constructions of grammars were described
[19], [18]. One of these constructions will be studied in this lecture. The
main idea is as follows. A pure grammar G, (¥, L) is assigned to any finite
language (V, L) and to any integer k that is large enough in an effective way
where the grammar G,(V, L) need not generate (V, L). If (V, L) is an
arbitrary language and k a non-negative integer, then we define the set kL to
be the set of strings in L of length < k: i".en (V, kL) is a finite language
called the kth fragment of (¥, L). The follo-..ng can be proved. If there exists
an integer ko such that G (V, koL) = G,(V, kL) for any k> ko, then
Gy, (V, ko L) generates (V, L) and (V, L) belongs to a certain family #™ If
(V, L) e #", then there exists ko such that G, (V, kL) = G (V, ko L) for any
k 2 ky. Thus, if we know the number k,, we have an effective construction
of a grammar for a language (V, L) e:#™ such that the grammar generates
the language.

The above results can be used in syntactic pattern recognition [6].

2. Pure grammars

Let ¥V be a finite non-empty set. An ordered pair (y, x)e V* x V* is called a
production over V. We put

l(y, x): = max {|yl, |x]}.
For any s, teV* we set s=1t (|(y, x)}) if there exist u, veV* such that
$ = uyv, uxv =t.

Let us have R < V* x V*, We put s =t (R) if there exists (y, x) eR such
that s =1 ({(y, x)}). If s =t (R), we can have more productions (y, x) eR such
that s=>t ({(y, x)}). We put

|
{I(y, x):

Let 5, teV* n=20, so,8,...,5,€V* be such that s=3s,, s5,=1¢,
Si—-1=s5; (R) for i =1, ..., n. Then the finite sequence (s;)]-, is said to be
an s-derivation of t in R. We put

(s, t)ig = min ; (y, x)€R and s=1 ({(y, 0)})}.

0 if n=0,
lI(s;)i< ollr = {

max {|(s;_ 1, $)g; i=1,....,n} il n>0.
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Finally, we put s =t (R) if there exists an s-derivation of ¢ in R and s =t (R)
if s=1r (R) and s # 1. We define

(s, Ollg = min {||(s)7=ollr; (s)'=0 is an s-derivation of ¢ in R)].

Let V be a finite non-empty set, S = V* R = V* x V*. Then the ordered
triple G =<V, S, R) is said to be a generalized pure grammar [15], [16],
(177, [18], [19]; it is said to be a pure grammar if the sets S, R are finite (4],

[10], [14].

If G=(V,§, R)is a generalized pure grammar, we set
L(G) = 'weV*; there exists seS with s=w (R)!.

Then (V, L(G)) is said to be the language generated by G. For any ze L(G).
we put

llzllx = min {li(s, 2)llg: S€S, s>z (R)}.
We shall investigate pure grammars of special type. We put

K" (V)= iy, x)eV*xV*, 1 <y <|x].

Ordered pairs in K™(V) are said to be monotone productions, A generalized
pure grammar <V, S, R is said to have monotone productions if R = K™ (V).
We denote by #A™ the family of languages generated by pure. grammars with
monotone productions.

Let (V, L) be an arbitrary language. We put

N(V, L) = {xe V*; there exist u, ve V* such that uxvel!,

D(V, L) = |(y, x)e V* x V*; for any u, ve V*, uyve L implies uxvel),
E(V,L)=D(V. Lin(D(V, L))",
D™(V, L) = (N(V, L)xN(V, L)) n D(V, L) n K™ (V).

The strings in N(V, L) are said to be Necessary in (V, L), D(V, L) is
called Domination relation for (V, L), E(V. L) is an Equivalence on V*.

Any language can be generated by a generalized pure grammar.

1. ExampLe. Let (V, L) be a language. Then <V, L, D™(V, L)) generates
(V. L). v
' Clearly, L(<V, L, D"(V, L)>) 2 L. On the other hand, if seL, teV*,
s%1 (D"(V, L)), then s3t (D(V,L)) which implies teL. Thus,
L{(<V,L,D™(V,L))) L. =

We now characterize languages in 4™

2. THeorReM. Let (V, L) be a language. Then (V, L)e#B™ if and only if

there exists a pure grammar G = (V, S, R) generating (V, L) such that S < L
and R = D™(V, L).
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Proof. If § and R have the above mentioned properties, then (¥, L)
= (V, L(G)) =.4™.

Let G=<V,S, R) be a pure grammar generating (¥, L) such that
R < K™(V). Clearly, S € L(G) = L.

If (v, x)eR and y¢ N(V, L), then the production (y, x) cannot be used
for generating a string -¢ L(Gy = L Thus, <V, §, R— {(y, x)} ) generates the
same language as ¢V, §, R) does. Thus, we can suppose that ye N(V, L). If
u, veV* are such that uyv € L = L(G), there exists s €S with s = uyv (R). Since
uyv = uxv (R), we obtain s = uxv (R) which implies that uxv € L(G) = L. Thus,
we have xeN(V, L) and (y, x) eD(V, L) which implies that (y, x}eD™(V, L).
We have proved that R D™ (V, L). »

We now incorporate the family #™ into the usual hierarchy of
languages. Let # denote the lamily of all regular languages, 4% the family
of all context-free languages.

3. THEOREM. # < 4™, # # #". (Cf. [16].)

Proof. (1) Let (V, L) be a non-empty regular language. There exists a
positive integer N such that E(V, L) has exactly N blocks. We¢ set S
=xeL; |x)<N!, R={y,x)eD(V, )nK"(V), |x] £ N+1}. Then G =
<V, S8, R> is a pure grammar with monotone productions.

Let te L be arbitrary. If || < N, then teS < L(G). If n=[t| > N, there

exist a,, ..., a, in V such that r = a,...a,. We set 1, = a,...q; for any i with
1 < i< n There.exist indiges i, j such that 1 <i <j< N+1, (1, t;)e E(V, L).
"Hence, || =i <j =] < N+1 and, thus, (r;, t)eR. Weput z =q;,,...a,, s

=t;z. Since t;z=tel and (t;. r;)e D(V, L), we obtain se L. Furthermore,
s=1 (R) and |s| <|[t|. Thus, to any t €L with }t|] > N, there exists seL with
Ist <tl, s=rt (R). Hence, to any teL with |f] > N, there exists sl with
s|.< N such that s =t (R). Thus, seS and teL(G).
- We have proved that L = L(G).

On the other hand, S ~ L, R =D(V, L) imply L(G) = L.

We have proved that L(G) = L and, hence, # < #™.

(2) Clearly, if V= {a, b, ¢!, L= !a'bc*; i >0}, then (V, L)¢ & but it is
easy to see that (V, L)e#™. = '

4. THEOREM. A" —C.F # Q, ¢.F —AM = @. (Cf. [16])

Sketch of proof. (1) Put

V="ab,cd, L=1Iba*ca**" *b; n20, 1 <k<2?,
L= pa?®" ' "*da*p; n 20, 1 <k <220,
L=LulL",
S = !ba*cb!, R = (ach, da’b), (ad, da?), (bda, ba* ¢}, (ca, a*¢)},
| G = (V, S, R>.
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Then G generates (V, L) and, hence, (V, L)e#™. Using the well-known
pumping lemma, we prove (V, L)¢ ¢ F.

(2) Put V = {a, b}, L = {xX; xeV*}, where X denotes the mirror image
of x. Then D(V, L) =id,,, and, thus D"(V, L) = @ which implies (V, L) ¢ 8™
Clearly (V, eEYF. n

3. Effective constructions of grammars

A language (V, L) is said to be finite if the set L is finite.
To any finite language (V, L) and to any integer k that is large enough,
we assign a pure grammar in an effective way (cf. [19], [18]). We put

0 if L=0,
max {|z|; zeL} if L#Q,

we choose an integer k > m(V, L) and we set

m(V,L)={

b (V, L) = {(y, X)e V* x V*; for any u, ve V*, uyvel
implies either uxve L or |uxv| > k},
(nxn)(V, L) = {(y, x)e V* x V*; there exist u,. veV* with uyve L, uxvelL!,
4V, L) = (nxn)(V, D) b (V, L 0 K™(V),
B,(V,L)=!seL; teL, t2s (d(V, L)) imply [¢| = |s|},

X, (V, L) = {(y, x)ed, (V, L); there exists ze L

, By(¥V.Ly
with I(y, )} < llzllgw )}

G(V, L) = <V, By (V, L), X, (V, L)).

The reader may observe that the sets b, (V, L), (n xn)(V, L), d,(V, L) are
analogous to the sets D(V, L), N(V,L)xN(V, L), D™(V, L), respectively.
Furthermore, G, (V, L) is a pure grammar that can be constructed effectively
if the finite sets, ¥, L and the integer k are given. We give an illustration.

1. ExaMpLE. Let us have V = {a, b}, L(i) = {ab’~"; 0 <j < i} for any
i>3. We obtain m(V, L(i)) =i, N(V, L(i)) =4, a, b, ab, b*, ab?, b, ...
b7 ab . For any (y, x)e(N(¥, L()) x N(V, L(i))) nK™(V) we test
whether it belongs to b;(V, L(i)); in the positive case, we test whether
the set M(y,x) =z, )eL(@xL(; z=t ({(y,x)})} is non-empty.
The pairs satisfying these conditions form the set d;(V, L(i)). We ob-
tain d;(V, L(i)) = {(ab’, ab’); O<s <r<i—1} U {6 b); 1<s<r<gi-1},
M (ab®, ab’) = {(ab*, ab’), ..., (ab'~'"*7", ab’"1)}, Nab®, ab’)l =r+1 for any
s,r with 0<s<r<i-1, M@, D)= {(ab’, ab), ..., (ab'" ' """ abi ™)},
(b*, b)| =r for any s, r with 1 <s <r<i-1. It follows that
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Wz, D eL() x L(i); z=t(d;(V, L))} = |(ab*, ab); 0<s <r<i—1}
= {(z, ) eL() x L(i); z=>t(d;(V, L))}
= {z,  eL() x L(i); z=>t({(a, ab), (b, b)))].

This implies that B (V, L()) = {a}, X,(V, L()) = {(a, ab), (b, b3},
G;(V, L()) = (la, b}, {a}, {a, ab), (b, b})}) for any i > 3. Clearly, G,(V, L(i)
generates the language (V, L) such that L= {ab’;i> 0} which is in
A" =

2. THEOREM. Let (V, L) be a finite language, k > m(V, L) an integer. Then
L < L(G.(V. L)). |

Proof. If zeL and s =z (de(V, L)) does not hold for any seL, then
zeB(V, L) = L(G,(V, L)). If there exists seL with s %z (d (V, L)), we take
such an s with minimal length. Then seB,(V, L). Among all seB, (V, L) with
s>z (dx (V, L)), there exists s, such that ||(sy, 2)lla,v,c, is minimal; clearly

5> 2Mlayev.ey = lizllaky .y which implies that s %z (X.(¥, L))

and, therefore, ze L(G,(V, L)). =

The effective construction of G,(V, L) can be given in the form of an
algorithm or of a program. This program was written in the language
ASSEMBLER for the computer EC 1021.

This construction will be applied to fragments of an arbitrary language.
To this aim, we introduce some new symbols. We denote by N the set of all
non-negative integers and by P the set of all positive integers. For any
language (V, L) and any ke N, we put

kL= {xeL; |x| <k}, a(V)=1{y, x)eV*xV* |yl <k, |x| <k}.

Our results are based on the following

3. TueoreM. Let (V, L) be a language. For any i €N, there exists v(i)eN
such that v(@) =i and that D™(V, L) ~a;(V) =d,(V, kL) na;(V) for any
k > v(i).

Proof. Let us have (y, x)e(N(V, L)xN(V, L))~ K™ (V) na; (V).
Then we have two possibilities.

(A) (y, x)eD(V, L).
Then (y, x)e b, (V, kL) for any ke N. Since ye N(V, L), there exists u, ve V'*
such that uyve L, uxve L. We take u, v in such a way that uxv has the least
possible length and we put i(y, x) = |uxv|. For any k = i(y, x), we have
(v, x)e(n xn)(V, kL). Furthermore, we put j(y, x) =0.

(B) (v, x)¢D(V, L).
Then there exists (4, v)e V* x V* such that uyve L, uxv¢ L. We take u, v in
such a way that uxv has the least possible length and we put j{y, x) = Juxv|.
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For any k = j(y, x), we have (y, x)¢b,(V, kL). Furthermore, we put i(y, x)
= 0.

We set I=0=J if the set (N(V, L)xN(V, L)nK"(V)ng(V) is
empty and

I = max {i(y, x); (v, )e(N(V, )x N(V, L)) n K" (V) nai(V)},

J = max {j(y, x); (v, ) (N(V, L) xN(V, L)) n K" (V) na;(V)}

if 1t is non-empty; furthermore, we put

v()) =max i, 1, J).

Since K™(V)na;(V) is a finite set, v(i) is correctly defined. Then, for any
k=>v(@) and any (y,x}e(N(V, L)xN(¥, L))nK™(V)na(V), we have
(y, x)eD(V, L) if and only if (y, x)€d,(V, kL). It follows that

D"(V, L) na (V) = (N(V, L) xN(V, L)) nNK™(V) na;(V) "\ D(V, L)
= (N(V, Ly xN(V, L)) nK™(V) n (V) nd, (V, kL)
= 4, (V, kL) nay(V)

because d,(V, kL) = K™(V) and d,(V,kL) c(nxn(V, kL) =NV, L) x
NWV,L). =

4. THEOREM. Let (V, L) be a language such that there exists ko eN with
the property G, (V, kL) = G, (V, ko L) for any k > ko. Then (V, L)e#™ and
the pure grammar G, (V, ko L) generates (V, L).

Proof. By 2, we have kL c kL(G,(V, kL)) for any keN. Let us have
k>ko, t2v(k), zekL(Gy(V,kL))=KL(G,(V,tL)). Since G,(V,L)=
(V, B,(V, tL), X,(V, tL)), we have |z| < k and there exists seB,(V, tL) such
that s %z (X,(V, tL)). Thus, sz (d,(V, tL), I, Dllaw.ry < k, ie, we have
5=z (d,(V, tL) na,(V)). By 3, it follows that s =z (D™(V, L) na,(V)). Since
setL < L, we have zeL(<V, L, D(V, L)}) which implies that z ekL by 2.1.

We have proved that kL(G,(V, kL)) = kL for any k > k.

Thus,

L= ) kL= {J kL(Gy(V, kL) = U kL(Gyy(V, ko L))

k>ko k>kg k2kg
= L(Gy,(V, ko L)).
Hence, (V, L) is generated by the pure grammar G, (V, ko L) =

WV, Byy(V, ko L), X (V, ko L)), where X, (V, ko L) =di (V, ko L) < K™ (V).
Thus, (V, L)e®™. w»

5. ExampLE. We have proved that G, (V, kL) = G,(V, 3L) for any k= 3



EFFECTIVF CONSTRUCTIONS OF GRAMMARS 323

where V = {a, b}, L = {ab'; i > 0}; cf. Example 1. Thus G;(V, 3L) generates
(VL)

The last theorem can be reversed.

6. THEOREM. Let (V, L) be a language. Then the following two assertions
are equivalent.

(i) (V, L)eB".

(i) There exists koeN such that G, (V, kL) = G, (V, ko L) for any
k2ky (cf. [19]) =

4. Two complexity measures

We have seen that we obtain an effective construction of a pure grammar
Gy, (V. ko L) for a language (V, L) e 2™ if we know the number k, appearing
in 34. The number k, is not defined uniquely; thus, for any (V, L)e#™,
we put

Zm([/’ L)=mln {koEP, Gi(K kL) =Gk (‘/, koL) fOI' a]l k;kol
0 )

If we have two languages (V, L), (V, L,) in 2™ such that k, = Z™(V, L,) is
small and k, = Z™(V, L,) is large, then, for the construction of the pure
grammar G, (V, k, L,), we operate only with strings in L, of length <k,
while for the construction of G,,(V, k, L,) we need strings in L, of length

< k,. From this point of view, the first language is simpler than the second.
Thus, the function Z™(V, L) defined for (¥, L) €#™ can be considered to be a
complexity measure of (V, L).

The set (keN; k <Z™(V, L)} can be divided into intervals such that
G,(V, kL) is constant on any of them; some of these intervals may have
length equal to 0. If we know the maximum of these lengths — say p —
then Z™(V, L) has been found whenever we know a number k > 0 such
that G, (V, kL) = Gyoy (V, (k+ 1) L) = ... = Goy puy (V. (k+p+ 1) L); clearly,
Z™(V, L) < k. Furthermore, if (V, L,), (V, L,) in #™ are given such that the
above mentioned maximum p has a small value p, for (¥, L,) and a large
value p, for (¥, L,), then (V, L,) is simpler than (V, L,) because looking for
Z™(V, L,) we test only short intervals of length < p, while looking for
Z™(V, L,) we have to test also large intervals of length p,. From this point of
view, this p is a complexity measure for (V, L) e #™. The exact definition is as
follows.

For any (V, L)e#™ we put

0 if Z™V, L)=1,

max {te N; there exists ke P with k <Z™(V, L)—t such
that G, (V, kL) = G, ;(V, (k+i) L) for any ie N
with 0<i<t) if Z"(V, L) > 1.

PtV L) =
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The usual problems concerning complexity measure of languages can be
formulated for Z™(V, L) and P™(V, L) (cf. [7], [8], [20]). The first of them is
as follows.

P1. Are there languages (V, L)e #™ with arbitrarily large Z™(V, L)
[P (V, L)]?

Particularly, if the answer to this question were negative, there would
exist an integer ¢ such that Z™(V, L)< c for any (V, L)e #™; thus the
effectively constructed grammar G.(V, cL) would generate (V, L) for any
(V, L)e #™. Unfortunately, the answer is positive as it follows from the
solution of the following problem.

P2, For arbitrary ie P [ie N] is there (V, L)e #™ such that Z™(V, L) =i
[P"(V, L) =i]?

1. THEOREM. Problem P2 has a positive solution. (Cf. [21]) =

Thus, if there is keP and a very large pe N such that G,(V, kL)
=G (Vo (k+1)L) = ... = Gy ,(V, (k+p) L) for some language (V, L), we
have no mathematical reason to believe that (V, L)e#™ and that
Z™(V, L) < k. Thus, we may try to find a subfamily of #™ such that finding
Z™(V, L) is simpler in the subfamily than in #™. For this reason, we
introduce the following family of languages.

A language (V, L)e #™ is said to be faithful if P"(V, L) = 0. This means
that either Z™(V, L)=1 or Z™(V, L)>1 and G, (V, kL) # G, (V, (k+1) L)
for any k with 1 <k <Z™(V, L), ie., Z™(V, L).is the least integer k > 1 such
that G,(V, kL) = G+, (V, (k+1) L). Regarding this property, faithful langu-
ages are of some interest. Particularly, if some simple languages prove to be
faithful and if the family of faithful languages is closed under some opera-
ttons with languages, then we could obtain faithful languages (V, L) of more
complex structure without testing the condition P™(V, L) = 0 directly. Un-
fortunately

2. THEOREM. The family of faithful languages is an anti-AFL that is not
closed-under intersections. (Cf. [21].) =

These results may provoke a pessimistic prognose concerning applica-
tions of the results contained in Section 3. We shall demonstrate that this
pessimism is not justified.

5. Applications

The results of Section 3 can be applied in artificial intelligence. A typical
problem of artificial intelligence is the following. A set of objects and a
classification of these objects are given where the classification is supposed to
have a finite number of blocks. The problem is to find the block correspond-
ing to any object. An example is the problem of finding a botanical name of
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any given plant. There exist well-known algorithms solving this problem in
the framework of botany. Anybody intending to use such algorithm must be
an expert in botany, must know various types of leaves, flowers, etc. Artificial
intelligence tries to solve this and similar problems without the use of special
knowledge, i.e, algorithms of artificial intelligence need not experts and can
be performed by means of computers. This is based on the idea to replace
real objects and their classification by mathematical objects (patterns) and
their classification. E.g., classification of three types A, B, C of the botanical
genus Iris was replaced by the classification of two-dimensional vectors (cf.
[6], p. 4); a set of individuals was classified by experts and the petal length
and petal width was stated for any individual. Thus, any individual was
represented by a point in the plane and a line separating points correspond-
ing to the type A from the points corresponding to the types B, C was
found. Hence, if an unknown individual 1s to classify it sutfices to find the
corresponding point and to state whether it is in the region corresponding to
the type A or in the region corresponding to the types B, C. Thus, the type
can be stated mechanically without any special botanical knowledge.

Syntactic pattern recognition consists in replacing real objects by math-
ematical objects composed of a finite number of primitives: the set of all
primitives is supposed to be finite. In the- simplest case a real objects is
replaced by a string of primitives; generally, the collection of primitives
corresponding to an object has a more complicated structure (e.g., a tree with
labelled nodes, etc). In the simplest case, a block of strings corresponds to
any block of real objects. Hence any block of real objects defines a language
which is supposed to be generated by a grammar. If we know the grammar
correspondfng to any block and if a string corresponding to an object is
given, we start with the grammar corresponding to the first block. We test
whether the string is generated by the grammar. If the answer is positive, the
problem is solved, the object belongs to the first block. In the negative case,
we go to the second grammar and we continue in this way.

Two types of chromosomes were described in the literature (cl. [6]), p.
33) by means of their contour lines. These contour lines can be obtained as
composites of primitive arcs of five types and, therefore, any chromosome
can be expressed as a string formed of five symbols. The chromosomes are of
various extents and a language corresponds to the set of chromosomes of the
first type; another language is assigned to the set of chromosomes of the
second type. Grammars generating these languages were constructed on the
basis of observing the languages. The methods of syntactic analysis lead to
decision whether a given chromosome belongs to the first or to the second
type.

Naturally, there is a serious problem how to obtain the grammar
generating a given language. If a language (V, L) is given, we usually suppose
that only a finite subset F = L is to our disposal. On the basis of the finite
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language (V, F) a grammar generating an infinite language (V, L) with F = L’
is to be constructed; since the language (V, L) is not known it is supposed to
coincide with (¥, L). This is the so-called Grammatical Inference Problem.
Several heuristic algorithms solving this problem are known from the litera-
ture (cf. [6], Chapter 6). Our grammar G, (V, L) assigned to a finite language
(V, L) and an integer k = m(V, L) can be considered to be a solution of this
problem, too.

Suppose that a language (V, L) belongs to #™. Theorems 3.4 and 3.6
express the fact that the effectively constructed grammar G, (V, kL) generates
(V, L) if k is large enough. If the language (V, L) corresponds to a set of real
objects, we have a reason to believe that this k has been obtained if
G (V, kL) =Gy (V, (k+1)L)=... = G, ,(V, (k+ p) L) for a large number p.

1. ExampLE. Let a, ab, ab? be schemes of some observed organisms. We
set L=/{a,ab,ab?}, V=1a,b}. Using 3.1, we construct G,(V, L)
= (la, b}, {a}, {(a, ab), (b, b*)}>. We can have biological reasons to believe
that strings corresponding to all observed organisms form a set that can be
described by means of a language (V, M) such that G;(V, iM) = G;(V, 3IM)
= G,(V, L) for any i > 3. Then M = [ab’; i > 0} and all strings in M can be
easily recognized. =

Another possibility of applying the construction of Section 3 is the
prediction of growing systems. Suppose that the types of cells of a growing
organism form a finite set ¥ and that the ith generation of cells can be
described by a string w,eV* for i=1,2,...,n; let 1 <i <j < nimply |w,|
<|wj. Hence, all past and the present generation are known and the
problem is to predict the structure of [uture generations, 1.e., the structure of
the ith generation for any i >n Put L= {w;; 1 <i<n}, Jw| =K. Then
(V, L) is finite language and Gg(V, L) and M = L(G(V, L)) can be cons-
tructed. Suppose that M = {v;; i > 1}, where 1 <i <j imply |y} <|v;| and
that v; =w; for any i with 1 <i < n Then it is natural to believe that v
represents the ith generation for any i > n.

A special case of the above situation occurs if a non-negative integer f (i)
is assigned to any i with 1 <i < n. E.g, f(i) 1s the number of cells of the ith
generation of a growing organism, the number of inhabitants in a certain
area born in the year i, etc. We put V = {a, b, ¢}, L= {a'bc/"; 1 €ign},
K =f(n)+n+1, and construct Gi(V, L), M = L (G (V, L)). If there exists a
function g (i) such that M = {a'bc®™; i > 1}, then, by 2.1, g(i) = f (i) for any i
with 1 <i < n. Hence, ¢ is an extrapolation of f and can serve to predict the
value of f(i) for i > n.

2. ExampLE. Let us have f(1)=2, f(2)=4, f(3)=6. Put V = {a, b, c},
L ={abc?, a* bc*, a® bc®). We obtain Go(V, L) = {{a, b, ¢}, {abc?}, {(b, abc?)}>
which implies that L(G,q(V, L)) = ia'bc*; i > 1}. Thus, we can predict that
f(iy=2i for any ieP. =
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Naturally, these examples of problems are very simple and can impress

that the results are obtainable without our theory. More complex problems

can

be solved by means of a program that has been written in the language
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