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Preliminary remarks

Introduction

Biholomorphic transformations play an important role in the theory
of several complex variables. In 1907 H. Poincaré stated the following
question of central importance. Given two domains D, and D, in C",
does there exist a biholomorphic transformation f which maps D, onto D,.
When n = 1, the Hilbert mapping theorem states that every domain
D < C can be mapped onto the Riemann sphere with a number of parallel
slits, and in particular every simply connected domain D < C whose
boundary contains two points at least can be mapped onto the unit disc.
When 7 > 2 the situation is more complicated. This is indicated by & well-
Iknown theorem of Poincaré: the unit ball {|2,|2+4 |23 < 1}, and the unit
polycylinder {|z;| <1, |2,] < 1} in C? cannot be mapped onto each other
by a biholomorphic fransformation.

In 1920 a new approach to the problem was found by Bergman [5].
He considered the Hilbert space L2H (D) of all holomorphic and square
integrable funetions in D, and introduced the function

o0
- Q)
Kp(z, %) = } @m (R)Pn(t), #,teD,

defined in terms of a complete orthonormal system ¢,, m =1,2,...,
in the space L2H (D). This Bergman function is independent of the choice
of the orthonormal system. Furthermore, it is a relative biholomorphic
invariant, and this fact was used by Bergman in the construction of
numerous biholomorphic invariants and the invariant Kaehler metric in. .D.
The introduction of this metric made possible the application of methods
of diffcrential geometry to the study of biholomorphie mappings in the
papers of Kobayashi [21] and Lichnerowicz [22].

Tho geodesic distance induced by the Kaehler structure in D is closely
related to another invariant distance, introduced by the present author
in [30] and given by the explicit formula

= Kyz, ) Ep(t, 2)\"* "
(1) oz, 1) = [1_ (KD(z, 5K, Z)) ]

In the present author’s doctoral thesis [30] the expression (1) was
used to obtain a local characterization of biholomorphic mapping under




6 Preliminary remarks

suitable general condition. It turns out that for overy two domains D,
and D, which gatisty these conditions, and for every two subdomains
U, < D,, U, c D, a biholomorphic mapping f: U, U, extends to
a bibolomorphic mapping between D; and D, if and only if f respects
the rule of transformation of the Bergman function

i — of [of
o6 ) = K, {116), 0] 5, (0]

for 2,te U,;.

In view of this theorem, as well as for other reasons, the study of
the Bergman function and the invariant distance (1) seems well justified.
In the present paper a number of results in this direction is presented.
For the sake of completeness results of other authors and of [30] are
occagionally included.

Chapter O contains basic definitions and examples. The domains
for which the Bergman function is known in a closed form are listed in
this chapter. Among them we indicate an interesting example of B. 8.
Zinoviev (0.9.c).

In Chapter I we recall the properties of the invariant distance (2, ?)
gee [32]. It is easy to note that this distance i8 never greater than one,
and is strictly less than one if and only if Kp(z, t) does not attain zero
value. In the latter case the domain is called a Lu Qi-keng domain. The
question whether there exists a bounded domain D such that K, (2, {) =0
for some 2, t € D was raised by Lu Qi-keng in [23]. Wo will prove a theorem
(stated without proof in [30]) which gives a positive answer to this ques-
tion. In particular all doubly connected Lu Qi-keng domains in the com-
plex plane are biholomorphically equivalent to the unit disc with deleted
center. We shall also prove that the critical points of the invariant distance
are related to the notion of a representative domain introduced by Berg-
man in [3].

In Chapter IT we state sufficient conditions for the Bergman metric
tensor to be positive definite, see [21]. We also give an example of an
unbounded domain D < C?such that K, (2, ) = 0for somoe 2 € D, although
Kp(z,2) #0.

In Chapter IIT we reformulate a conjecture duc to Kobayashi as
follows: If D is complete with respect to the invariant distance, then

lime(q, p,) =1 for every point geD and every scquence g, €D,
m—rco

m =1,2,..., without an accumulation point in D. This conjecture is
still open. We prove that every bounded, strietly starlike Reinhardt
domain of holomorphy D < C" is complete with respect to the invariant
distance, and that the Kobayashi conjecturc holds for D.

In Chapter IV we generalize the results of [30] to obtain a local
characterization of a real analytic mapping which preserves tho invariant
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distance. We also indicate a possibility of further generalization to complex
manifolds [33].

In Chapter V we study the situation, where the sequence of domains
D, cC,\m=1,2,..., approximates a domain D < C™ Here we mention
the following elegant result of Ramadanov [27]: If D,, is an increaging
sequence of domains, then Ky, = converges locally uniformly to K ;,, where D
is the union of all domaing D,,. This suggest the study of decreasing se-
quences of domains. In this case the situation is entirely different ; neverthe-
less, for n = 1 a complete solution is possible. It turns out that the class
of domains D for which a theorem of the Ramadanov type is true can be
charaoterized in terms of fine topology and logarithmic capacity. The
proof uses some results of L. Hedberg on mean gquare approximation.
The above characterization yields an example of an infinitely connected
domain D such that D = N\ D,, D,,; < D,, m =1,2,..., and K,
# lim Kp m=1

m—»oo

Finally in Chapter VI we study some further potential theoretio
aspects of the Bergman function. It was shown in [34] that with the

aid of the Bergman function one can introduce a natural compatification D
of a bounded Lu Qi-keng domain D = C", Thig compactification is invariant
under a biholomorphic mapping, and is analogous to the Martin com-
pactification in classical potential theory In the present paper we extend

the definition of compactification D and ideal boundary D\D to larger
class of domains, which are not necessarily Lu Qi-keng domains but
instead admit a finite covering by so-called distinguished subdomains.
We prove that for cach bounded, circular, strictly starlike domain D,
the ideal boundary of D is canonically homeomorphic with the FEuclidean
boundary of D. In particular this result holds for the unit circle, and we

see that the compactification D generalizes Carathéodory compacti-
fication. Furthermore, for each domain D which can be mapped onto
the unit disc by a biholomorphic transformation the set of all prime ends
is canonically homeomorphic with the ideal boundary of D.

In the general case D = C" we establish characteristic properties

of compactification D. It is shown that sufficient conditions in order
that the ideal boundary of D be equal to the FHuclidean boundary can
be stated in terms of the boundary behaviour of the Bergman function
I, (2, t). We use this conditions to show that for every domain D < C
bounded by a finite number of simple closed curves the ideal boundary
is equal to the Euclidean boundary. This property holds also in a strictly
pseudoconvex domain D < €" with smooth boundary due to the fact
that in this case for cach ¢ € 9D

lim|Kp (2, §)| = oo.

g1
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In this place I feel it apropriate to thank the referee for many useful
remarks, in particular Remark 3.14 and for his very careful reading of
the paper. To Professors Z. Charzyniski, L. Hedberg, J. Xawrynowicz,
and to dr. B. Ligocka I am thankful for numerous discussions.

I would like to dedicate this paper to the memory of my teacher.

Basic definitions, examples and facts

In the present paper we shall be concerned mostly with subsets
of the n-dimensional complex space C™; tho occasional generalizations
to complex manifolds are rather trivial. A point in C" will be denoted by
2 = (%, ..., %,). Obviously C" is a Banach space under the norm

[2] = max |%]
1<in

and a Hilbert space under the norm

ll = ( j2il?) .

qeml

Every norm in C" induces the same topology. By a domain we shall under-
stand a non-void, open, connected subset D < €*. The notation D, € D,
means that D, is a compact subset of D,. For example, a domain D is
bounded if and only if D € C* If D is any domain in C", we shall write

D* = {z: z e D},
where Z = (7, ..., Z,). The notation a,2* is an abbreviation for the mono-

mial

3 L,
akl,__,',cﬂzll see znn.

The set of all functions holomorphic in a domain D will be denoted by H (D).

It is a linear space over complex numbers.
0.1. DeEFINITION. We say that the series

(1) Z.o‘fk’

=0

where f,,: D — C, converges normally in a domain D if the series

D5

k=0

converges locally uniformly in D. We say that 2° € D is a point of normal

convergence of series (1) if this series converges normally in some neigh-
bourhood of 2°.
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0.2. DEFINITION. A domain D < C" is called a Reinhardt domain
with respect to 0 € C" if
($121 822n5 -2y 8,,2,) €D
for every z D and s € C" such that |s| < 1.

0.3. Examprr. Assume that D is the set of points of normal conver-
gence of some Taylor series
Z.oa’ zm
me

m=0
Then D is a Reinhardt domain with the following property: the open
subset of R"
{log 2|y ..., 10g |2,); 2 €D, 2,2, ... 2, # 0}

is convex. The inverse statement is also true, see [17].

0.4. THEOREM. Assume that D < C* is a Reinhardt domain. Then
for every f € H (D) the Taylor series

converges normally in D to the sum f(z).

The set of all functions f € H(D) for which the integral with respect
to the Lebesgue measure

(2) Iflp = ( [1f12dm)™
D

is finite will be denoted by L*H (D)
0.5. THEOREM (Bergman [5]). The space L*H (D) is a Hilbert space
with the scalar product

(fy 9)p = [fadm.
D

Moreover, for each t € D the evaluation functional
(3) L*H(D)> f—f(t)eC,

8 bounded, and its norm depends on the distance from t to the complement
of D. In particular the convergence in the norm (2) tmplies locally uniform
convergence.

By the Riesz—TFisher theorem the bounded functional (3) can be
represented as a scalar product with the unique element g, € L*H (D).
Thercfore for every fe L*H (D)

(4) ) = q).
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0.6, DEFINITION. The function
Kp(z,t) = (g1, 9,), #,teD,
is called the Bergman function of D. The Bergman function is holomorphic

in the Cartesian product D xD*.
We may now rewrite formula (4) in. the form

f) = [f)Ep(z, Ham(z), feIL*H(D).
D

This is “the reproducing property” of the Bergman function. With the
aid of the following theorem the Bergman function can sometimes be
computed in a closed form.

0.7. TEOREM [5]. Suppose that L*H (D) is not trivial. Let h,, be an
arbitrary orthonormal system, linearly dense in the space L*H (D). Then

De

Kp(z,t) =

m

h’m(z) hm(t)? z’ t € D1

I
=3

and the series converges mormally in D x D*.

When an orthogonal, linearly dense system in IL*H(D) is known,
the system %,, can be obtained simply by normalizing all elements of the
orthogonal system. Therefore the following theorem permits the compu-
tation of the Bergman function in the case of a complete circular domain.

0.8. THEOREM [56]. Let D be a Reinhardt domain in C". The family
of all monomials 2™ which belong to L*H (D) is orthogonal and linearly dense
in L*H (D).

Proof. It is easy to check by computation that different monomialg 2™
are orthogonal in the space IL*H (D). It is thercfore sufficient to show that
an element fe L*H(D) orthogonal to all monomials in L*H (D) must
be equal to the zero element. We shall base the proof on an idea of S. Zarem-
ba, see [13] and [40]. By Theorem 0.4 the function f can be represented
as the sum of the normally convergent Taylor series in D. Supose that,

contrary to our statement, f # 0. Therefore there oxists an index m such
that in the serics

o0

f(z) = Za‘kzk

the cocfficient a,, is diffcrent from zero. Consider the hounded Reinhardt
domain

D, ={zerD, |zl < (1—7)"}, O0<r<l.
By orthogonality

2 kg2
1f b, = lan I,
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and
(fs zk)D,. = “lc||zk”42D,.-
When r approaches (1), the first inequality shows that 2* e L*H (D).

Therefore we can pass to the limit in the last equality, and by our assump-
tion we obtain

0 = g, [}

Since |[#*} > 0, this is contradiction and the proof is completed.
0.9. EXAMPLES OF THID BERGMAN FUNOTION.
a. The unit dise U = C

- 1
I{ t = — -,
b. The unit ball B « C*
_ n!
.K t = = = ’
5(2, 1) (1l —2y8 — ... —2,0,)""

C. (P1yPay ..., p,) — circular domain, p, — natural numbers

.Dp = {z e Cnl Izz l2/191_|_ Izélzlpz 4. F ]znizlpn < 1}’

i, 1 om 2 1
K.Dp(z7 t) = n ’
TPy Py aQI“'aqn 1—'])1—'... -y

where ¢ = (2,8, 28y, ..., 2,1,) and each v, assumes the values of all p,
roots of p,-th degree of ¢;,. The expression under differentiation is actually
a rational function of variables ¢, ..., g,, Zinoviev [41].

d. Some particular cases of ¢

1 on (L—by— oo — &y — . —1,)Pm

" 0%y ... 0B, (L—2y—  —Zp— ... —2,)"m—ua,’

KD(I,...,pm,l,...,l)(z7 i) =

Zinoviev [41].
1 & 1—qi—¢,
n? 0gy 09s (1 — 4, — ¢2)* — 4q,¢,’
Zinoviev [41].
K”aa(z’ ) = 1 ¢ E—_—éh-!h)z—g!h% ’
" 72 00y 002 (1 — 1 — 42)°* — 27014,
Zinoviev [41].

¢. Another particular case of ¢ — domain B, = C*% R, = D, ,

Koo, ) =~ 078" 0+ D"+ (- 1a]
D

m? (L —@)*—a¢]?

KI)z,.e("za i) =

Bergman [5].
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f. A generalization of e, consider

Rp(ni v) = {z eC", (vz_vl |zlc|2)”p ‘1'Zn| 2% < 1]7
k=1

k=0

>0, 2 v n.

Then
- -l pnmvtl (e (p=1)(v-1)
where
1
A = n
' (1— D) 2§, vt =N
Ie=v :
and w = s%;
v—1 -
(kz‘l z]c tlc)llp
§ = 7 _ ’
1-— 2 2y t
k=9

Chalmers [9].
g. A particular case of f

KRp(n,n) (z’ 5)

="/~ - ]

- _ n—1 _
“n [(1 - z'n. tn)p - 2 2 tic]ﬂ‘l-1

eza ]l

Chalmers [9].

B(s) = {z € C*||ey]® < 611"},

$6°2, 8, 12, 0,60
T2 a _—z;i'; 33’1?1)3 !
Springer [35].
When a biholomorphic mapping g maps D onto D, the Bergman fune-
tion for D can be computed with the help of the Bergman function for D.
0.10. THROREM. Rule of iramsformation

-KE(s) (2, 5) =

Ei
ot

- . 7 0% . -
Bole, ) = Kale, D () & =0T =000,

Tor the proof see Bergman [5].
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If the Bergman functions for D,, D, are known, the Bergman function
for the product D = D, x D, can be computed by means of the following

0.11, TEROREM (Bremermann [T7]).
Kp(21y 225 b1y b)) = KDI (215 51)1{1)2(52; ta).
0.12. ExamMprLe. For the polydise U” = {z e C": 7| < 1}
. - 1 1
Ln(z, t) = — - —.
o ) = g . A= h)]

0.13. DEFINITION. A domain D < C" i3 called homogencous if for
every two points p, ¢ € D there exists a biholomorphic mapping g: D — D
(automorphism) such that ¢ = g(p).

If D is homogeneous, then by Theorem 0.10

oq  oq
() Ep(p, P) =KD(Q;§)3_§(3_;)‘

0.14. TeeorBM (Ramadanov [27]). For every increasing Sequence
00

of domains D,, such that D = () D,,,

m=1
Jm i, =
and the convergence is locally uniform in D x D*.
The original proof of Ramadanov easily generalizes to n > 1 (see
Chapter V).

I. Lu Qi-keng domains
Some properties of Lu Qi-keng domains

In [23] Lu Qi-keng indicated that in many concrecte examples of
bounded domains, K,(z, {) # 0 for all 2, ¢ e D, and considered the open
problem whether the above property is generally true. Therefore we shall
introduce

I.1. DErINITION. A domain D < C* is called a Lu Qi-keng domain
if K, (2,t) 0 for all z,tcD.

The class of Lu Qi-keng domains has some interesting properties.

1.2. TumoxnM. A biholomorphic image of a Lu Qi-keng domain is
a Lu Qi-keng domain.

Proof. The proof follows from Theorem 0.10.

I.3. TeRoREM. A Cartesian product of two Lu Qi-keng domains ig
a Lu Qi-keng domain.
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Proof. The proof follows from Theorem 0.11.

1.4, TeEOREM. If K +# const and D s the sum of an increasing
sequenoé of Lu Qi-keng domains D,,, then D is a Lu Qi-keng domain,

Proof. The proof follows from Theorem 0.14 and the Hurwitz theorem.

All bounded homogeneous Reinhardt domaing are Lu Qi-keng do-
maing, see Bell [2]. However, it is not always casy to determine if a
given domain is a Lu Qi-keng domain.

1.5. PrROBLEM. Is every .D, (see 0.9.¢) a Lu Qi-keng domain?

An example of a bounded non-Lu Qi-keng domain
I1.6. TemorEM. Oonsider an annulus in the complex plane
D ={r<|z|<1}

such that 0 < r < ¢~ 2. Then D is not a Lu Qi-keng domain.
Proof. The Bergman function for D is given by the series

[v] -

- —1 1 - maz"™
K(z,t) = - - -
p(#?) 2nztiny * ﬂztm 1 —pm?

- — 0O

where in the sum the index m = 0 is omitted, see [5]. It can also be written
in the form

L[, S et  w
Kp2, f) = W[ o +Z((1_wgm)2+ (1_.3 m)g )],

M=0

where w =z2f, ¢ =73 0< o< Jw < 1.

Note that in the above formula the expression in brackets is real
for real w, and for w on the distinguished line |w| = r since in the latter
ease ¢o/w = w. This expression is a continuous funetion of w. Denoting ity
value at w by kh(w), we see that h(w) > 0 for w > 0, and h < 0 for real w,
close to —1. Indeed

m o m-p1

—1 &) 0 0
B(—1) = —— _ é____ S___
(=1 In o (1+40™? & (14 g™+

=)

=
=
i
=]
=
=

By continuity A must vanish at some interior point of the w-annulus,
and the proof is completed.
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Doubly connected Lu Qi-keng domains in the plane

The assumption that » < e~? in Theorem I.6 is not essential. Making
use of some properties of elliptic functions, Rosenthal [28] proved the fol-
lowing

L.7. THEoREM [28]. Ewery doubly connected Lu Qi-keng domain in C
is biholomorphically equivalent to a disc with the deleted cender.

We shall briefly indicate the proof [28]. Since the Bergman function

for the complex plane C is identically zero, it is sufficient to show that
the Bergman function for the domain

D={r<ll<1},

0 < r < 1, assumes zero value at some points of D x D*. As was shown
by Zarankiewicz in [40] (see also [5], p. 10),

- 1 . 7 1
K ) = —— 1 t —_ .
@ o(er ) = =72 fog(eb) + L — 5|
Here 2 denotes the Weierstrass doubly periodic elliptic function of the
second order with periods 2w = 2=t and 20’ = logr?. Its Laurent expan-
sion in the neighbourhood of » = 0 has the form

The corresponding ¢ function is characterized by the equation

' (u) = —P(u)
and the expansion

_ 18, G s
C(u)—-u 60%-|- 140u+...

According to standard notation 5 = {(w), 5’ = {(w’). If we apply the

i . %
Legendre equation 7 _ 0 =T - and note that in our case T
)]

’

1 w 20w 200
oo’ formula (1) takes the form
W

’

- 1 - !
Kz, t) = ;z—i{g’ (log(zt))+%}.

It is more convenient, however, to use another pair of primitive periods
- ’
26 — —logr* and 2w’ = 2mi. Sinee ¢ is an odd function % =Z_,

’
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finally

where 7 = C(w
When 2t =g varies in the ¢-annulus 72 < |¢| < 1, the expression

u = log(2!) assumes all possible values in the closed period parallelogram
with the exception of values # such that Reu = 0 or Rew = —logr2.
Now recall that the Weierstrass function with periods o = a, o’ = bi,
a, b > 0, maps the rectangle 0 < Reu < a, 0 < Imu < b, onto the lower
half plane, and at points symmetric with respect to @ or @' the valnes
of Weierstrass functions are equal ([20], vol. II, p. 3566). It follows that
all exceptional values of the Bergman function form the seb

~

{.ﬂ’(u)—]—-’z—, s o<t<n}.
@

N —logr
Since in our case 1,7,— = %— is real, the Bergman function assumes
w —

all complex values with the exception of the segment (— oo, 2 (mi) +7 @]
of the real line.

Therefore the theorem will be established if we show that 2 (ni) 4% /o
is negative. This follows easily from the formula

7 B p2mg— i f2m g2
‘6’—"}"-@(“) = = ~ { —1)2 +Z 1 hzms_g)z L '(T__hms_z)?jr

where § = ¢™¥%, J = ¢™l% Tm &' Jw > 0.

Indeed, in our case s and h are real, and so the experession in paran-
theses is positive.

Remark. The Lu Qi-keng conjecture has recently attracted some
more attention, see [26] and [36].

I1. Representative coordinates

The Bergman metric tensor

In general it can happen that the evaluation at some point ¢t e D
is trivial, even if L*H (D) contains non-zero functions.
Consider in particular

IL.1. ExampLE. Consider a domain D < C*
= {z e Clz,| < |27} |2| < 1}
with the following Hartogs diagram:
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It i3 a Reinhardt domain. The dimension of Z2H (D) is infinite, and
the evaluation at every point of the plane 2, = 0 is a trivial functional
on L*H(D).

Proof. A simple computation shows that

-1
1 51

ey = (2m)* [ Amst( [ rirariar,) ar,
¢ 0

1
— (21:)2 2m1+ 2 f r%ml—%‘na—l drl.
2
0

Therefore a monomial 27127 is in L2H (D) if and only if m, > m, This
completes the proof in view of Theorem 0.8,

From now on we shall agsume that the evaluation at every point
# € D is not trivial, i.e. Kp(2, 2) is strictly positive in D. If in the real
tangent space to D there is defined a Hermitian form H with respect to

operator J of the complex structure, i.e. an R-bilinear complex form such
that

H(JX,Y) =iH(X,Y), H(X,Y) =H(Y,X),
then the symmetric real tensor ¢ = ReH is J-invariant and
H(ZX,Y) =g(X,Y)—ig(JX, X).

Also the real skew symmetric tensor w = —ImH is J-invariant, On the
other hand, every tensor g or o with the above properties determines the
Hermitian form H, where

w=g9JX,Y), ¢g=owX,JY).

The form H is positive definite if and only if ¢ is positive definite. In this
case ¢ is called a Hermitian structure and we say that « is positive.

2 — Dlssertationes Mathematicae 173



18 II. Representative coordinates

The form

n
o = iddlogKp(z, 2) =1 D) Tyzde;Adz,
Jik=1
where
Plog K (2, %)

Tjﬁ - 3zj 32,,

is real and J-invariant. The corresponding symmetric tensor field g has
the form

n n
(1) g= ‘lr( Z Tz dz; @ dz, + 2 Tflcdzi®dzk)’
hk=1 Jikal
where Tj, = T);.

The form o is positive if and only if the Hessian (T,;) is positive
definite.

We rocall the following theorem of Kobayashi [21]

11.2. TEEOREM. The Bergman melric temsor (1) i8 posilive definite
at a point p € D if and only if for every holomorphic tangent vector at p

there exists a function f € L* H(D) such that f(p) = 0 and Vf % 0.

The Bergman metric determines actually a Kaehler structure in D.
Indeed, by construction, do = dw+ dw = 0.

As was proved by Bergman, thig structure is invariant under bi-
holomorphic transformations.

Agsume now that the Bergman tensor is positive definite in D. In
a neighbourhood of any point ¢ € D the holomorphic functions of variable z

0 - 0 , -
(2) ps(2) = —=log K (2, i) — = log K (1, ?)
ot, ot

8
form a local coordinate system. Indeed, the Jacobian
2log K (2, 1)
0z, 01,
ig different from zero at the point # = ¢ since det (T);) # 0. If D is mapped

biholomorphically onto .D, and #,¢ are mapped onto #,{, respectively,
then a simple computation shows that

det (-‘r’i‘-) = dot
BZJ
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Therefore every biholomorphic transformation can be locally described
as a linear transformation of coordinates x;. For this reagon we shall call u;
covariant representative coordimates in domain D.

The idea of representative coordinates is due to Bergman. He con-
sidered contravariant representative coordinates

b))

where T' = (T'5). The image of D under the mapping (zy, ..., 2,) = (¥'(2),
v2(2), ..., ¥"(2)) was called by him a representative domain. However,
this mapping is generally holomorphic and one-to-one only in a neighbour-
hood of the point ¢. The term “representative coordinates” was introduced
later by Fuks [12].

A property of representative coordinates
‘We shall assume the following matrix notation:
T(z,t) = (Tj,E(z! i)))
where

. PlogKp(z, 1)
t) = — .
0%, 01,

Congider the inverse to the biholomorphic mapping w = u(%). Define

K(wy W) = Kp(#, E)’""(%)

for w sufficiently close to the origin. This funection can be regarded as
the Bergman function of the covariant representative domain. The corre-
sponding component of the Bergman metric tensor

. _ PlogK(w, w)
Tm,k(wi w) - awmawk

can also be written as
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Since
0z, 0%y
awl awn
= T(z, 1)
0z, 02,
ow, ow,,

we have the matrix equation

T(wi w) = [T'(=, 61T (2, 2) [T (2, z),_ll'
Since both sides are holomorphic with respect to w and @, the formula
remaing valid also for values @ independent of w. In particular we may
talkte 7 = 0. It follows that Z = ¢ and we have
(3) T(w, 0) = [T(z, £)"'1T (2, ) [T(t, {) '] = T(¢, 1)

The above formula proves the following
I1.3. LeMma, The coefficients T, z(w, @) of the Bergman metric tensor
expressed in covariant representative coordinates satisfy the condition
T..7(w, 0) = const.

II.4. Note. The idea of the above proof is due to Lu Qi-keng [23]
who gave an analogous result for contravariant representative coordinates

III. An invariant distance

Biholomorphic mappings and canomical isometry

In an abstract Hilbert space H consider the following relation between
non-zero elements: i, ~ h, if and only if there cxists a complex constant
¢ # 0 such that h; = ch,. The set of all equivalence classes forms (in
general infinitely dimensional) projective space P(H). This is a complete
metrio space with respect to the distance

e([ha]y [he]) = dist([hy]NS, [k]NE),
where § = H is the unit sphere. Explicitly
Tl kel ’

Ity —t) )/ ]
— inf [2 _9Re Oty *2)]
ity P [ [l

(Boyy hg) (Rgy Ry) 12
- 2'2[51—, hl)(h;’,’lii]

etrh, ela h,
e*([M], [he]) = : 2

tpty
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It is not difficult to check that every linear isometry between two Hilbert
spaces

L: H->H
induces an isometry
L: P(H)—- P(H)
given by the formula L([2]) = [L(h)].

COonsider now a domain D < C" such that K (2, 2) does not vanish
at any point z € D. Define t: D~ P(I*H(D)) by the formula

T (z) = [gz:l .

The mapping is injective if and only if for each two different points
P, g € D the functions g, and g, are linearly independent. In such & case
we say that D admits the invariant distance

Ky(p,7)Kp(q, 7"))‘%)%.
Kn(p, ) Ep(e,7)

The term invariant distance refers to invariance under biholomorphic
transformations. If ¢: D — D is a biholomorphic mapping, then L: L*H (D)
— I?H (D) is the canonical isometry defined by the formula

Lf = fopdety'.

(1) en(p, 9 =27%e(z(), z(q) = (1—(

The rule of transformation of the Bergman function can be written in
the form

9o = gzoedety’'deto’ (p), P = @(p).
Therefore g, = const-Lgy and [¢,] = L[g;]. Finally

on(?y @) = en([9p); [9,]) = ep(Llg51, Ligzl)
= 913([95]7 [9;]) = 05 (D, q)y

where 9 = ¢(p), § = ¢(g). Actually the invariance could be proved also
directly from formula (1).

ITI.1. ExamrLE. For the unit dise U < C

P—q
1—p7

ev(?, 9 =

I11.2. Remark. In gencral the expression (1) is very compli-
cated. Nevertheless, in comparison with the geodesic distance defined
by the Bergman metric form, it is still quite explicit and admits numerical
computation as soon as the Bergman function is known. Another advantage



22 I1I. Invariant distance

of the invariant distanoce lies in the fact that it is uniquely determined
by the symmetric quotient
K ) K P
Hip,q) = o(2, 9 Kplg, P)

Kp(p, p)Ep(4, )

which is a real analytic function on the whole Cartesian product D x D*,

IIL.3. Remark, By the Schwarz inequality the invariant distance
is never greater than one. It is always less than oneif and only if D is a Lu
Qi-keng domain.

Critical points of the invariant distance

Consider now the invariant distance gp(p,?) as a function of the
second variable, We adopt the following

III.4. DEFINITION. A point at which ep(p,?) has a local extremum
or vanishing differential is called a oritical point of the invariant distance.

We can now state the following

IIL.6. THEOREM. In order for the point t € D to be a oritical point of
the invariant distance g(p,t) considered as a function of the second variable
it is necessary and sufficient that one of the following conditions hold:

(a) K(p,?t) =0,

(b) In the mapping onto the representative domain (covariant or conira-
variant) with respect to the point t, the point p corresponds to the origin.

Proof. The critical points of the invariant distance are exactly
stationary points of the real analytic expression

_ Ep(p, ) Ep(t, P)
@ ¢= Ky(t, £) ‘

A direct computation shows that the differential of (2) is equal to

n
Q > (uzdt, + pz dt,)
=1
and vanishes either with (a) or when u4; =0, s =1, 2,...,n, The latter
condition means exactly (b).

Completeness with respect to the invariant distance

A metric space D < C" is complete if every Cauchy sequence p,, € D,
m =1,2,..., converges to some point p € D. The completeness of D
with respect to the geodesic distance was studied by Kobayashi in [21].
He proved that a bounded domain D < C™ is complete with regpect to the
geodesic distance if and only if the image (D) in P(L*H(D)) is complete.
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The ideas of [21] can be used also in the study of completeness with respect
to the invariant distance.

IIL.6. THBOREM. A sequence p, €D, m =1,2,..., 18 Oauchy with
respect to the invariant distance if and only if the sequence z(p,,) is Cauchy
in P(L*H (D))-

Proof. Immediate from the definition of the invariant distance.

In particular, there is no distinction between completeness with
respect (o the geodesic distance and completeness with respect to the
invariant distance. Therefore some of the following theorems will restate
the results known for geodesic distance. For simplicity we restriet our
remarks to bounded domains.

ITL.7. TEEOREM. A sequence p,cD, m =1,2,..., i8 Cauchy if
and only if there exists an f € L*H (D) such that |f] = 1 and
2
(3) lim @

m—ro KD (Pm! rﬁm)

Proof. By the previous theorem, a sequence p,, is Oauchy in D if
and only if v(p,,) is Cauchy in P (L* H(D)). Since the metric space P (L*H(D))
is complete, this means that z(p,,) converges to some element [f]. Since
with no loss of generality we may assume that ||f|| = 1, the latter condi-
tion is equivalent to (3).

II1.8. TeEcorBEM. The Huclidean distance and the imvariant distance
induce the same topology in D € C".

Proof. If p € D and lim |p, —p| = 0, then by the continuity of the

m—0

Bergman function lim ¢(p,,») = 0. Conversely, if lim p(p,,,p) =0,
m—r0a

mM—>00
there exist constants ¢, #0, m =1,2,..., such that o,g, converges

to g, in I*H (D). Since 1 e L*H (D),

limo,, = lim(o,g,, ,1) = (g, 1) = 1.
M-»00

m—>00

Sjllce ZjELz.H(.D), j = 1,2’ ...,’n,

. 1
lim A'?"J'(.'pm) = lim E_(zj’ cmgpm) = (zj! gp) =% (P)

m—-oo m=+0 U
for j =1,2,...,,n, q.o.d.
This theorem is also true for the geodesic distance.

II1.9. TarorEM (Kobayashi [13]). Assume that for every sequence p,,
without an accumulation point in D and for every f e LI*H (D),

(4) lim |f(Dm)?

—_— =0.
Mm—+00 KD(pmi ﬁm)

Then D is complete.
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Proof. By contradiction. Suppose that p, is a Cauchy sequence
without limit in D. In view of the theorem p,, has no accumulation point
in D. Therefore (4) holds. Now it is enough to note that (4) contradicts (3).

At this point it is worth while to note an interesting

II1.10. ConJEoTURE (Kobayashi [13]). If D is complete, then the
agsumptions of Theorem ITI.9 are satisfied.

The Kobayashi conjecture can be neatly expressed in terms of the
invariant distance.

OI1.11. TeworeM. The assumptions of Theorem IIL.9 are equivalent
to the following: for every point p € D and every sequende q,, m =1, ...,
without an accumulation point in D,

() limo(p, gm) = 1.

m—+co

Proof. Assume that (4) holds and take f = g,. This implies (5).
Conversely, note that (5) implies (4) for all f of the form g,. Denote by
F < IL*H (D) the subset consisting of all f such that (4) holds. It is easy
to see that F is a linear subspace. We show that I is closed. Consider
a sequence f; € ¥, j =1, 2, ..., which converges to f e L*H (D). For every
¢ > 0 there is a j, such that ||f; —f|l < ¢ and consequently for each m

lf}o (.pm) _f(pm)lz < GZKD (pm7 @m)’
By assumption the inequality

| £ (D)2

T T x¢
'KD(pm) pm) =
holds for all m > M. For such m

@I _ 2150 (0n) = @)+ 215 (2
-KD (Z’m’ ﬁm) = KD (Pmr ﬁm)

Therefore f ¢ F'. Since F contains the linearly dense set of all functions
of the form g,, p € D, it follows that F = L’H (D). This completes the
proof.

We shall now state two sufficient conditions for the completenoss
of domain D. In fact, each of these condition implies the Kobayashi
condition of Theorem III.9.

IIT.12. TEEOREM. Suppose that for each boundary point p of a bounded
domain D there exists a funotion b holomorphic in D and suoch that

(i) |h(2)| <1 for ze D,

(i) lim |A(=)| = 1.

a—p

Then D s complete.

< 42,
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Proof. Let p,, be an arbitrary sequence of points which has no accu-
mulation point in D. We want to show that for every f e I*H (D)

flom)l®
KD (pm1 ﬁm)

With no loss of generality we may assume that p,, converges to p € 8D.
For each &> 0 there exists a natural number % such that |B*f|% < e
by the Lebesgue dominated convergence theorem. For m sufficiently
la’rge (1—8) < Ihk(pm)Iz’ and

(1~ &)1 (2" < 1B (D) f (P < Ep (Dmy Boa) I F -

It follows that for sufficiently large m

|f(.pm)|2 < e
K5 (P ) 1—e¢

Iim 0.

!
q.e.d.
I11.13. CororrLARY (Kobayashi [21]). Every analytic polyhedron

D={e@: |g)<1,j=1,2,...,s},

where g, e H(@), D €G is complete.

Proof, For every p € 0D there exists a j such that |g;(p)| = 1. Set

h e gj'
III.14. Remark. A set F contained in 0D is called a peak set for
the space A4 (D) (of functions continunous in D and holomorphie in D)
if there exists a function » € A (D) such that hlz = 1 = sup |h(z)|, and

geD

|h| < 1 on D\J. By a result of Davie and Oksendal [10] if D is a strictly
pseudoconvex domain with a smooth boundary and p e 0D, then {p}
is a peak set. From this and Theorem III.12 it follows that every strictly
pseudoconvex domain with a smooth boundary is complete.

A second sufficient condition for completeness has the following form.

ITI1.15. TEmorEM. Suppose that for each boundary point p of a bounded
domain D
(i) im K p(2, 2) = oo
fe—p
(ii) The set of all functions bounded in a neighbourhood of p 8 linearly
dense in L*H (D).
Then D is complete.

Proof. As before, we shall show that condition (4) of Theorem IIIL.8
is satisfied, and we may assume that p,, converges to p € dD. It is evident
that the set I of all f satisfying (4) contains the linearly dense set (ii).
Since F' is a a closed linear subspace, it follows that F = L*H (D), q.e.d.
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IIL.16. THROREM. Hvery bounded Reinhardt domain of holomorphy D
suoh that AD = D for 0 < i <1 is complete.

Proof. We shall show that assumptions (i) and (ii) of Theorem III.15
are satisfied. S8ince D is, in our case, starlike with respect to the origin,
the sequence f,(#) = f((1—1/m)z) is convergent to f in L*H(D) and
consists of functions bounded in D. This proves (ii).

In order to prove (i) note that the Hartogs diagram of D

Dt ={zeD,z >0}
is mapped onto the convex domain in the transformation
(R1y ooy 2p) > (logleyl, ..., loglz,|).

Oondition (i) is certainly satisfied where n = 1. Therefore we can apply
mathematical induction, and assume that the theorem is true for all
domains of lower dimension.

Consider first the case where one component, say p_, of the boundary
point p is equal to zero. The intersection of D with the hyperplane {z, = 0}
is a Reinhardt domain D' = C"%, and p’ = (p1, ..., Po—1) 18 & boundary
point in D', By induction hypotheses lim K, (p,,, B,,) = . Let U be

m—09

a disc in the complex plane with center at the origin such that D <D’ x U.
Then

KD(Z’m’ —ﬁm) = KD’x U(pmr -ﬁm) = KD’(.'palm ﬁ;n) KU( (.pm)n! (p'm)n)

and diverges to infinity with m.

Assume now that p; #0,j =1,2,...,n In view of the symmetry
of the domain D we may additionally assume that p; =r;, 7, > 0,
j=1,2,...,,n, and p is a boundary point in the Hartogs diagram DT,
Since logry, ..., logr, i3 a boundary point in the convex domain log D,
there exist constants 4;, j =1,2,...,n, such that

Ajlog |z |+ ... +4,loglz,| < A logr,+ ... + 4, logr,
for all z e D*. It is easy to see that all A; are non-negative. Hence

"11 An

%
— <1

7

“n,

—

tee
Tﬂ-

for all z e D*, and also for all z € D.
For any natural % define in D a continuous function

An)k

4y 2

%1

8$,.(2) = ||—

1(2) ( .

Then s,(2)<1, zeD,

=
T
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Let h; be a function holomorphic in D defined by the formula

E(kd))+1 2 E(kdy)+1
hlc z) —‘i( ) ('_”)

A7,

Now for all ze D

2, |* z |%n
8. (2) — b (2)] = 8,(2) [1— Nt Zn ]’
T] Tn
where 0 <a;<1,j =1,2,...,n Since D is bounded, we obtain

lslc (Z) - Ihlc(z)ll < GOHSU‘S;G(Z)
or

hie(2)] < |1y, ()] — 84, (2) )|+ 184 (2)] < const-s,(2).
By the Lebesgue dominated convergence theorem lJm Ikellp = 0. Also

lim h,(2) = 1 for every fixed k. Therefore for every & > 0 we can find k,
e—p

with [\ || < e, and for m large enough Py (Pm)] > 1 —e. Henoce

Py (B2 (1 — )2

Kp(Dms Pm) =
D pm’ pm) “hkollz = 82

Therefore (i) holds and the proof is completed.

IV. Extension theorem

Semiconformal mappings

IV.1. DeFINTTION. Qonsider two domains D, D = C" with a positive
definite Bergman metric tensor and the invariant distance function.
Let U = D be an open connected subset. A mapping

h: U->D

is called a local semiconformal mapping with respect to .D and D if for all
z2,teU

(1) op (h(2), k(1)) = ep(2,1).

In other words, a local semiconformal mapping % is an isometry of U
and U = h(U) with respect to the invariant distance.

IV.2. Remark. Every local semiconformal mapping is a homeo-
morphism of U and U. This follows immediately from Theorem IIL.8.
In partmulam the inverse of a local semiconformal mapping with respect
to U, D, D is a local semiconformal mapping with respect to U, D, D.
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IV.3. THEOREM. Hvery local semiconformal mapping is real analylio.

Proof. Let % be such a mapping. We shall prove that 4 is real analytic
in a neighbourhood of an arbitrary point p € U. Denote = h(p) and
Z = h(z) for z ¢ U. By assumption

ﬁ(éfﬁ)_ﬂ(z’p) =0,

where H and H denote symmetric quotients in D and D, respectively.
We look for 2n points 7!, 22, ..., 2 such that in a neighbourhood of p the
system of 2»n equations

B@E ) ~H(E* 1) =0, k=1,2,...,2n,

defines a unique real analytic function ¢ = k(t) such that § = h(p).
In view of the implicit mapping theorem it is enough to find %%,
k=1,...,2n, in such a way that

0l (&', D) oH (&, B)

af’l 3571.
(2) det #0.
OH(™™,p)  OH (2", P)
B, T O

A simple computation shows that

@  EED s 506, D) 5,056,
De Ds

where ji;(Z) are representative coordinates with respect to #. Since repre-
gentative coordinates form a local coordinate system in a neighbourhood
of #, we can find in this neighbourhood points &, &k =1, 2, ..., 2n, such
that p;(2°) = e8! and p;(2"1’) = dedlfor j = 1,2, ..., n. For sufficiently
small & points z* belong to U, and there are points 2* € U such that z*
= h{2*). Also H (2%, ) is close to 1 and therefore does not vanish. It follows
that for such small & determinat (2) differs only by a non-zero factor from

I1
det #0, q.e.d.
—I11I

The next theorem shows that representative coordinates are very
useful for the study of local semiconformal mappings.

IV.4. THEOREM. Suppos(i that a local semiconformal mapping h lakes
a point p € U onto point p € U. Then if both z € U and # = h(z) € U belong
to a represeniative coordinate meighbourhood of points p and P, respeciively,
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the correspondence z — 2z can be described in terms of representative coords-
nates as an B-linear non-singular transformation

.U1€z) 1751_(5)

w@ | o aa
@ @ | = a6 |

i (2) i (8)

where X is the Jacobi mairiw of h at p and

—_— ——

H(2) = p=(2),  fg(2) = H3(2)-
Proof. Since 2, and # are in a coordinate neighbourhood, we must

have Kp(z,§) 5= 0 and K3(3, p) # 0 (otherwise the representative coordi-
nate has a pole at 2, or 2). We may differentiate the identity

H(z, 1) = HE, )
with respect to £, at the point ¢ = p. It follows that

B Benige = 26D D) (56 5 + 50

equation which is equivalent to (4), g.e.d.
IV.5. TexcoreM. Let X be the Jacobi matrix at p of a local semiconformal
mapping h. Denote
-]
A\ o/’

where T = [T;5(p, P)]. An analogous matriz for D and § = h(p) will be
denoted by .
Then the following matrin equation holds:

(6) Q = X'QX.
Proof. At the point p and p

D(tory ooy piny BTy ooy M) = ¢ D(iiyy - ey finy BTy -9 B7) =Q'
REMAE o=, - = = .
‘D(zli""z'n’z]""izn) D(zl’.--’zn,zl’-oo’z”)

Also in view of (4)

Dy o ooy tay b1y -'-,ﬁﬁ) =X
D(F‘l) ---r,ﬁmﬁiv "'Maﬁ)




30 1V. Extension theorem

Therefore
Q! — _X' Q’" ’ X

and the theorem follows by transposition on both sides of this equation.

(0 .{4_)

be the Jacobi matriz at p of a local semiconformal, holomorphio mapping h.
Then the matriw equation (6) is equivalent to

(7) T =474,

Proof. Direct computation.

IV.7. DEFINITION. A local semiconformal mapping #: U D, U < D,
such that U = D, D = k(D) is called a semiconformal mapping.

IV.8. Remark. It is clear that a mapping k: D — D is biholomorphic
if and only if it is holomorphic and semiconformal.

IV.9. Bxampre, If n =1, every local semiconformal mapping A
is either holomorphic or antiholomorphic. Indeed, the matrix equation (6)
yields in this case

oh oh ok 0oh
0 Tl.’i —51—’- 3_P 0 Tﬁ _3; a_ﬁ_
(T;,IO )= o o (f’i,o ) & on
op 0p op 9
In particular
oh oh
—3}7-—3—1’-1115 = 0.

Since always 1"’1.-1 > 0 and the ring of real analytic functions in U has no
zero divisors, it follows that 64/ép ~ 0 or Oh/dp =0, q.e.d.

IV.10. ExavmpPLp. The mapping of the unit polycylinder onto itself

(21) 22) = (213 %)

is clearly semiconformal and is neither holomorphic nor antiholomorphic.

We shall now investigate the possibility of an extension of tho local
semiconformal mapping.

IV.11. THEEOREM. 4 real analytio continuation in D of a local semicon-
Jormal mapping with values in D is independent of the path of continuation.

Proof. Assume that the variable z varies along the first path and the
variable ¢ varies along the second path of the continuation. We shall
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prove that
(8) 05 (h(2), h(2)) = op(2,1).

This is clearly sufficient, since for 2 = ¢ the right-hand side becomes zero;
hence h(z) = h(?). In order to prove (8) note that it is equivalent to

(9) H (h(2), h(t) —H(z, 1) = 0.

The left-hand side of (9) is a real analytic continuation of the function
identically zero when 2,7 € U. In view of the law of permanence for real
analytic functions the continuation in question is identically zero, and the
proof is completed.

IV.12. CorROLLARY. With the notation as in the previous theorem consider
the set Dy = D such that z € Dy if and only if there exwists a real analytio
continuation of h along a path in D which ends at 2, with values in D. Then h
extends 10 a well-defined mapping h: Dy— D and the extension is a looal
semiconformal mapping.

Proof. We need only to show that the extension is a local semicon-
formal mapping. This follows from the fact that the left-hand side of (9)
vanishes for z,t e D,.

Extension theorem

Under the additional assumption that D is complete with respect
to the invariant distance it can be proved that D, = D,

IV.13. BXTENSION THROREM. Assume that U < D, D is complele
with respect to the invariant distance, and h: U ~> D is a local semiconformal
mapping with respeot to D, D. Then h possesses the unique extension to a local
semiconformal mapping

h: D D.

Proof. We shall prove that D, = D and the theorem will follow from
Corollary IV.12. Assume to the contrary that p € D is a boundary point
of Dy, and let p,, € D,, m =1,2,...,be a sequence convergent to p in
Euclidian topology. It follows that p,, and hence A(p,) is a Cauchy se-
quence with respect to the invariant distance. Since by assumption D
is complete, the sequence %, = h(p,,) converges to some point p e D.

Consider a neighbourhood V of the point p, relatively compact in
a representative coordinate neighbourhood of this point, and denote by 14
a similar neighbourhood of the point p. For large m, K,(z, p,) converges
to K,(z, p) # 0 uniformly for 2z € ¥, and therefore K, (2, p,) # 0 by the
Hurwitz theorem. It follows that the representative coordinate mapping
with respect to p,, converges uniformly on V to the representative coordi-
nate mapping with respect to p. Analogously the representative coordi-



32 1V. Extension theorem

nate mapping with respect to $,, converges uniformly on ¥V to the repre-
sentative coordinate mapping with respect to 5. It follows that for some j
the representative coordinate mapping with respect to p,, say u, maps
biholomorphically ¥ onto an open neighbourhood W of the origin, and
the representative coordinate mapping with respect to ;, say &, maps
biholomorphically ¥ onto an open neighbourhood W of the origin. There-
fore we can consider ¥V and V as the representative coordinate neighbour-
hoods of points p, and p;, respectively.

Consider 2z € D,. By Theorem IV.4 there exists an I-linear mapping
L: C"— C" determined uniquely by the Jacobi matrix of 7 at p; and
such that if 2 e V and # = k(z) € V, then the mapping b is given as the
composition

(10) 2o u(e) S G &

Tn particular for every m such that p,, € ¥V and $,, € ¥ we find

L &~
#(Pn) = B(Dy)-
‘When m goes to infinity, the continuity of L yields

L s
u(p) = a(d).
It follows that the real analytic mapping (10) is well defined in a neighbour-
hood of the point_ p. Consider in this neighbourhood a point p,, such that
Pn €V and B, € V. For 2 close to p,,, z € V, # € ¥V, and the mapping (10)
coincides with 2. Thus 2 possesses a real analytic extension to p € .D,

with values in D. This contradicts the definition of D, and the proof is
completed.

Now we can easily prove

IV.14. THROREM. Assume that D, D are complete with respect to the
tmvariant distance, U < D, and

h: U-—>D

18 a local semioconformal mapping. Then h possesses a unique exiension to
semiconformal mapping of D onto D

h: D— D.

Proof. In addition to % consider a local scmiconformal mapping
with respect to D, D

r': U - D,

where U =- (U). By the extension theorem wo can extend % and A™!
to local semiconformal mappings

h: DD and &': D D.
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By the law of permanence for real analytio functions both hoz~! and
h~'oh reduce to identity. We conclude that % maps semiconformally D

onto D and »~* is the inverse semwon:formal mapping. The proof is com-
pleted.

Local characterization of a biholomorphic mapping

Consider two domains D, D = C" Let U be an open connected
subset of D. Oonsider a holomorphic mapping

(11) h: U— D.

IV.16. DEFINITION. We shall say that & 'respect the rule of trams-
formation of the Bergman function if

(12) Ep(z, 1) = Eg(h(2), h(t)) deth’ (z)deth’ (1),
where %) denotes the holomorphic Jacobi matrix of .

IV.16. Remark. Assume that » takes values in an open connected
subset U of D. Consider an arbitrary local coordinate system a in U,
and an arbitrary local coordinate system a in U. In other words,

a: U—a(U), é&: U—a(l)
are biholomorphiec mappings. There exists a unique funetion K% holomor-
phic in a(T) x ¢(U)*, and a unique function K3 holomorphic [in &(T)x
xa(UY* such that
Ey(z, 1) = K3 (a(), a(?) deta’ (2)deta’ (?)
for z,te U, and
K3(3,1) = K% (@(8), a(?) det & (¢)deta’ ()

for z,te U.
The mapping kb induces the holomorphic mapping h,z = Gha™"
ozt a(U)—a(0)

and vice versa. Wo shall say that h, 3 respects the rule of transformation
of the Bergman function if

(13) K32y 8) = K2 (h,:(2), hog(h)) dethi (2)debhz (2)e

It is not difficult to show that h respects the rule of transformation of the
Bergman function if and only if &, does.

1V.17. THEOREM. Assume that D and D are complete with respect to
the invariant distance, U is an open connected subset of D and

h: U—>D

3 — Dissertationes Mathematiecae 173
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s8 holomorphic. Then h extends to bikolomorphic mapping of D onto D
h: D— D

if and only if it respects the rule of ransformation of the Bergman function.

Proof. The necessity is obvious. For the sufficiency note that (12)
implies that & is local semiconformal mapping. Therefore by Theorem 1V.14
h extends to a semiconformal mapping of D onto D. Since the real analytic
continuation of a holomorphic mapping must be holomorphic, we conclude
that % is holomorphic with a differentiable inverse, and hence biholo-
morphic, q.e.d.

IV.18. OOROLLARY. Assume that D and D are complete with respect
to the invariant distance, and p € D. The domains D and D are biholomor-
phically equivalent if and only if there exists a holomorphic mapping h in
a neighbourhood of p, with values in D, such that

(14) Kp(z,2) = Kg(h(2), h(z)) |deth’ (2)]2.

Proof. It is well known that (14) implies (12) for all 2 and ¢ which
take independent values in some small neighbourhood U of p. Of course
we may assume that U is connected. Therefore A: U — D respects the
rule of transformation of the Bergman funection, and by Theorem IV.17

extends to a biholomorphic mapping of D onto D. The sufficiency is
therefore proved. The necessity is trivial.

In some special local coordinate systems Corollary IV.18 takes an
even more tangible form. We shall first prove

IV.19. LEMMA. Consider a domain D < C" with a positive definite
Bergman metric tensor. Let p be an arbitrary point in D, and u the represen-
tative coordinate system at p. Then there exists a C-linear tramsformation
with matriv A, such that in the local coordinate system

a=Au

the coeffioients of the Bergman meirio tensor at the origin form the unit matrio I.

Proof. Let T be the hermitian matrix associated with the Bergman
metric tensor at the point p. It follows from (3), Section II that for the
same tensor expressed in representative coordinates the cooresponding
matrix is equal to 7', Actually we are looking for a matrix A such that

T7'=A'I4.

Since the Bergman tensor is positive definite, 7-! is a positive definite
hermitian matrix and can always be written in the form

T-!' = A'4.

This ends the proof of the lemma.
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IV.20. Remark., Note that

Kp(z,2)

(16) K%(a(z),a_(z—)) = (4ot T(z, B

detT(p, P).

We can now state

IV.21l. THEOREM. Consider two domains D, D = C", Assume that both
domains are complete with respect to the invariant distance, and the Bergman
tensor is positive definite in D and in D. Let p e D and § e D. Consider
a local coordinate system a in a neighbourhood of p consiructedin LemmaIV.19,
and an analogous local coordinate system a in a neighbourhood of the point .
Then the domains D and D are bikolomorphically equivalent with a point p
going into p ¢f and only if there exists a unitary matriz U such that

(16) Ep(a, &) = K§(Ua, Ua).

for all sufficiently small a.

Proof. Necessity. Let h be a biholomorphic mapping of D onto .D
such that p = h(p). Let U = h,;. Since %, ; is linear, it follows that U
is linear. Now in both local coordinates the cocfficients of the Bergman
tensor form the unit matrix. In view of the invariance of the Bergman

tengor with respect to biholomorphic transformation, we must have
I="U1D.

Hence U is unitary. Finally (16) follows from the fact that U respects the
rule of transformation of the Bergman function.

Suffioiency. From identity (16) it follows, as in Corollary IV.18,
that U respects the rule of transformation of the Bergman function.
Consider a biholomorphic mapping % of a neighbourhood of p onto neigh-
bourhood of p such that k.3 = U. In view of Remark IV.16 h respects
the rule of transformation of the Bergman function, and h(p) = p. By
Theorem IV.17 % extends to a biholomorphic mapping of D onto D.

The proof is completed.

IV.22. Remark. Substituting ¢ = 0 in formula (16) yields in view
of (15)

Jp(p) = Jﬁ(ﬁ)y

where J, is the invariant introduced by Bergman, see [5]

Kp(p, )
7o) = T, )
1V.23. Remark. Most of the results of this chapter can be generalized
to complex manifolds, see [33].
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V. Domain dependence

Ramadanov theorem

In 1967 I. Ramadanov proved the following theorem:

V.1. TecoreM [27]. Let the bounded domain D < C be the sum of an
increasing sequence of domains D,,, m =1,2,... Then the sequence of
Bergman functions Kp_(2,%) converges to Kp(2,t) looally uniformly in
D x D*.

We shall give a proof of this theorem which is a slight modification
of the original proof [27]. Also we shall restate the theorem in a more
general form. Our proof will use

V.2. LEMMA. Denote by S the subset 8 < I*H (D) consisting of all
functions f such that f(t)> 0 and ||f|| < F(@)'%, t a fived point in D. Then the
Bergman function

(1) p(2) = Kp(2, )
18 uniquely characterized. by the properties

(i) p € 8;

(i) if fe 8 and f(1) > @ (1), then [ = .

Proof. First of all note that there exists at most one element
¢ € L*H (D) which satisfies (i) and (ii). It is therefore suficient to show that
(1) has both properties. Property (i) is evident. We shall show (ii). Con-

sider first the case where f({) = 0. Then f =0 and ¢ = 0. In the other
case congider the functions

i P
@ @ ™ e

It is well known that the second function is uniquely characterized as
an element in the set
{h € I*H (D): h(t) =1}

with the minimal norm. On the other hand, the first funection is also in
this set, and has an even smaller norm since

R 1 || g
i | = FoT S FoT S oo | ew

It follows that both functions in (2) are equal. Equality in (3) yields
f(&) = o(t) and (2) again yields f = @. The proof of the lemma is completed.

V.3. TErorEM (Ramadanov). Let D be a domain in C". Assume
that D is the sum of an increasing sequence of domains D,, m =1, 2, ...

Then the sequence of Bergman functions K Dy, (%) }) comwerges to K, (z,1t)
locally wuniformly in D x D*.

(3)
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Proof. Let I be an arbitrary compa.ct subset of D. We note that the
family of functions K,, (2, {) = Kp,, (¢ t) is bounded on F x F*. Indeed,

let @) be any domain such that F < Q < D. For sufficiently large m,Q < D,,
and we have

(4) o (2) D)l

By the Montels theorem the family K, (2, ), m =1,2,..., is normal
in D x D* Therefore a certain subsequence K, (z t) converges locally
uniformly to sorme holomorphie function k(z, 1) in D x D*. We shall show
that f(¢) = k(z, %) € 8. Inequality %(¢,£)> 0 is obvious. Consider an
arbitrary @ € D,

For large j, @ @ij and

I3 E)llg = M [Ty, (-, Bl < liminf K, (- B)lp,,

= limint®,, (¢, 8" = k(t, )*.

J—>o00

Since @ is arbitrary it follows that
(-, Dllp < B2, )2,

Therefore fe S, Now the inequality K,(t, ) < K, (t i) implies that
Kp(t, 1) < f(t). From Lemma V.2 we conclude that

Ep(y0) = (-, B,

We conclude that an arbitrary subsequence of the sequence K, (z, ?)
contains a subsequence which converges to K (z, t). Therefore the sequence
K, (2, t) itself converges to K (z, f) locally uniformly in D x D*, and the
proof is complete.

An analogue of Ramadanov theorem for decreasing sequences

The Ramadanov theorem suggests the study of the sequence Hp,
for a decreasing sequence of domains.

V.4. TErorEM. Let D,, be a decreasing sequence of domains such thai
a domain D is contained in every D, . The sequence Kp, converges to Ky
looally uniformly in D x D* if and only if for every t e D"
(b) lnn-KDm( ) ) = Kp(1, t)'
m~—>00
Proof. The necessity is obvious. We shall prove the sufficiency of
the condition. FFor an arbitrary compact F < D there exists a constant M

such that max|Kp(z,2)| < M. Hence for z,tel
el

\Ep, (2, 1) < Kp, (2,2 Kp (8, 1)'* < Eple, 2P Kp(t, )P < M.
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It follows that K, is a Montel family on D x D*. It is now sufficient the
show that every convergent subsequence of this family eonverges to I( .
With no loss of generality we consider the sequence K, itself, assuming
that it is convergent to a function %, and we want prove that &k = K.
For every compact ' < D and ¢ € D we have

f (-, )2 =lim [|Kp (-, 8)? < limint f [ K p,, (+ )12

m—00 m~»00

=limKp, (¢, 1) =k(2,1).

m-»o0
Since F is arbitrary, |k(-, i)} < %(¢, ) = Kp(t,t). By Lemma V.2
k(-,t) = KEp(-, t) for every ¢ € D, and the proof is complete.
By L:(H) we shall denote the Hilbert space of all complex functions
which are square integrable on a set JJ, and holomorphic in the interior
of B. The set of functions defined in # and possessing a holomorphic exten-

gion to an open neighbourhood of # will be denoted by H(Z). We shall
see that our problem is related to the following

V.6. PROPERTY. H(E) is dense in LZ(I).
In the following we shall assume that B is compact.

V.6. DeriNiTION. We ghall say that a decreasing sequence of domaing
D,, approximates F from outside if for each open & such that F < G the
inclusion

B cD,CG

holds for all sufficiently large m.

V.7. TeEOREM. Suppose that B = D has Property V.5. Then for every
sequence D, approximating E from outside

looally uniformly in D x D*.

Proof. Congider a fixed te.D and an arbitrary fe L*H(D). Set
Jf=0 on E\D. Then feL;(E). Oonsider any h e H(H). For large m,
h e L*H(D,,), and we have

()] < Ep,, (¢, 8)*1Ihlp,, -
In the limit m — oo we obtain
B () < B (2, 872 [Rllg,
where k(, f) = lun KD (t, t). Since H (M) is dense in L:(H), the above
inequality holds fo1 Jf. Hence
F@OI< T, 21 lg = %ty 3 ifllp.
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It follows that K (¢, #) < k(t, ). Since the opposite inequality is obvious,
we have

m—00

for all # € D. In view of Theorem V.4 the proof is completed.

V.8. TurorREM. Suppose that a sequence D,, approwzimates B = D
from the outside, (B) holds and that the boundary of D has Lebesgue measure zero.
Then H has Property V.b.

Proof. It is well known that the family K, (-, f), ¢ € D, is dense in
L*H (D) and therefore in L;(Z). The fact that .K' Dpy (¢, ) converges to
K (¢, t) implies that K D, (" t) converges to K, (-, f) in an L% norm. Since
X, (- t) e H(EH), the proof is completed.

A counterexample in the plane

It is easy to give an example of a sequence of domains D,,, m = 1,2,...,
approximating from outside the closure of D and such that (5) does not
hold. For example we may take D, = {|z| <1+1/m} and D = {jz| <1,
z¢[0,1)}

In this example an essential role is played by the fact that D has
a slit along the positive radius, and therefore is not equal to the interior
of its closure. However, it is possible to find a counterexample to (5)
which satisfies

D = (D)
and the boundary of D has measure zero. In view of Theorems V.7 and V.8
this problem is reduced to finding D such that H (F) is not dense in L} (H),
where ¥ = D. We note the following

V.9. THEOREM (Havin [14]). Let B be a compact set in the complew
plane. Then H(H) is dense in L:(H) if and only if the set of all poinis at the
boundary of D which do not belong to the fine closure of the complement of H
has zero logarithmic ocapacity.

This theorem yiclds

V.10. QorovrrARY. Let D = (D)° be a bounded domain in the complew
plane, such that the Lebesgue measure of its boundary is equal to zero. Suppose
that the decreasing sequence of domains D,, approzimates D from the outside.
Then (5) holds if and only if the set of all points at the boundary of D which
do not belong to the fine closure of the exterior of D has zero logarithmio capac-
ity. In particular, if the complement of the closure of D has a finite number
of components, then (6) holds.

Lot us consider tho unit disc with a closed segment removed. Irom
this domain we remove a scquence of pairwise disjoint closed dises @,
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which accumulate at every point of the segment. In this way we obtain
a bounded domain D such that D = (D)° and 8D has Lebesgue measure
zero. Liet 7, be the radius of the disc @,.. If r, converges rapidly to zero,
no point of the segment belongs to the fine closure of the complement
of D. Since a segment has positive logarithmic capacity, (6) does not
hold in view of Corollary V.10.

VYI. The ideal boundary

Definition of the ideal boundary (2)

Oonsider a domain D < C obtained from the square by removing
countably many closed rectangles which converge to a segment on the
gide of the square (see the figure).

N

_

It is well known that a biholomorphic mapping of D onto the unit
dise U = C does not admit an extension to a homeomorphism between D
and U. This example shows that the Euclidean compactification D of
a domain D is “unnatural” for the purposes of complex analysis. A proper
compactjﬁcation in this case is the classical Carathéodory compactifi-
cation D obtainded by ajdoining to D all prime ends.

In the following we shall use the Bergman function in order to intro-
duce a certain natural compactification for a domain contained in the
space C". In fact, we shall distingnish in an invariant way a rather large
class of clomams D < C* which admit a canonically defined compacti-

fication D. This construction iy invariant nnder the biholomorphie transfor-
mation g: D — D in the sense that the mapping ¢ can always be extendod
to the homeomorphism ¢: D — D. The set 4, = D\D will be referred
to as the ideal boundary of D. In the case of a simply connocted domain D
properly contained in the complex plane the compactification D is can-
onically homeomorphic with the Carathéodory compactification, and the

ideal boundary 4, corresponds to tho set of all prime ends in D. Wo begin
with

() A same what simpler discussion of the notion of ideal boundnry can beo

found in authors papor The ideal boundary of a domain in C*, Ann. Polon. Math. 39
{to appear).
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VI.1. DEFINITION. Let D be a domain in C”. A subdomain U < D
together with a point a € D is called distinguished if it satisfies the fol-
lowing conditions:

(i) Kp(a, i) =0 for all te T,

(ii) the family of all holomorphic functions of the form

Kp(2, 1)

A0 =%, a9’ te U,

is normal in D.

VI.2. Remark, It is casy to see that the above notion is invariant
under the biholomorphic mapping ¢: D — D. Indeed, assume that the
points a, t, z are mapped onto points &, 7, Z Then, by the rule of trans-
formation of the Bergman function,

o Ep(E,i)  Kpe,t) 020a
fi (@) " Kg(d,5) Kpla,t)oz0a

If U = p(U), then the family f;(#), i € U, is normal in D, as a produect
of a normal family by a holomorphic function, This shows that the pair U, &
is a distinguished domain in D.

We shall be specially interested in domains which admit finite covering
by distinguished subdomains, and we adopt the following

VL1.3. DEFINITION. A domain D < C" belongs to the olass S if it can
be covered by finitely many distingnished subdomains, and if for every
pair of distinet points £, s € D the evaluation functions y,: L*H(D)->C
and y,: L*H (D) C defined by the formula

%(f) =16),  nl(f) =f{),

are linearly independont.

V1.4. Remark. It ¢: D — D is a biholomorphic mapping and D e §,
then DeS.

Asgume now that a domain D e 8 is covered by a finite family 6
of distinguished subdomains {Uy, @}, {Ua, as}, ..., {Ux, a;}. For every
i =1,2,...,k denote by I, the closure of the family

_ -KD(zy i)

ft (2)— KD(a“ Z), tEUi

in the Fréchot space of all holomorphie funetions in .D. Denote by I the
compact spaco

F =‘F1UF2U..- UFk‘

We shall say that two clements f, g € I are proportional if there exists
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a complex number ¢ # 0 such that f = c¢g. This i8 obviously an cquiva-
lenge relation in F.
The set of all equivalence classes will be denoted by H. Thus

B = {[f],feF}

Our next task will be to introduce the canonical topology in Z. We need
first some lemmas.

VL5, LuvvA. Let i be fized. If f € F; and g € I'; are proportional, then
f=y.

Proof. This is obvious in view of the faet that each funetion in 7
assumes value 1 at a.

VI.6. LevmA. Let 1 and § be fized. Assume that the sequence f,, € Iy
converges to f, and that g, € I, is proportional to f,, for m =1,2,... Then
the sequence g,, converges, and the limit g is proportional to f.

Proof. We shall first prove that if ¢, converges, then the limit g
is proportional to f. By assumption f,, = ¢,,9,, form =1, 2, ... By passing
to a subsequence we may additionally assume that the sequence ¢,, con-
verges to an extended complex number ¢. If ¢ # 0, oo we canpass to the
limit to obtain the desired relation f = ¢g. For # = a, and # = a; we obtain,
respectively,

1=0,9n,(a) and fm(a'j) = O+

Theretore the possibilities ¢ = 0 or 0 = oo are exoluded.

We now return to the general case. We have seen that all convergent
subsequences of g,, have proportional limits. These limits obviously are
in I';, so they are all equal by the previous lemma. Therefore all conver-
gent subsequences of g,, have a common limit. Since F; is compact, this
implies that the sequence g, itself is convergent, and its limit g is propor-
tional to f by the first part of the proof. The proof is complete.

It follows from the previous lemma that each equivalence class [f] e H
hag the form [f] = {f;, ¢ € I}, where the set I = {i,, ..., ¢,} is finite, and
fi e, for i eI. We shall assume that

ISy <te<...<i, < k.

VL.7. THROREM. For [f] e B and ¢ > 0 let us consider the subset U (f, &)
of I consisting of all classes

(9] = {g;yj € J}

such that J = I and supo(gy, f;) < e The family 0 of all sets of the form
jeJ
U(f, ¢) is a basis for a topology in E.
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Proof. Obviously [f] e U(f, ¢), and so the family 6 covers the get E.

Assume that [f] € B belongs to both U(hY, &!) and U (h? &%), where

[A1] = {byy r € L}, [B?] = {B}, r € L,y}.
We need to find &> 0 such that U(f, &) = U(hY, s1)NT(h? &?). Set

& = min(el—qurpe(fu i), €t —supe(f;, hY)).

If[gle U(f,e),thend c I = L,and

sup o(g;, h3) < supo(gy, f;) +supe(f;, #})

jeJ jeJ jeJ

<& —supe(fy, h%)+s;1}>e(13, hi) < &
1€, €

Therefore [¢] € U (h', &'). Analogously [g] € U (h? &?). The proof is complete.

VI.8. Remark. Every point [f]eZ has a countable basis of
neighbourhoods. Indeed, it is enough to consider the sets U(f, 1/m),
m=1,2,...

VI.9. Remark. The mapping which assigns to each element feF
its equivalence class [f] € F is continuous. Indeed, assume that limf,, = f.
‘We need to show that im[f,,] = [f]. It is possible to split the sequence f,,
into no more than % subsequences with the property that the terms of
each subsequence belong to a fixed set F;. So with no loss of generality
we may assume that f,, € I';. It follows that f e F';. If

[fm] = {f}”,ielm}, [f1= {f:',';.? e J},

denote by L the set of all I guch that ', contains an element g;" proportional
to f* for infinitely many values of m. It follows from Lemma VI.6 that
the limit

g, = limg"
m

existy and is proportional to f. Therefore L < J.

Now it is easy to see that for overy > 0 and sufficiently large m
the set I, is contained in L, and [f,]e U(f, &). The proof is complete.

Lot us now consider the mapping p: D — 7 given by the formula

Ep( 1)
K p{ag, 0

p(t)=[ ] if teU,.
Tho right-hand side does not depend on the choice of U; which contains i.

VI.10. Remark. The mapping p: D — B is continuous and one-to-
one. Furthermore the sot p (D) is dense in H.
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To prove continuity, assume that lim ¢, =1, where i, e D,
m=1,2,..., and t, € U;. The mapping p,: U, — F given by

_ -KD("E)
0= Eplan

is continuous. In U, the mapping »p = [p,] is continuous as a composition
of two continuous mappings. It follows that p is continuous in D. If p(t;)
= p(t;), then the functions K,(-, ) and K,(-, ) are proportional.
It follows from the reproducing property of the Bergman function that
the evaluation funetions y, and y, are linearly dependent. Since by
assumption the domain D belongs to the class 8, this is possible only when
t, = 1,. Therefore p is one-to-one.

To see that p(D) is dense consider an arbitrary element [f]e E.
Take ¢ such that fe F/;. By the definition of ¥, we can find a sequence
in, € U; = D such that limyp,(t,) = f. Since p,(t,) € F';, we can follow the
reasoning in Remark VI.10 to conclude that limp (3,) = lim[p,(¢,)] = [f].
The proof is complete.

VI.11. Remark. If D e 8, then the space E is compact. In fact,
it is a continuous image of the compact space I.

VI.12. Remark. ¥ is a Hausdorff space. In fact, assume that [f], [¢]

are different elements of Z. It follows that [f] and [¢] are finite disjoint
subsets of the metric space F, and the number

6 = disty([f1, [9])

is positive. It is easy to see that the neighbourhoods U(f, ¢/2) and U (g, £/2)
are disjoint.

As the next step we shall compare the spaces F constructed for
different coverings of D by distinguished neighbourhoods. f# = {U,, a,,...
very Uy 0} and ¥ = {Vq, by,..., V, b} are two such neighbourhoods,
we shall write Z, and B, respectively. We shall also introduce & similar
notation p, and p,-. It is our aim to prove that F, and E,- are canonically
homeomorphie.

VI.13. TEEOREM. There exisis a unique homeomorphism h: B, — B

suoh that the diagram
’71) \’<

h

¥
By

s commuiaiive.,

The uniqueness is obvious since » = p,*pz' on a dense subset pq (D).
We ghall divide the existence proof into several steps.
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Step 1. Assume that for every sequence ?, € D the sequence p,(%,,)
is convergent in H, if and only if the sequence p,-(1,,) is convergent in Z,-.
Then the mapping » = p,-pz' can be extended to a homeomorphism
h: By — Hy.

Proof, Our assumption implies that two sequences of the form p,(%,,)
converge to the same point in % if and only if the corresponding sequences
of the form p,-(?,) converge to the same point in H,.. Therefore if [f] € H,
we can select any sequence f, € D such that limp(i,) = [f] and define

L{f] = limp, (3,);

here the right-hand side is independent of the choice of the sequence ¢,.
Note that h: By, — B, is a onc-to-one mapping onto ¥, and that h™!
plays the role of % if we replace # by 7" and. vice versa. Therefore we need
only to show that % is continuous at every point [f] of H,. Consider an
arbitrary sequence [f,,] € B4 such that lim[f,,] = [f]. We want to show
that the sequence i[f,] converges to h[f] in H,-. Since H, is compact,
it is enough to show that if [g] = limA[ f,], then [g] = k[f]. For each
j =1,2,... consider neighbourhoods U(f, 1/j) and U (g, 1/j), and select m
such that [f,]e U(f,1/)) and &[f,]e U(g, 1/}).

Since p4 (D) is dense in H,, there exists a sequence ¢, € D such that
limpg(t,) = [f,]. By the, definition of &, limp,(f.) = h[f,]. Therefore
there exists a point ¢, in the sequence ?, such that p,(g) € U(f, 1/j) and
2y(y) € Ulg, 1[j).

It follows that limp, (q,) = [f]and li;:np,f(qj) = {g]. Hence [g] = k[f]

J

and the proof is complete.
Step 2. The theorem holds if the coverings are of the form

U = {Uyy@yy.y Uy}, ¥ = {Uyy b1y eeey Uy, by}

Proof. We shall show that the assumptions made in step 1 are satis-
fied. The role played by both coverings is symmetric, so it is enough to
show that the convergence of p,(1,,) to [f] € Hl, implies the convergence
of p,(t,) to some clement [g] € I, Since F,- is compact, we need only
to show that all convergent subsequences of p,-(¢,) have a common. limit.
Of course it will be sufficient to prove that if p,-(4,) is convergent to
[g] € By, thon g is proportional to f.

By congidering a convenient subsequence if necessary, we may assume
that there exists a fixed set U, such that ¢,, € U, for all m.

Assume that [f] = {f;,jeJ} and [g] = {g;, l € L}. It follows that
t eJNL and

KD('iim)

. KD(" Em) .
Iim = Im ———— = i
f” m KD(b'N tm)

m Kp(ay, i)
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Since the sequences
p(biy t) an. Kpla,, E_m)
KD(“H tm) KD(bi H tm)
are both convergent, their limits must be different from zero. Hence

Ep(y tm) lim K p (a4 tm) _

g, = lim = — = fic
o= ) 0, )

with ¢ #% 0. This proves the statement.

Step 3. Assume that # and ¥ are two coverings of .D by distinguished
subdomains. Then the theorem holds for two coverings of the form

U ={Uy; a1, ..+ Uk’}_",a'k}y
W = {Uinvjvaih 1= 17 27 seey k: .7 '=1’27 "':‘9}7

where a,; = a; for all 4, j.

Proof. As before, we are going to prove that the assumptions made
in step 1 are satisfied. Note that in the present case ¥, = ¥, and the
underlying gets of the spaces Z, and F,,- are equal. Al3o pg(1,,) = Py-(1,)-
We want to show that if p,(t,) converges in H,, then p,-(¢,) converges
in H, and vice versa. Since the spaces B, and E, are both compact, the
statement will follow if we prove that

Limpg (t,) = [f] = {fy, i eI},
imp,-(t,) = [g] = {gi:n (¢,§) e L},

implies [f] = [¢g]. By choosing a convenient subsequence we may assume
that there exist fixed sets U,, V; such that ¢, € UnV, for m =1, 2, ...
Then

.p%’(tm) = Lpi(tm)]%" Dy (tn) = [D:(tn) 1y -

Our assumption implies that p,(?,) converges locally uniformly in D to f;
and at the same time to g;. Hence f; = g, and [f] = [g]. The proof is
complete.

Step 4. The theorem holds for arbitrary coverings
U = {Us; 01y Uz, Gay ooy Upy &}y 7" = (V15 b1y Vay by, -eny Vi, by}

Proof. Denote by #°, the covering #  of step 3 and introduce an
analogous covering

Wb = {U'an, b‘f.’f’ 1; = 1, 2, --.,k, j = 1, 2, seey 8}'
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where b; = b;. There exigts a chain of canonical homeomorphisms which
leads from B, to H,:

By~ By, Dby step 3,
By ,—~ By, Dby step 2,
Ey//‘b - E./r by Etep 3.

The composition of these mappings yields the desired homeomorphism
of B, onto H, . In fact, it is easy to check that this composition maps each
eloment of the form p4(t), t €D, onto p, (). The theorem is completely
proved.

In view of the theorem we can identify all spaces H, with a single
space B. It follows that p: D — I, where » = P, is a well-defined, contin-
uous and one-to-one mapping of D onto a dense subset of the compact
space E. We do not know ‘whether p is open and therefore F cannot serve
ag a compactification of D. The standard way to overcome this difficulty
makes use of the Alexandrov compactification D, of D. Oonsider the
mapping p.: D— D, x H given by

Dos(t) = (8, 2(2)).
VI1.14. DeriniTION. The topological space D is defined as the closure
of p(D) in the space D, X E.
We can now prove

VI.15. THEOREM. The mapping Pu: DD is continuous, one-to-one
and open.

Proof. The first two statements are obvious. Assume that p_, is not
open. Then there exists an open set W < D such that for a certain t e W
the point p,(f) = (t, »(¢)) does not belong to the interior of p,(W). It
follows that we can find a sequence of points (4,,, e,,) € D such that (tmy €m)
¢ p,,(W) and lim(s,, e,) = (¢, p(t)). In particular lim¢, =+¢, and t,e W
for sufficiently large m. For fixed m we can find points s, e D,j =1, 2, ...,
such that

HM P (8) = (ty €m) € D.
Since p,,(8;) = (8;, p(s;)), we conelude that li:nsj = 1,. Since p is con-
tinuous, it follows that e, = limp(s;) = p(?,). Therolore
(tmy m) = (tins P (tm)) = Pea () € Do (W),

contradicting the assumption that (4,,¢,) ¢ p.(W). It follows that p
must be open, and the proof is completo.

VI1.16. Remark. By the previous theorem the mapping »., is 2 homeo-
morphism of D onto an open dense subset p,, (D) of the compact space D.
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Therefore we may consider the space Dasa compactification of D by
identifying D and p. (D). The set D\D will be referred to as the ideal
boundary of D.

The most important property of the compactification D is itsinvariance
under biholomorphic mappings.

VI1.17. TEROREM. Letp: D — D be a biholomorphic mapping of a domain
De8. Then D e 8, and ¢ possesses a unique extension to a homeomorphism
¢: D= D.

Proof. If A is any quantity constructed for a domain D, the corre-
sponding guantity constructed for .D will be denoted by 4. Jonsider a dis-
tmgulshed covering % = {Uy, @, ..., Uy, @} of D. Then U = {U,, a,.

vy Ugy G} 18 2 dmtmgulshed covermg of D. Consider the spaces F' = I’lu

ulf'k and ' = F,u...UF,.Fori =1,2,..., & consider the mapping
(Dt H(D)—~ H(D) g1ven by
. . Oz 0a
(9)(E) =1 (@) 5 75"
It is easy to see that this is a homeomorphism with respect to the Frechet
metric in H (D) and in H(D). Also the diagram

o, ~

F,—————1,
is commutative. It follows that ®,(F,) = F,. If f,e F, and f;e By are
proportional, then so are f, = ,f; and f; = @,f,. Hence there exists

a well-defined mapping @: B — &, such that

Of1 =1[Df] if felF,.
Algo for t e U, the element § = ¢(¢) belongs to U, and

Dop(t) = Pp;(4)] = [Pop,(t)] = [Dop()] = Poe(l).
Hence $op = pop. To see that & iy continuous, consider a sequence [f,]
which converges to [f]. We can assume with no loss of generality that all f,,
belong to a fixed space F;, for otherwise we would split the sequence into
subsequences with this property. It follows that the sequence f,, converges
to an element proportional to f, so we can replace f by this limit and assume
that
limf,, =felF,.

We want to show that lim®[f,] = @[f]. This follows now Irom the
continuity of @,, since

Im®[f,] = im[®;f,] = (im®,f,] = [D,f] = P[f].
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The continuity of @ is therefore proved. By reversing the roles of # and ¥
it iy easy to see that & hag a continuous inverse. It follows that &: B —
is a homeomorphism. Of course

@ X P: DOQXE-é-ﬁwXEE,
where ¢(oc0) = oo is a homeomorphism. For ¢ e D we have

P X @(t,_p(t)) = (‘P(t)7 @Op(t)) = (‘P(t)yf’o‘?’(t)) = (E,P(i)).
Hence

¢ X D (P (D)) = Poo(D).

It follows that ¢ X @ defines a homeomorphism of D onto D which agrees
with ¢ on D, The proof is complete.

Characteristic properties

We shall presently describe the properties of the compactification b
which characterize it among all possible compactifications.

V1.18. TuEOREM. .Assume that D € 8. The compactification D has the
following properties:

(1) .D i3 an open subset of D.
(ii) There exisis a finite covering of D by open sets Uy, Uy, ..., U, ond
POINLS @y y Agy +uvy Gy € D such that for each ¢ =1,2,...,k

Kp(a;, ) #0 for teU,;
and the function
K t
_D(z”,__L, zeD, teU,,
Kp(a; t)
admits a continuous extension to D x U, where U, denotes the closure of U,
in D.
(iii) For t; e U\D, t; € U\D the functions of the variable 2

Ep(eyB) o Eplenh)
Kp(a;, t;) Kp(ay, t)
are not proportional if and only if 1, +# ;.

These properties are oharacteristio of the compaclification D. More
precisely, if f)o is amother compactification of D with properties (i)-(iii),
then the identity mapping of D extends to a homeomorphism of 130 onto D.

Proof. We shall first prove that D has all the listed properties. Note
that (i) was inherent in the construction of D.

4 — Dissertationes Mathematlcae 173
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To prove (ii), note that an element in D can be written in the form

(toy [f1)y theDy, [fl1eE.

1t follows from the definition of topology in F that if this element belongs
to U,, then there exists a unique f; e F, proportional to f. The function
which assigns to a pair 2, € D, (4, [f]) € U; the number f,(z,) is an exten-
sion of

Kp(z, i_)

Kp(a,t)’
to D x U,. For the convenience of notation, in the following this extension
will be denoted simply by

Ky (#, E_)

Kp(a;, 1)’

zeD, teU,

zeD, teU,.

Oonsider now another element (¢, [g]) in U, c D. The extended function
assigns to a pair z € D, (¢, [¢]) € U, the number g,(z). We want to estimate
the expression

1g:(2) — f: (%) < 19:(2) — g2 (20) + 194 (20) — F (20} -

If [g] is sufficiently close o [f] in F, then g, is close to f; in the topology
of locally uniform convergence. This convergence is stronger than point-
wise convergence, 80 we can make the second term small, Since the normal
family F, is uniformly continuous at z,, and f;, g; € F;, we can make the
first term small by a choice of 2 independently of g,. Therefore the exten-
sion is continuous as claimed.

We pass to property (iii). A point ¢, e U,\D has the form (oo, [f]),
where f is proportional to f; e F;. Also

Kp(z, Ef)

Ep(ay, t;)
Similarily, & point #; e U,\D can be written as (oo, [g]), where g is pro-
portional to g, eT,, and

K,(z, t)

—21 I = g.(2).

Kpla, t)
By assumption, #, # ¢;. Therefore [f] # [¢]. It follows that f;, is not
proportional to g,. Property (iii) is therefore proved.

Consider now another compactification D, of domain D with properties
(i)=(iii). For 4 = 1,2, ..., & consider the family of functions in D

= fi(2).

F‘i= —_— ter],}.
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Let W be a compact neighbourhood of a point in D. The continuous function
Kz, E_)
Kp(ay,t)’

is bounded on a compact set W x U,. It follows that the family F, is locally
bounded, and therefore normal in D. We see in particular that

U = {Uyy 1y «.oy Uyy ay}

is a distinguished covering of D.
Note that each 7, ¢+ =1,2,...,% is equal to the closure of the
family

zeD, teU,,

Ky (2, t)
K p(ay, 5)’

in the Fréchet space H (D). For each teﬁo define

tEUi,

_ [ Eolz, t) : A
W(t) = [m] if tEEi, 174 c DO'

We have to show that =: 150—> B is well defined mapping of 130 onto 2.
But for t e U,nT,nD the functions of variable z

Kp(z, Z_) and Kp(z, 1)

K p(aq, t) K p(ay, 8)
are obviously proportional, and for ¢e(U,nT,;)\D the proportionality

of these functions follows from property (iii) of D,. Therefore = is well
defined. Moreover, since F; is locally bounded one can show that the
mapping from 77, into H (D), given by

.- Kz, Z-)

Kp(ay, t)

is continuous.
It follows that on each U,;, ¢ =1, 2, ..., k, the mapping

KD(zyt)
) = [KD( m)] tely

fs continuous as a composition of two continuous mappings see Rema,rk
VI1.9. Therefore x is continuous on D0 a8 ﬁi form a finite covering of 1).,
by closed sets. Define the mapping =,: D., D by

(t, =(1)) if teD,
oo () = {(oo,a'c(t)) if t e DAD.

This mapping is continuous, since each of its compotents is continuous.
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Moreover, it is one-to-one, by (iii). It maps a compact space 130 onto
a compact Hausdorff space D. Such a mapping is necessarily a homeo-
morphism, and this completes the proof.

In the case where D is a Lu Qi-keng domain the characteristic properties
of compactification D assume a particularly simple form. To proceed

we need the following
VI.19. Lmywa. Assume that D is a Lu Qi-keng domain, and the pair U,

a is a distinguished subdomain in D. Then for each b € D the pair U, b defines
a distinguished subdomain in D,

Proof. We need only to show that the family
Kp(2, %)
Ep(b, 1)’

is normal in D. Consider an arbitrary sequence 7,e€ U, m =1,2,...
Since the family

(2) teU,

KD(za Z)
Kp(a,t) ’

is normal by assumption, we can choose a subsequence denoted again,
by ¢, and such that

teU,

(3)

converges in H(D) to an element f. Note that f = 0 since f(a) = 1. In
fact, f(2) # 0 for all z e D. Indeed, assume to the contrary that f(2,) = 0
for 2, e D. Then for every neighbourhood V of 2, and sufficiently large m
the function (3) attaing value zero at some point 2 € V, and this contradicts
the agssumption that D is a Lu Qi-keng domain. It follows in particular
that

Hence the sequence
Kp(z, t:m) _ Kp(z, Z_m) Kya, ?m)
KD(b1 tm) KD(“’ tm) Kﬂ(b! tm)

converges in H (D). Thus family (2) is normal and tho lemma is proved.
We can now prove
VLI.20. TErorEM. If a Lu Qi-keng domain D belongs to the class 8,
then for each a € D the pair D, a is a distinguished subdomain of D.

Proof. Let # = {U,, ay, U,, a4, ..., Uy, @} be the covering of D
by distinguished subdomains. By the lemma U,, a is a distinguished suhdo-




Characteristic properties 83

main for each ¢ =1, 2, ..., k. It follows that D, a is a distinguished subdo-
main.

Theorems VI.18 and VI.20 yield immediately the following

VI.21. CorOLLARY. The compactification D of a Iu Qi-keng domain
D € 8 is characterized by the following properties:

(i) D is an open subset of D.

(i) There exists a point a € D such that the function K, (2, t)/Kp(a, 1)
admits a continuous exiension from D X D to D X D.

(i) If 24, 1, e D\D and t, # 1y, then

Kp(z, '?_1) Kp(#, E_a)
Kp(a, ty) Kya, tz).

Proof. We may apply Theorem VI.18 with k=1, U, =D,a =a
(an arbitrary point in .D). The compact1f1cat10nD obviously has property (i)
Property (ii) follows since D is dense in D and therefore D = D. Finally
in our case property (iii) is equivalent to (111) of Theorem VI.18. Indeed,
both functions assume value 1 at a and, if proportional, they are equal.
Conversely, any compactification of D with properties listed above must
be canonically homeomorphic with D by the second part of Theorem

VI.18.
Remark. The above corollary shows that each function of the

variable ¢ in the family

Kp(t,2)

m, z,GED,
’

possesses a continuous extension to f), and the family of all such extensions
separates the points of D\D. It follows that if a domain D € 8 is Lu Qi-

keng, then the compactification D is canonically homeomorphie with
a compactification introduced for general Lu Qi-keng domain in [34].

The case of a bounded circular domain

For a large class of domain the ideal boundary is equal to the Euclidean
boundary

V1.22. TEEOREM. Assume that D is a bounded complele circular domain
in C* (i.e. zeD AeC, |A <1 implies iz € D) such that D < AD for every
A > 1. Then the ideal boundary Ay s equal to the Buclidean boundary of D.

Proof. We ghall show that the Euclidean compactification satisfies
conditions (i)-(iii) of Theorem VI.18 for the covering which consists of
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o single domain D and a point ¢ = 0. By a theorem of H. Cartan

RS L AOLA
Kp(z, t)=22¢_7$—, 2,teD, a = (ay..., ),
k=0 |aj=Fk a
locally uniformly in D x D, where ¢% in the above series denotes a homoge-
neous polynomial of degree k, and p% are positive constants. The system
{‘Pﬁy la] =%, k> 0}

is orthogonal and linearly dense in L2H (D).
It follows that K,(0,{) = const # 0. Furthermore, for i > 1 the

D _
function defined in the product - x D by a locally uniformly convergent
geries
s (42) @i (¢/4)

fa

is continuous. Since ¢7(12)pk(t/4) = ¢i(2)@k(), the functions X, and K, ,

Kya, B) = Y

k=0 fa|=k

D _ - D
where 1, < 4, are equal in T x D and are equal to Kp(2, ¢) in N x D.
1 1

It follows that there exists a continuous function in D x D which extends
_ _ D —
K,(2,t) and agrees with K,(z, f) on = X D. This proves (ii). TFor (iii)

we need only to show that ¢, ¢, € D and t, # tyimplies K (2, t) 7% Kp(2, )
for a certain 2z in D. In fact such 2z can be found in D/4,. Assume to the
contrary that K, (z, t) = Kp(2, t,) for all 2z e D/A,. Both functions are
represented by uniformly convergent scrios (with 1 < 1,). Since the system p¥
iz orthogonal also in D/4,, we can view cach serics as a Fourier expansion
in D/4,. Such an expangion is unique, and the corresponding coefficients
¢%(t,) and ¢%(¢,) must be equal. Since the linear functions ¢., |a|] = 1 are
linearly independent, it follows that ¢, = ¢,. Since (i) is obvious, the proof
is complete.

In particular, the above theorem says that the ideal boundary of
the unit disc in the complex plane is equal to the unit circle. The same
property holds for the Carathéodory compactification. Since both com-
pactifications are invariant nnder a biholomorphic mapping, we obtain

VL.23. TamormM. The OQarathéodory compactification is canonically

homeomorphio to the compactification D.

Plane domains, and strictly pseuadoconvex domains

The following sufficient condition for the equality 4, = 4D is some-
times useful:

VI.24. THROREM. Let D be o bounded domain in C™ suoh that the Berg-
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man function I, (2, t) admits a continuous extension to D x D. Assume
Juriher the following properties:
()  limsup|Kp(z, §)] = oo,

z—>ledD

(b) limsup|K,(z, £)] < co for each & #t e éD.

g-»&eD

Then the ideal boundary of D is equal to its Buclidean boundary.

Proof. Note that by (a) to each t & éD there exists an a € D such
that |Kp(a, )] > ¢ > 0. By assumption this inequality is preserved in
some neighbourhood V of #. Oonsider a finite covering of 2D by such
neighbourhoods V,, V,, ..., V,.8et U; = V;nD, i =1,2,...,p. Since D
is bounded, we can find further sets U; and points a;, 1 =p+1,...,%
such that U, €D and the sets

Uyyayy Uy, agy ..., Uy,

form a eovering of D. It is casy to see that condition (ii) of Theorem VI.18
is satisfied when U, is a sufficiently small ball with center a; forz =p+1,
...y k. Thus in order to apply Theorem VI.18 we need only to check condi-
tion (iii), since (i) is satisfied auntomatically.
Consider different points ¢, e U,\D, t; e U,\D, and assume to the
contrary that
Kp(2, t_i) and Kp(z, tg‘)
Kp(ay, t) Kp(ay, t)
are proportional as functions of 2. It follows that at ¥, (or ¢;) the upper
limit of the modulus of both functions is simultaneously finite or simulta-
neously infinite. In view of (a) and (b) this is possible only when i, = %,
a contradiction of the assumption that #; # #;. The proof is complete.
For plane domains we have
VI.26. THeOREM. Let D = C be a bounded domain whose boundary
oonsists of finitely many simple olosed curves. Then the ideal boundary of D
18 equal to the Huolidean boundary.

Proof. It is well known that D can be mapped onto a domain bound-
ed by analytic curves, by a biholomorphic mapping which can be extend-
ed to a homeomorphizsm between closed domains. Therefore we may
assume from the beginning that D is bounded by analytic curves.

In order to apply Theorem VI.24 wo shall prove that

(i) Ep(z, t) is continuous in D x D with the exeption of the set
{(¢,1), te D},
(ii) for each te dD, limEKj(z,t) = co.
et

Note that conditions (i) and (ii) are invariant under a biholomorphio

mapping of D which can be extended to a biholomorphic mapping of some



56 VI. Ideal boundary

domain containing D. This follows immediately from the fact that the
jacobian of such a mapping is bounded away from zero and infinity,
and from the rule of transformation of the Bergman function. In partic-
ular conditions (i) and (ii) are invariant under a biholomorphic mapping
onto a domain bounded by analytic curves, since such a mapping can be
extended. with the aid of the Schwarz symmetry principle. Thus in proving
(i) we may assume that the unbounded component of C\D is equal to
the exterior of the unit circle. Consider two different points @ and b on 0D,
and small digjoint neighbourhoods V, and ;V, in D. Let G (2, t) be the
Green function of D. We will first show that if we set

Gplz,1) =0 if (2,2) e (V,xV,)\(D x D),

then G, is continuous in ¥, X V. Since D is contained in the unit circle,
we have the inequality

1—zt
z2—1

*

0<Gp(z1) <G(2,7) =In

Since the Green function of the unit circle @ (z, ) is continuous in ¥, x V,,
o is Gp(z,t). Bet V, = V,uV: V,= V,UV;, where V. and V; are
reflections in 2D of V, and V,, respectively. By the Schwarz symmetry
principle Gy (2,1) is separately harmonic in ¥, x V,.

Using the continuity of Gy(z, ?), it is easy to show that G,(z,?) is
in fact harmonic in 7, x V,. (Actually one could dispose of the continuity
considerations by using a stronger theorem of Lelong on separate harmo-
nicity.)

By a result of Schiffer [5]

—2 0?Gp(z, 1)
T, 0z 0t

KD(z: E) =

Hence Ky (z, ?) is regular in ¥, x ¥, and condition (i) is proved.

In proving (ii) we shall assume that the unbounded component of
C\D is equal to the exterior of the unit disc, and that [{| = 1. By & result
of Schiffer [6] the difference between the Bergman function K, (2, 3)
and the “geometric quantity?”

_ dm (w)
Tolzy8) = O\fv (Ww—2) (w—7)

is regular in D x D. Oonsider the Bergman function of the unit disec

1
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and denote by F the sum of bounded components of C\ D. It follows that
the difference
1 _ dm (w)

Ky (2, 8)— n(l—28) 7 (w—2) (w—s)

is bounded when z and s belong to sufficiently smail neighbourhood of ¢,
and so i3 the difference

1

KD(z,lf)— m;

Hence lim K (z, ) = oo and (ii) is proved.
e+t
For the higher-dimensional case we can state

VI.26. TEROREM. Let D = C" be a siriclly pseuconven domain with
a smooth boundary, such that for each t € 0.D

2,81

Then the ideal boundary of D is equal to its Fuclidean boundary.

Proof. By a theorem of Kerzman [20] the Bergman function K (2, 3)
is smooth on D x D with the exception of points of the set {(¢, )¢ e 6D}
It follows that the assumptions of Theorem VI.24 are satisfied.

VI.27. Remark. From [11], Theorem 2, follows that every strictly
pseudoconvex domain with a smooth boundary satisfies the condition of
Theorem VI.26.

This yields a new proof of the theorem, that every biholomorphic
mapping between two strictly psendoconvex domains with smooth bound-
aries extends to a homeomorphism between closed domains, see Margulis
[24], Vormoor [37]. (Actually this homeomorphism is of class C%, by
a deep result of Feferman [11].)
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