§2. The general Taylor theorem............................................................................................... 11 1. The elementary Taylor theorem....................................................................................... 11 1.1. Bands of subspaces....................................................................................... 12 2. The general Taylor theorem............................................................................................. 14
§ 3. Structure elements of D-R spaces................................................................................... 17 1. The simple Taylor formula................................................................................................ 17 2. Distinguished subspaces and subspace chains....................................................... 18 2.1. Canonical subspaces of a D-R space........................................................ 18 2.2. The space $D_i$............................................................................................. 19 2.3. The space S...................................................................................................... 19 2.4. The space Q..................................................................................................... 20 3. Extension of the domain of D........................................................................................... 21 4. The structure chain............................................................................................................ 22 5. Components and formal component series................................................................ 23 6. Examples............................................................................................................................. 25
§ 4. The D-R homomorphism theorem.................................................................................. 27 1. The D-R reference space $X_0$..................................................................................... 27 1.1. X(Z) as a $D_0-R_0$ space with $D_D_0$ = X(Z)................................... 28 1.2. The $d_0$-convergence................................................................................ 28 1.3. The Volterra property of $X_0$ and eigenspaces of $D_0$...................... 31 2. $D_D_0$ $\varsubsetneqq$ $X_0(Z)$.......................................................................... 32 3. The D-R homomorphism theorem................................................................................. 33 3.1. Eigenvectors of D and R................................................................................. 35 4. The D-R homomorphism theorem for $D_D_0$ $\varsubsetneqq$ X.................. 35 5. $d_0$-topology................................................................................................................... 38
[5] Nashed, Z., Generalized inverses and applications, New York 1976.
[6] Przeworska-Rolewicz, D. and S. Rolewicz, Equations in linear spaces, Warszawa 1968.
[7] Przeworska-Rolewicz, D., Algebraic derivative and abstract differential equations, Ann. d. Acad. Bras. d. Ciencias 42 (1970), pp. 403-409.
[8] Przeworska-Rolewicz, D., Algebraic theory of right invertible operators, Studia Math. 48 (1973), pp. 129-144.
[9] Przeworska-Rolewicz, D., Admissible initial operators for superpositions of right invertible operators, Ann. Pol. Math. 32 (1976), pp. 113-120 (Polish version published 1974 in Biuletyn WAT rok 23, nr 7, pp. 23-30).
[10] Tasche, M., Algebraische Operatorenrechnung für einen rechtsinvertierbaren Operator, Wiss. Zeitschr. d. Univ. Rostock-23 Jahrg. (1974), Math.-Naturw. Reihe, Heft 10, pp. 735-744.