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In order to introduce my viewpoint, before discussing equivariant maps — or
even maps — I will begin with the familiar case of singularities of functions
ol several variables. Most of the important ideas here are due to René Thom.

1. Functions

The earliest result, however, goes back to Morse: that any smooth function
on N can be approximated by one all of whose critical points are nondegen-
erate (hence isolated); moreover, one may suppose the critical values distinct.
Nondegeneracy is a condition on second derivatives: it can also be charac-
terised by reducibility to normal form

f(xl,...,x")=C+Z£ixi2 (eaCh £1=i1)

in local coordinates x = (x,, ..., x,). This result was elaborated by Cerf [4].
Suppose N compact. Then the functions as above may be considered as
constituting open strata of C*(N); one can define strata of codimension 1 by
allowing either 2 critical points with the same critical value or one degener-
ate critical point of type

c+xi+) &x}
2

in suitable local coordinates. Introducing also critical points of types corre-
sponding to Thom’s elementary catastrophes allows us to define explicitly
strata up to codimension 4. Moreover the list is complete in the sense that
any 4-parameter family of functions can be approximated by one meeting
only these strata (and, moreover, meeting them transversely in an appropri-
ate sense).
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In proceeding further, we observe that the detailed considerations
needed are all local. The same will turn out to be the case for maps in gen-
eral, and we shall usually work in convenient local coordinates in N. We find
that the singularities of functions of several variables that are important for
the theory can be characterised in several alternative ways. I will first state
the result, then give the explanations.

THEOREM 1.1. The following conditions on f(x) are equivalent:
(1) f has a (finite dimensional) versal unfolding;

(2) the singularity (of f at 0) is algebraically isolated,

(3) [ is hnitely determined (for right equivalence).

Here, an unfolding of f is a mapping
R'xR° LR xR

of the form (x, w) 5 (F'(x, u), u), where F'(x,0)= f(x). A morphism of
unfoldings is a commutative diagram

R"R*—L— R~ R*
1
() H lﬁr where p=1

R"x R°—F —» RP« RO

where K (¢, u) = (¢, K' (4)) and H(x, w) = (H' (x, w), K" (v)) with H'(x, 0) = x.

An unfolding is versal if any unfolding has a morphism to it (is induced
from it). Several slight variants on these definitions are important, but I am
sticking to the simplest.

In the case when f is a polynomial map, it also defines a complex-
analytic map C" — C. If this has an isolated singularity at the origin, we say
that the singularity of f is algebraically isolated. This is equivalent to
requiring the ideal J, generated by the partial derivatives ¢f/0x; to have
finite codimension u in the ring &, of germs of functions at 0 (it turns out
not to matter whether we use C® functions or restrict to analytic ones).
Indeed, if the functions &,, ..., ¢,e &, define a basis of &,/J,, we can take

FYx,uy, ..., u,) =f(x)+iu,—¢,-(x)
1

as a versal unfolding.

We say that fis finitely determined — or, more precisely, k-determined —
il for any function g such that g—f has order > k (i.e. all derivatives of order
< k vanish at the origin) we can find a local difffomorphism h of R" at 0
with g = foh. Here h defines a right equivalence between f and g.

The culmination of this theory is the result (due to Mather [15], [16])
that all function-germs at Oe R" satisfy the conditions of the Theorem, with
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the exception of a subset of infinite codimension. This permitted Looijenga
[13] to extend the partial stratification of C*(N) described above to include
a set whose complement has infinite codimension. Unfortunately, his con-
struction is no longer explicit: serious difficulties in describing it even in
codimension 6 are encountered in Wall [26].

We shall not discuss in this article the more delicate parts of singularity
theory of functions (Milnor fibration and lattice, monodromy, period map
etc); nor the corresponding results for invariant functions.

2. Mappings

For mappings N"— P? with p > 1, right-equivalence is not enough to be
useful: one has to introduce at least diffeomorphisms of the target, P, giving
left-equivalence or £-equivalence; also & = # x%. For the study of the
most interesting case, .o/, it is helpful also to define the groups %, of germs of
N-parameter famihes of diffeomorphisms of P fixing a point YeP, and
X = A-. Roughly speaking .#-equivalence measures equivalence of the pre-
image f~'(Y) under diffeomorphisms of N. We shall sometimes use 4 to
denote an unspecified one of #, &, o, 6 or . Recall that all these
considerations, and those below, are local.

Results analogous to the Theorem above hold in all these cases: we next
describe these. The notion of unfolding is the same in each case, but
morphisms are not: e.g., for =/-equivalence, a morphism is a commutative
square (x) but where now p 3 1 in general and

K(y, wy=(K*(y, u, K'(w)

with K2(y, 0) = y (so for each u near 0, y—K?2(y, u) is a local diffeomor-
phism).

If we have a 1-parameter unfolding (a = 1) and differentiate with respect
to u at u = 0, we obtain an element of the “tangent space” 0(f) at f to the
space C*(N, P) of map-germs N — P. Thus 8(f) consists of germs of vector
fields along f. In local coordinates, we can identify 0(f) with the set of p
tuples of elements of &,.

We can regard # as a group acting on the manifold C* (N, P) and
obtain the tangent spaces T#(f) to the orbits: also important are certain
“extended” tangent -spaces T, 4 (f) (the distinction arises according as base
points are kept fixed or not). In the diagram

N —L 7P

b4
s
- ’ -
N ~ Tp
’
v
e

N—T-—>P
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we can identify 6f with the set of germs of C* maps a: N —+ TP with n,0a
= f (vector fields along f). Then if 8N, 6P denote the spaces of germs of
sections of ny and mp, we define

tf: ON — 0f,
of: 0P — 6f
by composition with Tf (on the right) and f (on the left) respectively. Then
T.#(f) = tf (BN),
L. Z(f) = of (0P),
TAN)=TRN+T. L)

Here, 8N and 0f are modules over the ring &,, and ¢f a map of &,-modules;
0P is only a module over &, and wf a map over f*: &, — &,. Write m,, m,
for the maximal ideals (consnstmg of germs vanishing at the origin) in &,, £,.
Then

TA(f) = tf(m, 6N),

TL(f)=wf (m,-0P), TA(f)=TRAS)+TZ(f),
T (f) = f*m, 0, TH(f)=TRA)+TE(Sf).

Also, for uniformity, set

LENH=T6(), TXN)=TRAN+TE(f).
Then we can assert Mather [16, III].

DeTERMINACY THEOREM 2.1. For # =R, &, o, ¢ or A the following
properties of the map-germ f are equivalent:

(1) f has a finite-dimensional %-versal unfolding;

(2) dim(6f/T, #(f)) < o0

(2) dim(m,-6f/TA(f)) < :

(3) [ is finitely #B-determined.

We shall call map-germs satisfying these conditions #-finite.

A more precise statement of the relation between (2) and (3) is:

If fis r-#-determined, then T#f > ni*1-0(f). If T4 > wi* 1-0(/),
then f is (er+ 1)-#A-determined, where ¢ = 1 for 4 = #, €, X and ¢ = 2 for
4 =¥, o (the estimates in these two cases are due to Gaffney [9]).

As before, we obtain a #-versal unfolding (of least possible dimension)
by choosing a basis of 0f/T,#(/f), and using the same construction. In the
special case when T, #(f) = 0f, f 1s a #-versal unfolding of itself: all other
unfoldings are induced from a morphism to f (such unfoldings are said to be
trivial). When this is so, f is said to be #-stable: or rather, the germ of f at
the point in question is so.
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The particular cases of this notion are as follows.

A-stable: f1s a submersion,

S-stable: fis an embedding,

“-stable: f(0) # 0,

X -stable: either f(0) # 0 or fis a submersion.

The interesting case is .«/-stability, which cannot be defined so simply,
and was closely studied in an important series of papers by Mather [16, 1-
VI] which laid the foundations for the whole subject.

There are two key results which describe .2/-stable maps. First, each jet
extension j*f* N = J*(N, P) must be transverse to each “.#-orbit”, and
similarly for multijets. Conversely, these conditions (at least if k > p+ 1, and
multijets are allowed multiplicity (p+ 1)) suffice for stability. Secondly, there
is a “normal form” for /-stable germs. It is the same form as for an
unfolding, versal for a category closely related to that of . -unfloldings. In
particular, a map-germ has an .o/-stable unfolding if and only if it is X -finite.

Now if f is analytic, it can be complexified and we can add the following
condition to the theorem.

GEoMETRIC CRITERION. (4) For some neighbourhood U of 0 in N®C, f¢
is #-stable at all points (and finite subsets) of U—{0}.

(I omit discussion of germs at finite subsets for the sake of brevity.) This
leads to the philosophy that (roughly) the important properties of f are
determined by the sets Ug(f) of its #-unstable points.

In addition to Mather’s foundational papers, I would like to refer the
reader to my recent survey [27] of this area for a fuller account of these
notions and an extensive bibliography.

3. The equivariant case

We now suppose G a compact Lie group acting smoothly on the manifolds
N (usually compact) and P, and seek to study the typical singularities of
maps /° N — P which are equivariant for G. This seems a natural extension
of the above: frequently one finds a problem with natural symmetries which
are preserved by the maps of interest.

The overall plan is to follow as closely as possible the results above. Let
me first recall the basic structure of compact group actions. At each point
Xec N we form the isotropy subgroup Gy of X. Then, by an important result
(which is, however, not difficult in the differentiable case) there is always a
slice at X: namely, a smooth submanifold S (e.g. a disc), invariant under Gy,
transverse at X to the G-orbit G- X, and of complementary dimension. Thus
a neighbourhood N of the orbit is equivariantly dilleomorphic to the fibre
product G x¢, S, and there is a natural bijection between G-equivariant maps
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N — P and Gx-equivariant maps S — P. We always use this construction to
reduce to the case when X is a fixed point for G. Next, the local linearisation
theorem due to BOchner states that if X is fixed by G then we can choose
local coordinates at X with respect to which G acts linearly. As any
equivariant map takes fixed points to fixed points, this shows that for the
local theory we can take N, P to be vector spaces with G acting linearly.

Next, one needs some finiteness results. If S(N) denotes the algebra of
polynomial functions on N, then according to Hilbert the subring S¢(N) of
invariant polynomials is finitely generated. The generators can be taken as
homogeneous: write 4 for the highest of their degrees. If there are / such
generators, they define a map N % R' such that n* S(R') = S°(N). We shall
denote n(N) by N/G. By a theorem of Schwarz [25], the same holds for C*
functions:

n* & = E5(N).

Similarly, G acts on the S({N) module S(N, P) of polynomial maps N — P:
the S¢(N)-submodule S°(N. P) left fixed by G (which correspond to the
equivariant maps) is (Poenaru [19]) finitely generated, and we can write B for
the highest degree of a generator. Again, these polynomial generators also
generate the £%(N)-module 6°(N, P) of C™ equivariant maps. These finite-
ness results allow one to set up basic machinery extending that of Mather:
this is done ad hoc in Poenaru [19] and explained from a more general
viewpoint in Damon [5].

For each group # as defined above, we write %4 for the subgroup of
those maps which respect the G-action. The corresponding tangent spaces
and extended tangent spaces T#%(f), T, #°(f) are just the G-invariant parts
of those we had previously. The determinacy theorem as described above
now goes over to these new cases: the general result seems to have been first
stated by Roberts [20], [21] and Damon [5]. There is even still a geometric
characterisation, to which we will return below. One point needs clarifica-
tion: in the definition of unfolding, we insist that G acts trivially on the
parameter space R® (this is what is needed for the theorem: other cases are
not without interest).

For some of the results below, we need somewhat different equivariant
versions of Mather’s equivalence relations. First set

TH*C(f) = wy  TH(f),
TL*(f) = f* G- TLL(f),
TA*C(f) = TH*C()+ TL*(f),

which always have finite codimensions in TA4¢(f), T ¢ (f), TS (f) respect-
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ively: and
T%/*G(f) - f* mﬁ.g(f)G,
TA*C(f) = TR*(N)+ TE*C(f),

which need nor have finite codimensions in T%¢ (f), T . #Y (f). These defini-
tions are due to Roberts [20]. It is shown in the appendix to Wall [28] how
to construct groups of equivalences with these as the tangent spaces (o the
orbits. Now the determinacy theorem extends (Roberts [21]) to these cases
also, though only for 4*, %™ does this yield anything new. The relations
between these groups are shown in the diagram

1 cry ™) e Te )TN

n n n n

T 0(f) c T () e T e THOlF)

The proof of the theorem yields explicit estimates, but these are much
inferior to those obtained in the absence of a group action. In fact:

for B=R, € A, ¢* or A* if TH(f)>(m*O(f)) then fis {(k+1)A
+ B-#“-determined;

for #=% or A, if TA*C(f)>(m () then f is {2kA+ B}-#C-
determined.

These compare unfavourably with the estimates available when G is
absent; however it follows from Bruce et al. [3] that if we restrict to the
subgroup of #¢ of elements with trivial 1-jet (which is unipotent) we obtain a
sharp determinacy criterion which can be used to improve the above.

A further difference from the previous case is that there we had rather
simple characterisations of %-stability for 4 = #, 4, % and #. These do
not persist in the equivariant case; however (Roberts [20], [21]) we do have:

/is 6*C-stable <> f(0) # 0;

fis A *Ystable <« f is #*C-stable or ¥*%-stable;

f has an /%-stable unfolding < it is X4 *%-finite.

We shall return to the relation between stability and jet transversality
when we have defined equivariant jets.

We observe first, that the geometric characterisations of stability hold
for ¥*¢ and #*° rather than for the — at first sight more natural — %¢
and .#¢. Secondly we note that Mather's theory of stability and of topological
stability makes essential use of the result that _#-finiteness holds in
general. A careful analysis of the conditions for finiteness to hold in general
is given in Roberts [20], {23]: he gives there examples where this fails even
for ¥ Y-finiteness. Such examples arc even easier to find for .#*%-finiteness:
we will return to this below.



464 C. T. C. WALL

To pursue the notions of stability and determinacy further, we next need
to study the geometry of a complex singularity. Again we first consider the
case when there is no group action.

4. Complex geometry

The best way to approach the geometric criterion for #-finiteness seems to
be by sheal theory. We shall now assume N and P to be complex manifolds
though, as usual, we shall be concerned only with germs.

Define ¥°(N) to be the sheaf of germs of (holomorphic) tangent vector
fields to N; similarly ¥"(P). then ¥'(f) = f* ¥ (P) 1s the sheafl of germs of
tangent vector fields along f. There is a natural map tf defining an exact
sequence

YNy () = SR~ 0
for the stalks at Xe N, this reduces to the sequence

O(N) 2L 0(f)— 0(/)T, #(f)— 0

previously considered. If Ye P, and .#, denotes the subsheaf of (?(P) of
functions vanishing at Y, then f*.#, defines a subring of ¢(N), and we
define

Felf)y =¥ (Nf* 4y 7 '(f),
Sy =¥ (N)f*-#y- v (/) +tf ¥ (N).

All of these are coherent sheaves over N, and the stalk of “g(f) is
O(f)T1,4(f). Now for coherent sheaves we have the zero theorem: X is an
isolated point of support of .¥ if and only if the stalk of & at X is finite
dimensional. Applying this in the above cases gives the geometric criterion
for finite determinacy (note that the stalk is zero at Z-stable points).

IT fis ¢-finite, then f~!(Y) is (locally) reduced to the origin. It follows
by semicontinuity that for some neighbourhood U of X in N, all fibres
f"YZ)nU are finite: f|U is a finite map in the usual sense. Loosely
speaking, f is %-finite <> fis a finite map. It is easily shown (Wall [27]) that
A-finite germs (other than submersions) can only exist when dim N = 1. In
general we write X, for the set of critical points (in N) of f. These are just the
points at which the germ of f is not %-stable. Now arguing as above using
the geometric criterion for J-finiteness and the characterisation of -
stability shows that

fis X-finite < f|X, is a finite map.

We now turn to #-finiteness and .&/-finiteness: these lie somewhat
deeper. For f to be #-finite, it must certainly be %-finite, hence (as above)
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finite in the sense of (finite-to-one). By Grauert’s theorem .if this is so, f,
preserves coherence. In particular, f, ¥'(N) is coherent over P. Now compos-
ing with f induces a map

of: ¥ (P)— f, ¥_(N)

whose cokernel we denote by %, (f). It is coherent by the above, and the
stalk at a point YeP is

D0 (f): Xef ' (N)}/wf0y(P)

so its vanishing reflects .#-stability of the germ of f at the finite set £~ (Y)
(rather than at a single point) — in fact here, vanishing implies that f~1(Y)
must be a single point X (or empty} and df X-injective; as already mentioned.

Similarly for f to be .«/-finite, it must be ¥ -finite; but this implies f{ 2,
a finite germ, hence preserving coherence. As #(f) is supported on X, this
implies f, #g(f) coherent, hence also

#4(f) = Cokeraf: ¥ (P)— f, Lr(f).

Again, the support of .¥,(f) 1s the set of points Y such that the germ of f at
f~'YNZ, (a finite set since fis ¥ -finite) is .&/-unstable. Now applying the
zero theorem to ¥, (f) and ¥ ,(f) implies the geometric criteria for .¥- and
o/ -finiteness given earlier.

These arguments appear first in Gaffney [8], where they are attributed
to Mather; an exposition is also given in Wall [27].

In the equivariant case, when we regard N and P as complex it is also
desirable to regard G as complex. It is convenient to work in the context of
reductive algebraic groups G acting (algebraically) on affine algebraic var-
ieties N and P (though results can be generalised for complex analytic actions
on Stein manifolds). Invariant theory yields a “categorical” quotient n: N
— N/G, though this is not a pointwise quotient (nor is m proper — except
when G is finite). However, for each ¢ e N/G, the preimage n~ ! (£) contains a
unique closed G-orbit T,, which lies in the closure of every orbit in this
preimage.

All the sheaves defined above now admit actions of G (this is defined so
that the sheaf of sections of a G-bundle is an example). Now for a G-sheaf &
on N we define n$ (%) to be the sheaf on N/G whose sections over an open
set U are the G-invariant sections of % over n~'(U). Roberts [22] proves
two fundamental results for coherent G-sheaves ¥ over N:

TueoreM 4.1. (a) =nS(¥) is coherent over N/G.
(b) If X is a fixed point of G, the stalk of nS(%) at n(X) is the G-
invariant part of the stalk of ¥ at X.

Now let # =, % or X Then n$ ¥5(f) is a coherent sheaf over N/G,
whose support contains n(X), for X a fixed point, if and only if the germ of f

30 — Bapach Center 1. 20
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at X is not #%-stable. For a general point ¢ we take the closed orbit T;; a
point Xe T, with isotropy group H, say; an H-slice M at X, and then
consider stability of the germ at X of f| M. Thinking (for simplicity) of a
fixed point, we deduce in turn equivalence of

(i) the germ of f at X is Z°-finite;

(i) T, #°(f) has finite codimension in 6°(f) (at X);

(i) the stalk of = #(f) at n(X) is finite dimensional;

(iv) m(X) is an isolated point of support of n§ .%5(f);

(v) there is a neighbourhood U of n(X) in N/G such that iof e U,
& # m(X), the germ of f along the closed orbit T; is #4“-stable.

This gives the appropriate form of the geometric criterion in these cases.

We can extend the argument to %*¢ and X#™*C. For if .#% is the
subsheaf of ((P/G) of germs ol functions vanishing at ye P/G, and f° N/G
— P/G the induced map, we set

S f) = ad (N> #C 75 1 (f),

S (A, ) =0 SR (N> #C -7 Fr(S).
Again, these are coherent and supported at the unstable points; the geo-
metric criterion follows as before. Now recall that f is %*C.stable at
X < f(m(X))# n. It follows that f is 4*¢-finite at T; il and only if ¢ is
isolated in ™! (n). As before, this is equivalent to the germ of f at n being a
finite map-germ. Similarly, if we define 29(f) to be the support of F£(#°, f):

the set of #%-unstable points (of N/G), we find using the characterisation of
A *%_stability that

fis A*C-finite <> [f|ZC(f) is a finite map-germ.

Now as before if f is ©¢*S-finite, f, preserves coherence; in particular,
f. 7§ ¥ (N) (which is the same as n§ f, ¥"(N)) is coherent, hence so is

L(LO, f) = Coker € f: 7S ¥ (P)— [, n$ ¥ (N).
Similarly #*“-finiteness of f leads to coherence of
P (A9, f) = Coker @ f: 7S ¥ (P) - f, n§ Lr(f).

Now applying the zero theorem again leads to geometric criteria for determi-
nacy. Thus we have

TueorReMm 4.2, [is ./C-finite at a fixed point X if and only if it is H*C-
finite and for some invariant neighbourhood U of X, f is /%-stable at each
closed orbit in U—{X} and at each finite set of such orbits with a common
image in P/G.

We remark that it is not necessary to restrict to the case of a fixed
point. Moreover, the standard method of dealing with other cases (pick a
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closed orbit T;, a point Xe T; with isotropy group H, and an H-slice at X)
does not reduce to a straightforward analogue for H-equivariant maps at a
fixed point of H. It is necessary also to consider the isotropy group K > H of
f(X)e P, and a K-slice at f(X). Although these actions can be linearised, the
linear problems encountered are more complicated than in the simple case of
a fixed point, though they can be handled by the same. methods (see Wall
[28]). The sheaf approach has the advantage of by-passing these complica-
tions, and giving the “correct” result without trouble.

S. Equivariant jets

Ordinary singularity theory makes heavy use of jet bundles, submanifolds
thereof, transversality etc. It is not immediate how to carry over this
apparatus to the equivariant case. For example, the subset of ordinary jet
space consisting of jets of equivariant maps is neither open nor closed, and
yields no relation between the jets of a function f at different points in the
same G-orbit.

Consider the quotient N/G (in the real case with G compact, this will be
the usual pointwise quotient; in the complex case, as above). There is a
canonical stratification of this corresponding to the partition of (closed)
orbits in N into orbit types, given by taking the (conjugacy class of the)
stabiliser H together with (the isomorphism class of) its representation on the
tangent space. Denote by A the set of orbit types; by {(N/G),: ie A} the
stratification. Over a stratum (N/G); it is easy to define jet bundles: indeed,
there are two versions corresponding at a fixed point X to taking quotients
of 8(f)° by (nk-0(f))° or by (m§)*-0(f)°. These families of subgroups
define the same topology, so are essentially equivalent. Either leads to
satisfactory notions of jet bundles over each fixed stratum. These are good
for results involving jet transversality, since this only makes sense when
restricted to a stratum which is a manifold. Roberts [20], [23] gives criteria
for stability analogous to Mather’s, involving such jet transversality condi-
tions.

However, for some purposes it is necessary to have a jet space mapping
to the whole of N/G, and this cannot be constructed simply by piecing
together the above bundles. Instead, we adapt a method of Bierstone [1]. We
first reduce (taking a slice) to the case that X is fixed under G, then take
coordinates in which the action is linear. Then take a minimal set
Wit 1 <i<m} of generators of S¢(N, P) as S9(N)-module. Then in both
the analytic and differentiable cases we can express the equivariant map germ

m
fas f =) h, with the h; invariant function germs. These are the coordi-
1

nates of a map germ of N/G to R™ (or C™) — say of N/G to M — which
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extend to a differentiable (or analytic) germ K: R' = R™ (C' = C™). We now
consider the jet bundles for K, restricted to the subset N/G: these are the
desired bundles, We denote them by J*(N/G, M). They have the unsatisfac-
tory feature that to find the jet of f we have to make choices of functions h;
and an extension K; however it is easy to verify that the operations one
performs are independent of these choices.

THeoreM 5.1 (Wall [28]). Let % be one of #, €, X, ©* and A*. Then
(i) the condition for #¢-stability of f depends only on the equivariant 1-
jet of f,
(i) any HBC-stable germ is determined (up to BS-equivalence) by its
equivariant 1-jet;
(ili) the set Uns(#°) of 1-jets of #%-unstable germs is a (closed) alge-
braic set in J'(N/G, M).

Remark 1. In order to obtain such results as (iii) it is essential to have
a jet space defined over N/G.

Remark 2. In the cases of €, €™ it is even sufficient to work with
equivariant O-jets. Also, it is shown in Bruce et al. [3] that an #®-stable map
is (md N ) (N, P)-#°-determined.

In the cases of ¥ and &/ analogous results hold, ‘but we need multijets.

THeorem 5.2 (Wall [28]). Let # denote ¥ or L. There is an (easily
computable) integer k such that

(ia) The condition for #€-stability of a (multi) germ depends only on its
equivariant k-jet.

(ib) A multigerm is #°-stable if its restriction to each k-point subset is
so.

(i) Any H#C-stable (multi) germ is determined up to %#%-equivalence by its
equivariant k-jet.

(i) There is a closed algebraic subset Uns(#°) of (J*(N/G, M)F such
that a multigerm is #%-stable if and only if its k-jet avoids this subset.

(iva) Uns(%°) contains all k tuples with two source points coincident.

(ivb) A k tuple (¢, ..., ¢) fails to belong to Uns (%) if and only if
those ¢; which are jets of #°-unstable germs have distinct source points, and
the multijet they determine is =/%-stable.

6. Real geometry

In the case of function-germs, Kuo [11] showed in 1968 that a function f is
topologically determined by its r-jet provided an inequality of the form

> J > Cllx|i"™

Ox;
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holds in a neighbourhood of the origin. This inequality should be seen as
quantifying the condition that 0 is an isolated cntical point of . Numerous
developments by several authors (see Wall [27] for references) on this theme
led to a major advance by Wilson [30], [31] in conceptualisation. We shall
give the results in the terminology of Wall [27].

First observe that each #(= 4, ¥, etc), though originally defined as
a group of C®-maps, has a natural C*-version. (Of course if two C™-maps
are C*-equivalent, then the equivalence must itself satisfy stringent condi-
tions.) Next, denote by m;° the ideal in &, of flat functions m?
= () {mk: ke N}: correspondingly, &,/m is the ring of formal power series,
or oo-jets, and we can ask whether f is determined (for some equivalence
relation) by its co-jet.

Now introduce the conditions (for each %)

(@) fis o0-C*-#-determined;

(by) f is finitely-C*-#-determined;

) TA()) > m7-8(f);

(g) f has #-stable germs on a punctured neighbourhood of 0 in R".

Condition (g) is appropriate for analytic germs, but in the C*® case
needs to be strengthened to a quantitative version (¢), corresponding to the
above condition of Kuo for right equivalence.

For # = R, € or A" we define an ideal Iz(f) in &, as follows. Ig(f) is
generated by the pxp minors of the matrix representing df; I-(f)
= f*m, & Ix(f) = Ig(f)+1c(f). These are the stalks of sheaves which (in
complex geometry) are supported at the points where f is #-unstable: X (f),
SO0 or Z(f)nf~'(0) respectively. A finitely generated ideal I
= (¢, ..., ¢,y in &, is said to be elliptic if it satisfies the following
equivalent conditions

(Ei) I > mP®;

t
(Eiij) some inequality ) ¢;(x)* = C|x||* (C, « > 0) holds on some neigh-
1

bourhood of 0.

Now for # = %, ¢ or X we can define the condition

() Ig(f) is elliptic.

In the cases # = &% or # a more complicated condition (e) 1s needed,
since stability is a condition on multigerms: we defer the details. Now we
have

THEOREM 6.1. If # = R, &, € or X, the following are equivalent: (a,)
(0 <k < ), (b) (0<k <), (t) and (e).
Moreover if f is analytic, these are equivalent to (g).

The case G = o/ is much more dehcate. Wilson {30], [31] shows that,
provided f is analytic and ¥ -finite, conditions (a ), (t) and (g) are equivalent.
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In a preprint du Plessis and Brodersen [6] the hypothesis of analyticity (but
not that of .#-finiteness) is dispensed with, and equivalence of (a,)
(ko € k < 00), (b) (kg < k < o0), (t) and (e) is proved, for kg = min(n+1, p
+1). More recently, Brodersen [1] has established the equivalence of (a,) (p
+1 <k ) (b) (p+1 <k <), (t) and (e} without imposing any condi-
tion of f. The proof — involving careful estimates at all stages — is very
difficult. The least possible value of k, is not precisely known, but (except in
the nice dimensions) is certainly strictly greater than 0.

All these notions and results (except the final ones of Brodersen) can be
generalised to the equivariant case. The following are taken from Wall [29].

We suppose 0 a fixed point of G, and sometimes use local coordinates here.
First, we have

my N EC(N) = N {(mf)*: ke N}

and denote this ideal m{®. Corresponding results hold for modules, so that
oo-jets are well defined and correspond (as before) to formal power series.
For a finitely generated ideal I = (¢, ..., ¢,> in (N), I contains m&™ if
and only if (Eii) above holds: again, we call such ideals elliptic.

For =R, €, X, 6% H* & or .« define

(a,) fis C*-#%-determined by its infinite jet;

(by) [ is C*-#°-determined by a finite jet;

(t) TAH(f)> mi*-6°(f);

(g) for some neighbourhood U of 0 in N, all multigerms of fin U — [0}
are #Y-stable.

For B =R, €, A, €* or A*, define I§(f) to be the Oth firting ideal of
0% (fV/T. Z°(f). Then

(e) IS(f) is elliptic.

For 4 = A, 0, .4, ¢* or #* define 1S (f) to be the Oth fitting ideul of
this condition using

I5.(f) = f*mg-6°(N),

IS Sf) = f* g - EC(N)+HIR(S)
A further condition is easily seen to be equivalent to these. Let j§ f: N/G
— JL(N/G, M) be an equivariant 1-jet of f; write Uns(#€) for the set of 1-
jets of #C-unstable germs. Then define

(¢) There exist a neighbourhood U of 0 in N and positive constants C,
a such that the distance

d(j% f (nx), Uns(#%) > Clixl*  for xeU.

THEOREM 6.2. For # = R, G, A, €* or A™*, the following conditions on
equivariant germs [ are equivalent: (a,) (ko < k < ), (by) (kg < k < ), (1), (€)
and (c).
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Estimates for k, can be obtained, but are not at present good enough to
be of interest.

The definition of conditions (e¢) for the remaining cases hinges on the
above analysis of the sets Uns(.#%) and Uns(«/%). Let U be a neighbour-
hood of 0 in N; k as in Theorem 5.2. Define D¢ to be the subset of U* of k
tuples such that either (1) one of the points x; is at the origin or {2) two of
the points coincide. Define D(f) to be the set of k tuples such that either

(1) one of the x; =0, or

(2) for some i # j, x; = x;€ Zg(f).

We can now define, for %4 = ¥ or <,

(e) There exist a neighbourhood U of 0 in N and constants C, a > 0
such that for x,, ..., x;eU,

d((7% fr(xy), ..., j& fa(x)), Uns(#9) = Cd((x,, ..., x,), D§ ()"

THEOREM 6.3. Let [ be an equivariant analytic germ. Suppose that either
B =% and [ is €*C-finite or B = o/ and f is A *C-finite. Then the following
conditions are equivalent: (a,), (t), (g), (e).

It seems likely that, with considerable extra effort, the hypothesis of
analyticity could be dispensed with, and the conclusion strengthened to
include (a,) and (b) for k = k, for some ky: indeed, the proof already gives
somewhat more than is stated above. However, the assumption of .¥*°-
finiteness is much more difficult to abandon, and is by no means so anodyne
as in the case where G is absent, as we now discuss.

7. Counterexamples

7.1. (Roberts [20], {23]) An example to show that K-finiteness does not
hold in general. (As this is the weakest property in the C*-theory, nothing
else holds either.) Let n > s > 6; let the cyclic group Z/nZ act on N = C* by
t(x, y,zy=(tx, ty, z); on P= C by t(u) = (t*u).

We claim there are no #-finite germs N — P. Now equivariance forces
f to map the fixed point set in N (the z-axis) to that in P (the origin). It is
enough (by the geometric criterion) to show that all germs of f along the z-
axis are .¥¢-unstable; for this it suffices to consider germs at 0. But T.#%(f)

is spanned as £%-module by 5 elements (xg, xg, yz, yg— and g— and
ox Oy T ox T Oy oz
T #%(f) by these together with f. Since 6°(f) requires (s+ 1) generators (e.g.

x5, x*" 1y, ..., y°) the claim is established.

7.2. A large class of examples where there are no K*®-finite germs.
Suppose G any nontrivial compact Lie group; N, P G-vector spaces with
dim N¢ > dim P¢, dim N < dim P, and the principal isotropy group of G on
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N trivial. Let f: N — P be an analytic equivariant map (defined on some
open neighbourhood U of 0 in N).

At a point with trivial isotropy group, #“-stability reduces to -
stability, i.e. df surjective. This cannot hold, since dim N < dim P. Thus X f
contains all points with trivial isotropy group; but these are dense, hence
2¢f=N.

Equivariance of f forces f{(N%) = P°. Since dim N¢ > dim P®, the fibres of
f| N¢ have positive dimension. Thus for the complexification f,, 0 is not
isolated in f¢! {0} N NY As the germ of f at any of these points is ¥ ™*°-
unstable, we deduce that the germ at 0 is not ) *S-finite. As the existence of
a A™*C-finite germ would imply the existence of an analytic one, we conclude
there are none.

Since the C*-properties studied fail to hold in general, we turn instead
to topological properties. Here I must first refer to Bierstone [1] (see also,
Field [7]) on “equivariant general position”. From the viewpoint of this
survey, we can loosely interpret this result as stating that we can approxi-
mate any germ by one which is topologically .#“- (or perhaps .#*¢-) stable.

This leaves the interesting question of topological (./¢-) stability.

73. Examples where no topologically <#“-stable maps exist. It is shown
by Nakai [17] that for n > 4 the topological type of a general map C* - C?
of the form

(x, y, 2)—(za(x, y), zb(x, y), c(x, y)),

where each of a, b, ¢ is homogeneous of degree n, depends on a (at least one)
continuous parameter. If we take G = C* x C* acting on source and target by

(¢, w(x, y, z) = (tx, ty, uz),
(¢, w)(X, Y, Z)=(t"uX, t"uY, t"Z),

then the above is the general form for an equivariant map. Thus none is
topologically stable.

Next forget the complex structure, and identify source and target each
with R®; also replace C* x C* by its (maximal) compact subgroup S* xS'. An
extension of the same argument yields a modulus for the generic equivariant
map here also. A further extension allows us to restrict to a finite subgroup
Z, xZy, provided N > 2n is prime to n and K > 3.

These latter cases are not so rigid; in particular, as we move the source
point along the z-axis, the topological modulus will not stay constant. The
map from the z-axis to the moduli space is thus also a topological invanant.
It is now easy to see that we have in general infinitely many topological
moduli, and that a generic map is not even finitely determined for topol-
ogical equivalence.
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Such results were also obtained by Nakai [18] for Z,-actions, in the case
dim ¥V =dim W, dim V¢ = 1 +dim W¢, codim W% > 3. The method of proof
here is different, and is too long to summarise here; the argument uses the
geometry of webs.

To conclude, let me speculate a little on what might be true. The above
counterexamples certainly have a good many properties in common. In
paticular, it seems likely that an analogue of Thom-Mather topological
stability theory (see ¢.g. Gibson et al. [10]) could be pushed through in the
equivariant case subject to a ¥ *C-finiteness hypothesis (though there are
significant difficulties). On the other hand, in the situation of 7.2 it is easy to
see that (unless f is completely degenerate) f cannot be stratified as a Thom
map, (it presents “éclatement” in the sense of Thom), so that the theory
certainly will not work here. So perhaps genericity of .J#*C-finiteness is
necessary and sufficient for such a theory to apply (and conditions for this to
hold were worked out by Roberts [23]). In the remaining cases, one must
look at some relation weaker than .o/*C-equivalence. Perhaps some form of
“equivalence after blowing-up” (cf. Kuo [12], Sabbah [24]) will be the most
appropriate.
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