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1. Introduction

We shall consider the time-semidiscrete approximation to the abstract parabo-
lic equation of the form:

(1.1) du+Au=0,
(1.2) u(0) = U,.

The solution of (1.1) is the function u: [0, T] — X where X is a reflexive Banach
space. The operator A, for each te [0, T] is a closed operator with the domain
D(A,)) = D, dense in X . In the abstract setting the parabolicity means that the
following assumptions are imposed:

AsSUMPTION 1. There exists @e(0, n/2) such that the set
I ={largA¢[— O, 0]} U {0} belongs to the resolvent set of the operator A, for
each te[0,T] and the following inequality

(1.3) IAT =A™ < e (1 +]A])
is valid for AeX and te[0,T].
Assumption | implies that for each ¢ the operator 4, is a generator of the

holomorphic semigroup G,(r) = exp(—14,) and the following inequality is
valid

(1.4) IA? G, (D)l = ¢,/7"

for positive o, uniformly with respect to ¢ [4].

The properties of the solution of (1.1) were considered in the literature for
various assumptions concerning the regularity of the operator function A4, with
respect to t [1-3]. The review of the results is presented in the monograph [4].
In our paper we shall define the regularity classes K(u,a) of the operator
function A4,. The assumptions used in the theory of the equations of type (1.1)

[473]
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correspond to the assumption A, € K(u, ) with u, o properly chosen for each
particular assumption set.

In Section 2 we shall introduce the definition of the class K(u,«) and give
some examples elucidating the meaning of the assumptions hidden in the
definition of K(u,«). The more detailed discussion of the properties of the
classes K(u,a) will be published in the separate paper (5]. We shall give the
regularity results for the solution of (1.1) depending on u, «, leaving the proof
again to paper [5]. The results of [5] show.that using the definition of K(yu,«)
one can construct in a unified way the theory for (1.1) covering the previously
known results. Moreover, having at hand the value of y, a in the intervals
pu>0,0<a<1, we can choose them in the optimal way in the practical
applications and get the stronger regularity results for the solution.

In Section 3 we shall define approximate methods of the Runge-Kutta
type and exhibit their properties pertinent to equation (1.1). We shall prove
stability and some smoothing properties of discrete analogue of (1.1).

Section 4 is devoted to the error estimate analysis for nonsmooth initial
data.

The approximate methods for the parabolic equations have been con-
sidered by several authors. We shall mention only the papers closely related to
the problem investigated in this paper. M.-N. le Roux [8] obtained the error
estimates for time-independent operator and proved the stability of multistep
methods under the assumption that the domain of the operator is time-
-independent [9]. The error estimates in the case of nonsmooth initial data
were derived for the backwards Euler method and for regularly accretive
operator by Mingou and Thomme [10], Suzuki [11], Luskin and Rannacher
[12]. Sammon [13] considered the vartous finite difference schemes for the
equation obtained by applying first space discretization to (1.1) with selfadjoint
operators A, having constant domain.

2. Regularity of the solution

We start with assumptions concerning the regularity of the operator function
A, with respect to t. For p >0, let [u] and {u} be numbers such that
[#]+{n} = u; [p] is an integer and 0 < {u} < 1. By C*(X) we shall denote the
space of functions v: [0, T]— X having the bounded strong derivatives up to
order [u] and with d%¥lv being {u}-Holder continuous. The symboi Z (X, Y)
will stand for the Banach algebra of bounded operators acting from X to Y. We
shall use the symbols D(t),,, and | |, for the interpolation space obtained by
means of real «, p-K-interpolation functor [14] applied to the interpolation
couple {D,X} and the norm in this space, respectively.

The regularity of 4, with respect to ¢ will be classified by the following
definition:
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DeriNITION 1. We shall say that 4,e K(u,a) for 0 <a <1, u>0 if and
only if there exists a space Y such that

(i) for te[0,T]; D, < Y D(t); o,

(ii) A7 'eCHZL(X,Y)).

One can define the class K(u,a) in the following alternative way:

DEeFINITION 1'. A4, K(u,a) if and only if

(2.1) AT e CHF (X, X))

and for AeZXZ; r,t,se[0,T] the following inequalities

(2.2) IA,AT—A)™ (@M A =AY < ¢y A7t — ",
(2.3) I4,AI—A) 1A S el i=0,1, .., [u],

are valid ‘with the constants ¢,, ¢, independent of 4, r, s, t. The equivalence
follows from the following expression for the norm in D(t)g

(2.4) [Xl oo = sup [724,(cI+4,) ' x|.

0<t<m

Starting from Definition 1, we can define Y by the formula
Y= (D (t)sm
t
and prove (i) and (ii) in Definition 1.
Now we shall consider some examples.

ExaMpLE 1. The operators are regularly accretive operators in Hilbert
space H associated with the form a,(u,v) defined on VxV. One has
D cVc X. It is assumed that

(2.5) Rea,(u,u) > c|ul?,
(2.6) acC LV xV,C)],

where C stands for the set of complex numbers. It can easily be shown that
A teC*r[L(V', V)] where V' denotes the space dual to V (H" = H). From the
conditions [4]

(2.7) A A= A) " e vy < /1A,
(2.8) 1A, (A= A) " N ow x) < /142,
it follows that A,,A¥eK(u, 1/2) in H and A, AfeK(g,1) in V.

ExaMPLE 2. Let us consider the operators

(2.9) o= T a)X,1)DP,
1Bl<2m
(2.10) B= Y byx,0D!, j=1,...m,

1Bl<€m
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written in the standard notation, where § is a multiindex and D? = 41 ... g,
Let Q be a bounded domain in R" with the boundary sufficiently regular, .o,
uniformly strongly elliptic differential operator, 4! normal boundary operators
complementing =7, [4,14]. By W*? we shall denote Sobolev spaces [4] (for
integer 5, W*¥ consists of functions having the generalized derivatives up to
order s integrable with pth power). For a,, by, sufficiently regular we can define
the operator A, in L, = W? with the domain

D(4,) = W{%:n.p —_ {MEWZ""'J;-@{“[&.Q =0,j=1,..., I’Vl}

and putting A,u = o7,u for ue D(4,). Denoting by Wji? the subspace of W*r
defined by

WP = {ue W™, Blulog =0 if m;>s—1/p, j=1.2,... m},
one has the Grisvard interpolation theorem [15]

[Ly Wa? lap = W™

Taking o < inf ((m,;+1/p)/2m) and Y= W>** if m;#0 for all j and
Y={ue WZ"“TJ"';>3|DD =0} otherwise, we obtain from the Grisvard theorem
(2.11) D cYcD,,

In order to prove that A,eK(p,) it is sufficient to show that
A7'eC*[L(X,Y)]. For p <1 one can consider the equations

(2.12) o (i, —u) = (o — o u,,
(2.13) Bl —u) = (Bl—Fu,, j=1,....m,
where u, = A, ' f. From (2.12) and (2.13) it follows [4] that
ey = ulmam. < W = Yuiglln, + 3 NBL— BBl wam-m,- 170000
j
If the coefficients a,, bjy are sufficiently regular one gets the Hélder continuity

of u, in W3™” norm. In order to consider the regularity for higher value of
# one has to differentiate formally the equations

A, =f, Blu=0, j=1,..,m,
with respect to t. After the first differentiation one gets
Ao, = —0,4,u,
Biou, = —8,Blu,
and
(0 u,—0su) = (o, —of ), u +0, (g —u)+ (0,8 . —C, 4 )u,,
Bl (0,u,—d,u) = (B — B0, u+ 0, Bilu,—u)+ (0,98~ 0,%])u,,
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where 9,s7,, ,7] are operators obtained by formal differentiation of the
coefficients of the operators. The equations above allow for showing that
A 'eK(u,a) for 1 < pu <2 under obvious assumptions imposed on the
coefficients a, and bj. The analysis for higher value of 1 can be accomplished in
the similar manner by successive differentiation of equations defining u,.

Remarks. In case of the second order differential operator, one gets
AeK(u,a) for a < 1/24+1/(2p) in case of lime-dependent boundary condition
with m; =1 and a = 1 for m; = 0. In [6] we have extended the definition of
K{u,7) to o> 1. Under this definition it was shown that 4, K(u,o) for
o< 1+1/(2p) in the case m; = Q.

Now we shall present the regularity results for the solution of cquation
(1.1) [5]. The solution can be represented by the family of the evolution
operators defined by the relation

(2.14) u(t) = Ult,s) u(s)

where u is the solution of (1.1). In terms of evolution operators we can state the
results in the theorem.

THEOREM 1. [f A, e K(u,a) for 1> 0,0 <o < 1 then the bounded evolution
operators U(t,s) exist for 0 <s <t < T under rhe assumption that u+a > 1,
and for

f<min(l,m}+a—1, g<min({g+al,{u},a), ¢<a, <t
the following inequalities are valid
10iu(t, )l <c/lt—sl', i=1,...,[u+al,
1A} TP U@ ) < cfle—s)' o,
| DU (2= AU, ] < ele e/ —s|ierave,
IA4¥ Gute. )l < c/(e—s)",  i=1,..., [pt+a]-1,
A2 0 u(e, )] < ¢fl—s|HF*e,
In the error analysis we shall use the operators U*(¢,s) adjoint to U(t,s).
The operators U*(t,s) correspond to the following equation
Av= —A¥p
with the reversed time direction. The following relation holds
p(s) = U*{(t,8)v(1).

From the assumption that 4Fe K (u*,o*) we can deduce the similar regularity
results for U(t,s) with obvious change of the role of variables ¢ and s. Since X is
reflexive Banach space, we obtain in this way the regularity of both families
Ul{t,s) and U*(t,s) with respect to both variables. One has to understand the
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corresponding relation in which the operator of the form U(t,s) AL " is
involved e.g.

U@ 947 < f/(t—97

in the following sense. The operator U (t,s)AL*" defined on D(AL*?") being
dense in X has the bounded continuous extension on X. In the further
consideration we shall not distinguish between the operator and its extension

in the above sense.

3. Stability and smoothing properties of Runge-Kutta methods

The class of Runge-Kutta schemes considered in the paper can be described by
the following equations

q
(31) Yoy = yn+At Z Qyy! Anm+zv: Yuv's V= 1; e g,

vi=1

q
(32) Yur1 = yn+At E vanAt+!vyn,v’

v=1

wheret, = 7,4t,0 < 1, < 1, y, correspond to approximate value of solution at
t = ndt defined by (3.1) are auxiliary values. We shall introduce the following
_notation;

('&u)vv' = Angi v Oy (‘-0711)\!1!' = Anar Owv'>
Do =1,00, e=[1,1,..., 117, b=[b,,...,}b,1].
Assuming that ([+Atas/,)”! exists, we can write using matrix notation
Va1 = Wn+1,n)y, = [I+4tbd (I +Atast ) 'ely,.
Moreover, we shall introduce
Wen+1,n)=[I+4tbed,(I+ Atadd,)  e],
W3, k) =W(,j-DW(j—1,j-2) ... Wk+1,k),
Wk =W (,j-OW(~-1.j=2) ... Wik+1,k).
By w(z) we shall denote the rational function defined by the relation
w(dl) = Wn+1,n) for A, = —2Z.
It will be assumed that the scheme satisfies the following assumption.

ASSUMPTIONS 2.

(1) lo(z)l € 1; Rez<gO,
(i1) lim &(z) = w(xw) < 1,
() 7 4 Texists.

In other words, Assumptions (i) and (ii) means that the scheme is strongly
A-stable.
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Let us now recall certain properties of the scheme of this type applied to
(1.1) wich constant operator. One has the fcllowing error estimate

(3.4) lexp(— A(I—K)A) = W(I, K| < cA/((I—k) Aty

where k is the order of the methods. One observes that (3.4) is equivalent to the
following properties:

W(l, k) = WO K) + W),
IWOL KN < cder/(I-k) A0y, a<k,

(3.5)

(3.6) AWK < c/((I—-K)AtP, o« <k,

Indeed, putting W'({l,k) = —exp(—A(—k)4t)+ W(l, k'), we get (3.5 from
(3.4). Inequality (3.6) is the direct consequence of the properties of the
semigroup. From (3.5) and (3.6) and semigroup properties after some algebra
one can obtain (3.4). The properties described by (3.5) and (3.6) will be called
smoothing properties of the scheme in further discussion. We shall prove similar
smoothing properties for time-dependent operator.

We start by the following lemma.

LEmMMA 1. If A,€ K(u, o) for a+u > 1 then under Assumption 2 there exists
hy such that (I+Atasf )™ 1 exists for At < hy and

(3.7) |, (I+Atadd )71 < c/4t,
(3.8) [(I+Atasd )7 <ec.
Proof. We can wriie
(I+Atadd,) = (L a " * +AtDhasd,
= (I a AN+ a A D) - Ya e,

where (a1 4 Aty = adf (I+Atasd ).
The term in square brackets has bounded inverse due to the equality

Q=ad (I+Atadd,) WAL -, ")
ol Lo \avsedy g (Liva ) -
=a AE Rl -a . n > n At n = n n

and the inequality
101 < cdem ™oL,

The remaining part of the lemma follows from the formula

(U+Arad,) P =o' a  I+Q] YA, ta~ v AL )]
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defining the inverse and the equa]ity
&, (I +ad A"t = —1[1 (I +Atasd,) ']

For the operator function 4, we can prove the following smoothing
properties.

ThHEOREM 2. [f A,eK(u,o) for o+p>1 then the discrete evolution
operators have the fol lowm g propertzes

[W(n, k)| < c(1 +In(n—k)),
W(n, k) = WW(n, k) + WO, k),
(3.9) WD, )] < c A +P/((n—k) 46" (1 + In(n— k),
(3.10) [ALEA Win, k)| < cAt* TP/ ((n—k) 40)' T P-(1 + [In(n — k)]),

Jor f<min(l,p)+a~1.

Proof. We can write

(3.11)
Win,ky = W (n,k)+ i W (n, )[W(i,i—1)—W, (i,i—-)IW(i—1,k)
i=k+1
where

Wi, i—)=W,i,i=1)=dthd (I+A4tad,) (I =)t (I + Atasd )"

Equation (3.11) multiplied by &, , (I + AtasZ,.,)” ! can be written in the form

(3.12) ®(n, k) = dy(n, k) + Z AtK(n, i) ®(, k),
where o
(3.13)
D, k) = A (I +Atast )" e [Win,k)y—W,n, k)],
Kni)= o, (I+Atasd ) YeW,(n,)bd (I+dtasl,) (7 — ),

ol k)= Y AtK(n,)el,k),

i=k+1
i, k)= A,(I+ dtacd )" YeW,_,(i—1,k).

We can split the operators K(n,i) into the sum of two terms defined by the
expressions

(3.14)
KOn,i) = e ([ +4tad yr )" e WD (n, b (1 + Atast )" (L ' —H] Y.
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From the equality

(315) ﬂ"(I-I-Ata‘g")—l(E"_l—._ofi—l)

1
(n—i)Aat

= ((n——li)At-l-j?")U—FAm'ﬂ )~ .szf"( +.E,,)—l(,g7/;1 —VJ.'-I)

and (3.5) for « =2 one gets
1K, il = ¢/ (n—i) de)p =~ mintt,
In order to get the same estimate for K? one uses the identity
Aol +4tast, )= (+B)A ,(I1+Atad)™?

where
1 v v -1 1 = . Z-1 Z7-1
B =\ Aty U dtad, ) A4y | Al —oA7)

and ”'}” LAtmm(# Ay+a— 1
The inequality above together with (3.6) for « =2 shows the desired
inequality for K2. Combining the results, we have

(3.16) 1K (Dl < cf{(n—i) de) == mintim,

- 1 -
Using identity (3.15) with ( +4z¢,,) replaced by Z—E+.ﬂ,,, one gets

(n—i) At
1K, ml] < ¢f g minth,

Now we shall consider the function ¢(i, k). Using the similar tricks, one
can show that

_ 1
(.17) ol I < e
(3.18) oG, )l < ¢/ 4.

From (3.17), (3.18), (3.16) it follows that

1
[(” )At]z a—min(l,u)

(3.19) |1 ®g(n, k)| < (1+1n(n—k)).

Now (3.19) together with (3.16) implies that the function ¢ satisfies the
inequality of the form

1
((n _ k)[jt)z —a—min(1,x)

(3.20) |P(n, k)| < (L +In(n—k)).
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From (3.11) it follows that

Win, k) = W.n,K)+4t Y W,(n, i), (I+dtasd,) "' x

i=k+1
) (A7 — AT — 1, k) + pli—1, k)]

Again one can use the splitting of W, (n,i) and (3.5), (3.6). The contribution
W (n, k) from W,}(n,k) satisfies (3.9). In order to get (3.10) for the remaining
part of W(n,k) one can use the inequality

(3.21) U — ) < e((n—D)dt)*, 7y <a,
which follows from the inclusion
(322) D(Axm) = D(t)a.uo > Y

and the definition of class K(u,x). This ends the proof.

In [6] the theorem above is extended to the value greater than 1 with the
suitable changing of the definition of class K (u, ). Some smoothing properties
have been shown for the operator function 4, which does not belong to K(u,«).
But all this required a lot more sophisticated proof.

In the error analysis we shall need the operators adjoint to W(n,k).
Similarly as in the continuous case, the adjoint operator W*(n,k) can be
interpreted as some Runge-Kutta method applied to (3.15) with the reversed
time direction. This scheme can be defined by (3.3) with a, 7, b, e replaced by
a”, 17, b7, eT. The scheme obtained in this way has the same order of
approximation. Assuming that Afe K(u*,o*) we can establish the similar
smoothing properties for the dual scheme. Again, since X is reflexive Banach
space, we can get the appropriate smoothing properties for both W(n,k) and
W#*(n, k) with the estimates for the extension of the operators W(n, k) A, and
WH(n, k) AZ%,,.

4. Error estimates

Using the properties of the evolution operator U(t, s) and the properties of its
discrete analogue W(n,k), we can show the [ollowing error estimates.

THEOREM 3. If A, e K(u, o) in X for p> 1+o and A¥e K(u*,o*) in X* for
p* > 1+0o* then for Runge—Kutta scheme satisfying Assumptions 2 and of order
k =2 the following error estimate is valid

At b
4.1 U(nAt, k At)— W Lol ———
“1) (U at, k1) .ol < c \(n—-k)At)

where § < (1 +u,14a*). If, moreover, ae = ie then (4.1) is valid with § < 1 +a*.
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Remark. The condition ae = Te is not restrictive one. All schemes used in
practice satisfy this condition. For the second order partial differential
equation with the first order boundary condition, by taking X =L, X = L,

we obtain a* = 2+ 1/(2g) which corresponds to < 2—1/(2p) in (4.1).

Proof. The proof will be divided into three steps.
Step 1. We shall estimate the differences:

g, = [U((1+ 1) dt,140)— W(I+1,)]u(l 4t),
e = [U* (1 + 1) 4, 148) = WX+ 1, )] w*((1+ 1) 42),

where 4 and u* are exact solutions of (1.1) and (2.15), respectively. One can
easily show the inequalities:

lAg+ natill < cAtlu(ldy],
I(AE+ 1)~ TeF | < cdtffu* (4 1) de)|.
Indeed, one gets
TARL WA+ 1) =T]| < At bt — o7 ) od (I + dtasd )" el
+At| b+ dtact) e € cdt
and
I+ at

B=Aglya((Ul+ 041401 = | Agl,aAU(,140)de

14t

I+ 1)di (I+1)4:
= | (Agtya—ATNAURId)dz+ | U, ldede
A 1At

+(Adtna— A [U(U+ 1) At lan)—1T1],
showing that |B| < ¢4t. Using the identities

AtaB(I+ AtaB) ' =1—(1+A4ctaB)~ 1,
BU+AraR) ' —C(I+ Ata6)” " = #(+ AtaRB) (B ™' =" NE(I+dta®)"",
we can write

5
W+ U, Du(lAt) = ul Aty + Atd,uly=ra+ Y T,
i=1
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where
I, = At*basd,_((I+dtasd,_ )" "edu(lAr),
I, = At*bst, ((I+4tas?,_ ) " ted, A =140 Arau(l A1),
I, = AthZ (I + Adtad )] ' — A7 —At18,A7 (I + dtast )" Le Ay u(l Ar),
I, =A80b,(I+Atasd )" 10,47 = pa A (I + Atasd )™ Le A ju(ldr),
I = A?b (I +Atasdt ) s, — 7 W+ Atasdd Y E(0,A7 )= 140 %
x(I+Adtas? )™ e Ay u(ldr).

We can easily estimate the terms I, —/, using the following inequalities:

(4.2) |t =t =1 At0, A7 M ip ]| < cApminw-D),
(4.3) | I+ dtast)” ' £8,4,7 || < cde* L,
(4.4) IZ,(I+Atadl)” (] — @7 Y| < cdr?,
(4.5) |, (I+Atasd ) *e A || <cdAtP™', B<a.
We obtain
5
(4.6) IS L] < cdt P AliPuld), B <a,
i=1
5
4.7 ”A(T+11)A: Z 1.’“ < cdr P AL Pu(ldr), <o
i=3

For the terms I, — I it is possible to get other estimates using the assumption
A¥e K(u*,a*) which implies

(4.8) 10,4, o, (I +dtas,_ )" < cdt® 1,
(4.9) (A — A VA (T +Atad,_ )L < cdr™
Instead of (4.7) and (4.8) we have
5
(4.10) | X1l < cde™ 7| dgudn)),  p* < a*,
i=3
5 *
(4.11) [Aava Y, L] € cAP* P | Aqu(l A,  p* < a*.
i=3

Now we shall estimate I, +1,. Writing I, +1, =bA4,z we can split
Aiipa(l +1,) as follows: )

(4.12) Aginab o,z =b(t Y — A 2+ bz,
where

(4.13) Ib( s =l )t jzll < cAt  PIAlG ulAn), B < e
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We can write

(Ar)? -
(4.14) bz = 5 (Aya+ 0, A, |lArAlAtu)+R'1
(4r)? -
= 2 (Asa) latzu|r=1.4:+R1,
where
(4.15) IR, Il € cA**Pl AL ullan)l, B <o

Under additional assumption ae = Te we can obtain, using similar tricks,

(4.16) (Iy + 1) = 34t*%u,|, =, + R,,

(4.17) At ya Iy +1,) = 342 A5 102U =y, + R,

where ||R,|| < c4¢?||d?u| and |R4| < c4¢® ||djut|,= 4]l Combining the above
results, we obtain

4.18) | Azl y U+ DAL, 140 - W(+1, hu(l 40)|
<cdt|olul;  i,j=0,1,
4.19) | At oadU((I+ D)4t 14— W(I+1,hu( 40) |
S cdt* PP AN Pul +c At 0Fu|, B <.
Under the assumption ae = 7e we obtain
(420) [ Agiha(U(U+1)de 14— W +1,D)
LA Aulf+e A2 || Fu)| for i=0,1, B* <a*.

The same estimate can be obtained for W*(n, k) leading to the inequalities
corresponding to (4.18) and (4.19).
Step 2. The identity

Fu=U(jAt, kdn)—Wi(j,k)

= i Wi, D[W(i,i—1)=Ulide,(i—1)A)] U((i—1) 4t k At)

i=k+1

together with (4.18) leads to the estimate

(4.21) Eal <o =2 I es0
' S G A '
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Step 3. Using the standart technique we can expressed the error in the

form
Ejk = EﬂU(lAI,kAt)‘{'EﬂEm'f'U(_]AI,IA[)E”(

with the following inequality

At 2-s
——— ERU*(jAt,1Ar)].
U_k)m] + | ERU*(dt, 140)]

The results of Step 1 imply now the conclusions of the theorem.

1Ell < IIE,-xU(Mt,kAt)II-i-C[
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