CONTENTS Introduction.....................................................................................................................................................................................................5 1. Some properties of multi-valued functions...................................................................................................................................................5 2. Fixed-point theorems for multi-valued functions.........................................................................................................................................11 3. On the characterization and extension of continuous solutions of functional equation with multi-valued functions...................................17 4. On the existence of continuous solutions of functional equations of n-th order with multi-valued functions..............................................21 5. On the continuous solutions of a functional inequality...............................................................................................................................25 References.....................................................................................................................................................................................................28
[1] K. Baron, Continuous solutions of a functional equation of n-th order, Aeq. Math. 9 (1973), pp. 257-259.
[2] K. Baron, Note on the existence of continuous solutions of a functional equation of n-th order, Ann. Polon. Math. 30 (1974), pp. 77-80.
[3] K. Baron, Note on continuous solutions of a functional equation, Aeq. Math. 11 (1974), pp. 267-269.
[4] K. Baron, On extending of solutions of functional equation, Aeq. Math. 13 (1975), pp. 285-288.
[5] K. Baron, On extending of solutions of functional equations in a single variable, Recueil des travaux de l'Institut Math, Nouvelle série, No. 1 (9) (1976), pp. 23-24.
[6] L. Blumenthal, Theory and applications of distance geometry, Oxford 1953.
[7] D. W. Boyd and J. S. W. Wong, On nonlinear contractions, Proc. Amer. Math. Soc. 20 (1969), pp. 458-464.
[8] H. Covitz and S. B. Nadler jr., Multivalued contraction mappings in generalized metric spaces, Israel J. Math. 8 (1970), pp. 5-11.
[9] R. Engelking, General topology, Monografie Mat. t. 60, Warszawa 1976.
[10] R. B. Fraser jr. and S. B. Nadler jr., Sequences of contractive maps and fixed points, Pacific J. Math. 31 (1969), pp. 659-667.
[11] C. K. Jung, On generalized complete metric spaces, Bul. Amer. Math. Soc. 75 (1969), pp. 113-116.
[12] W. A. Kirk, Caristi's fixed point theorem and metric convexity, Colloq. Math. 36 (1976), pp. 81-86.
[13] H. M. Ko, Fixed points theorems for point to set mappings and the set of fixed points, Pacific J. Math. 42 (1972), pp. 369-379.
[14] M. Kuczma, Functional equations in a single variable, PWN, Monografie Mat. 46, Warszawa 1968.
[15] K. Kuratowski, Topology I, Acad. Press, New York 1966.
[16] K. Kuratowski, Topology II, Acad. Press, New York 1968.
[17] J. Matkowski, Integrable solutions of functional equations, Diss. Math. 127, PWN, Warszawa 1975.
[18] J. Matkowski and R. Węgrzyk, On equivalence of some fixed point theorems for selfmappings of metrically convex space, Boll. Un. Mat. Ital (5) 15-A (1978), pp. 359-369.
[19] A. Meir and E. Keeler, A theorem on contraction mappings, J. Math. Anal. Appl. 28 (1969), pp. 326-329.
[20] E. Michael, Continuous selections I, Ann. of Math. 63 (1956), pp. 361-382.
[21] E. Michael, A selection theorem, Proc. Amer. Math. Soc. 17 (1966), pp. 1404-1406.
[22] S. B. Nadler jr., Multivalued contraction mappings, Pacific J. Math. 30 (1969), pp. 475-488.
[23] E. Rakotch, A note on contractive mappings, Proc. Amer. Math. Soc. 13 (1962), pp. 459-465.
[24] S. Reich, Fixed points of contractive functions. Boll. Un. Math. Ital. (4) 5 (1972), pp. 26-42.
[25] H. H. Schaefer, Topological vector spaces, New York 1966.
[26] C. Shiau, K. K. Tan and C. S. Wong, Quasi-nonexpansive multi-valued maps and selections, Fund. Math. 87 (1975), pp. 109-119.
[27] W. J. Thron, Sequences generates by iteration, Trans. Amer. Math. Soc. 96 (1960), pp. 38-53.
[28] C. S. Wong, Fixed point theorems for point to set mappings, Canad. Math. Bull. 17 (4) (1974).