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- § 1. Introduction

Let (X,3B, m) be a o-finite measure space and let X be a Banach
space with the norm |||-|||. By L,(m, ¥), 1 < p < oo, we denote, as usual,
the Banach space of all strongly B-measurable X-valued functions f defined
on X with |||f(x)|[|” integrable with respect to m and by L_(m, X) the
Banach space of all strongly 8B-measurable, X-valued, m-essentially boun-
ded functions defined on X. Two functions in L,(m,X) or L,(m,X)
which coincide with each other m-a.e. will be identified. If X is the linear
space RY or CN of all N-tuples of real or complex numbers, we shall
adopt the notations L,(m) and L, (m) instead of L,(m, X) and L, (m, X),
respectively.

Given a measure preserving transformation ¢ of X and a (# y)-measur-
able family {y,: ze X} of measure preserving transformations of another
o-finite measure space (Y, §, u), the so-called skew product T' of ¢ and
{p,: we X} is given by the formula T'(z, ¥) = (¢gx, v, ¥).

If we write

Yo,2) = identit}’, Ying) = Yorr—1zg «++ Yz for n= 1,
then {y ,: o< X} satisfies the relation

(1'1) w('n—f—m,m) = 'p(n,qima:) w(m,:t) for n, m 2 0.

In general, we call {y,,: zeX} satisfying (1.1) a quasi semigroup
associated with ¢.

Also, given a measurable semiflow {¢,: t > 0} on X and a (¢, z, ¥)-
measurable quasi semigroup {y,,: < X} of measure preserving trans-
formations of Y associated with {¢,}, the skew product {T,: ¢{> 0} of
{pi: 1> 0} and {y,: ve X,t> 0} is given by :

Tz, y) = (g2, Ye,0)Y) -

For the skew products of dynamical systems, see, for example, E. Kin
[15]. :
Every measurable semiflow {T,: ¢ > 0} on X x Y has the continuity:
for all fe L,(m Xu,X) with-1 < p < oo,

lim|| foT, —fo Tslle(mxu,x) = 0.

t—>s
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Furthermore, we shall denote the contraction operators induced by
measure preserving transformations by the same notations as the trans-
formations where no confusion can arise.

The fundamental theorems of random ergodic theory, which emerged
in the epoch 1942-56, were recognized as those pertaining to quasi
semigroups of measure preserving transformations. Indeed, random ergodic
theorems formulated by H. R. Pitt, S. Ulam, J. von Neumann and S. Ka-
kutani were statements about the limiting behaviors of random operator
averages for quasi semigroups of measure preserving transformations
and have since extensively been studied by several investigators (ef. [5],
[6], [13], [16], [17], [20], [21], [23]). Some further operator-theoretical
generalizations were given by Beck and Schwartz [5] and Cairoli [6] in
the discrete parameter case.

The purpose of the present paper is to give a consistent operator-
theoretical treatment of random ergodic theorems.

It is now very natural to make use of ergodic theorems in dealing
with random ergodic theorems. As skew product transformations become
effective for quasi semigroups of measure preserving transformations,
80 induced contraction semigroups become effective for quasi semigroups
of contraction operators.

In §2 we introduce a notion of strongly measurable, a.e. strongly
continuous quasi semigroups of contraction operators associated with
a measprable semiflow, some examples of which are provided. This concept
will t;a,Ee added interest in dealing with the limiting behaviors of random
operator averages in a regular fashion. We also touch upon the infini-
tesimal generators of such quasi semigroups.

In § 3 we introduce a concept of induced contraction semigroups and
show how to construct the induced semigroup from a given quasi semi-
group. This semigroup is especially well-suited to handle one crucial
step in the proofs of random ergodic theorems.

§ 4 is devoted to the discussions of discrete random ergodic the-
orems.

In a recent paper of the author [23], there were presented
several random ergodic theorems with weighted averages in the one
dimensional parameter case. We here generalize and extend some of
them and some results due to Gladysz [13] and Beck and Schwartz [5].
We also give a generalization of the so-called ‘“‘non-commuting” ergodic
theorem due to Dunford and Schwartz [10].

Continuous random ergodic theorems for measurable semiflows were.
extensively studied by Kin ([16], [17]). We generalize these results to
those at the operator theoretic level in the last § 5.

The author wishes to express his hearty thanks to the referee for his
kind advices and suggestions.
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§ 2. Contraction quasi semigroups associated
with a semiflow

A notion of quasi semigroups of operators associated with a measurable
semiflow introduced below plays an important role in the systematical
study of the theory of ergodic theorems.

Two different o-finite measure spaces (X,B,m) and (Y, F, u)
are considered.

Let RY denote the set of all N-tuples of non-negative real numbers
and let {g,: te RY} be a measurable N-parameter semiflow on X. To
each (1, )e RY x X ‘there corresponds a linear operator Ug on Ly(u,X)
with ||U(,,I)||Lp(,,,x) < 1. We shall call {Uy,: (¢, z)e RY x X} a contraction
quasi semigroup on L, (u,X) associated with {p,: te RY} provided that
“for any t,se¢ RY,

(2.1) U,y = 1dentity, Ug,sz = Ug gz U,y m-ace.

A contraction quasi semigroup {Ug,: (t,¥)e RY xX} is said to
be strongly B-measurable if for each te RY, Uyg,.) is strongly B-measurable
as an L,(u, X)-operator valued function defined on X, that is to say,

for any ge L,(u, X), there are countably L, (u, X)-valued functions »¥(z, -)
defined on X such that

lim 2O (2, ) —( U, 9) (N yn = 0 m-a.e.

n—>o0

If for any se RY and all ge L,(u, X),
(2.2) lim " U(t,:c)g - U(S,:E)g"Lp(ﬂ,I) - 0 m-a,.e.,
-8

then we say that {Ug,: (f,2)e RY x X} is m-a.e. strongly continuous.
If (2.2) holds for all z, it is said to be strongly continuous.

In the above definition, we must notice that the function (U ,9)(¥)
is not necessarily measurable in (¢, z, y). However, we shall demonstrate
in the next section that the combination’of the m-a.e. strong continuity
and the strong B-measurability of quasi semigroups is a sufficient condi-
tion for choosing the functions [U¢,591(y) measurable in (¢, z,y) from
their equivalence classes.

Before going on to the construction of induced semigroups, we provide
some examples of contraction quasi semigroups a.e. strongly continuous
in ¢. It will be plain that all the arguments apply equally well in the case
of multi-dimensional quasi semigroups, but we simplify, in the following
examples, the notations by confining ourselves to the one parameter
case to avoid complexity.

ExAMPLE 1. Take X = Y = R! and define

¢
(2.3) a(t,s) = [a(p,2)du
0
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for a bounded positive continuous function a(x) defined on X, where
the semiflow {¢,: t > 0} is given by ¢,# = @ +¢. Then the function a(?, )
is obviously measurable in (¢, ) and possesses the quasi additivity:

(2.4) a(t+s,z) = a(s, gx)+a(t, x).

With the quasi semigroup {y,.,: ({,#)e B, X X} defined on Y by
Vea¥ =Y +ea(t,z), we put, for gelL,(u,X), (Ury9)(¥) = 9(yeqY)
which is measurable in (¢,z,y). Then {Uy,: (¢, 2)e B, XX} becomes
an m-a.e. strongly continuous contraction quasi semigroup on L,(u, X)
associated with {¢,: t > 0}. .

ExaMPLE 2. Let ¥ = R! and let a(¢, ) be a funetion given by (2.3)
in which a(z) is a bounded positive measurable function defined on X.
Except on a suitable set of m-measure zero, put

u2
.N(t’l.)(u) = (2ﬁa(t’ .’,U))_I/28Xp(—' m), — 00 < U << oo, t> 0’
?
(Ug)9) (%) = [ Nynly—wg(w)du  for t>0,
(t)x) - —0Q '
g(y) for t =0,

for every ge L,(u,X). Then {U,,: ({,z)e B, xX} defines an m-a.e.
strongly continuous contraction quasi semigroup on IL,(u, X) associated
with a measurable semiflow {p,: t > 0} for which the function a(t, )
is defined (see (2.3)).

In fact, it is clear that every U, is a linear contraction operator
on L,(u,X). To show the m-a.e. strong continuity, we first observe that
for ge L,(p, X),

(2.5) (Uun9)(y)—9(y)

o0 Y .
= (27a(t, 2))~12 fexp(—u) {g(u) —g(y)}du

2a(t, x)
= g~V i xp(—u? —uV2a(t, z)) — du m-a.e.
n [ exp(—ut){g(y (1, @) — 9 ()}

so that, by Fubini’s theorem,
(2.6) U459 —9lz,u35

< nol f exp ( —uz){f\llg(y—ul/Za(t, x)) _g(y)mdy(y)} du m-a.e.
—00 ¥
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A priori, _
[lgly —uv2a(t, @) —g @)l du(y) < 219z, 5
¥
Now it is worth to note that the exceptional sets (for which (2.5)
and (2.6) do not hold) may depend upon ¢, but in fact (2.5) and (2.6)

hold for every «. Hence, applying the Lebesgue’s dominated convergence
theorem, we get

tii(ﬁ.l | U(t,:c)g_g”[tl(l‘-x) =0

which is enough to show (2.2). In proving the quasi semigroup property
we need the following equation

(2.7) Nyysp(u) = fN(s,m)(u—”)Na,z)(”)d’”

from which (2.1) follows after an easy computation. The Fourier trans-
form of the left-hand side of (2.7) is equal to

1‘;7(1,8,1:) (.B) ‘

= (2m)" 12 fN(Hs,x)(u)exp(-—iﬂu)du

= (4nta(t+s, @)V f exp { - (iﬁ“‘ + ?a(TiW)}du

-0

— (4n%a(t+s, @) exp (_ B*a(t-+s, 50)) fexp{_ (u+ipa(t+s, m))’}'du

2 - 2a(t+s, x)
_ pra(t+s, z) ~ u?
— 2 1/2 _ _ - -
= (4ntalt+s, ) eXp( 2 )_i exP( 2a(t+s, m))du

= (2m) exp ( _ Falits, @) )

2

On the other hand, since the Fourier transform of a convolution
equals to the product of Fourier transforms after omitting the normalizing
multipliers and then using the above calculation of the Fourier trans-
form of N, to apply the quasi additivity (2.4) of the function a(t,x),
the Fourier transform of the right-hand side of (2.7) is equal to

Goy(B) = (2m) 7 [ exp(—ifu)| [ N pm (1 — )N 0(v) dv} du

_ (2n)_112exp(_ &I_(_t‘f‘s’ w)).

2
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Therefore,
F(l,s,a:)(ﬂ) = G(l,s,:c)(ﬂ)
which leads us to the equation (2.7).

ExamrLE 3. Let X, Y and a(t, #) be as in Example 1, and define
for >0 and 8> 0,

o k
(Ug,9)(y) = exp(—2a(t, z)) 2 Mk’,m”— 9(y —kp)
k=0
for ge Ly(u, X). Then {Ug,: (t,2)e B, xX} turns out to be an m-a.e.
strongly continuous contraction quasi semigroup on L,(u, X) associated
with {g,: ¢t > 0}. The m-a.e. strong continuity follows from the following
inequality:

U9 — 9 Ly,

Aa(
< exp(—4Aa(t, @) Z y (fall 2))" ) fllly y—kB)—g(y)llidu(y).

As for the quasi semigroup property, we have

(Ugs,00) U, )9)(¥)
— exp{_l(a ,¢gw)+a(t w )}Z(Aa yq’tw Z(/‘La 2 ))] g(y—(k+j)ﬂ)

Je=0 j=0 A

_ (Zat .’v))’ (la S, Q& )p -

exp(—Aa(t+s, a:))j%1 [ 2 ! ] 9(y —pp)
= (U(t+s,:c)g)(y)‘

ExampLE 4. With X, Y and «a(f, ) given in Example 1, put for
t>0,

n(t.z)(u) = {a(ty m)}_2’7 (u{a(t) w)}_g))
where

) {22 u*exp (1/4u)}~! for >0,
wu) =
( 0 for u =0.

Then {7 .} has the following properties:
(i) f 7}(‘ z) du =1 fOI' > 0,
() 7oz = No,om* Nz for t,8>0,

(ili) lim [ g, (w)du =0 for s> 0.
-0+ 8
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Here 7,*7, stands for the convolution of 7, and 7, (see Dunford and
Schwartz [10], Lemma 12, p. 160, Terrell [22], Lemma 2.1, p. 269).

Now for a strongly continuous contraction semigroup {U,: te R%}
on L,(u,X) with two dimensional parameter and for any ge L,(u, X),
let :

(U(‘ g)(y) - f f n(t,z)(’“ﬂ’?(t,x) (u2) ( U(ul,uz)g) (y) dulduz fOI' t> 0’
s Z) =130 0

gly) for ¢ =0.

Then {Ug,: (¢, #)e B, x X} defines an m-a.e. strongly continuous con-
traction quasi semigroup on L,(u, X) associated with {¢,}.

Example 4 is useful in producing new quasi semigroups from a given
semigroup.

Now it is an interesting problem to study the infinitesimal generators
of contraction quasi semigroups. Let {U ,: (1, ®)e B, XX} be an m-a.e.

strongly continuous quasi semigroup of bounded linear operators in
a B-space B. -

With the exception of an appropriate m-null set, we define thé ‘(strong)
infinitesimal generator A, of {U,,: te B .} by

. (U . _I)g
(2.8) - A,g9 = B-lim —¢2__ "7

-0+

that is to say, 4, is the linear operator whose domain is the set
D(A,) = {ge B: (2.8) exists},

which is non-empty since it contains at least the zero vector (cf. Yosida
[25], IX).

If in Example 1, we take X = ¥ = R, and replace L,(u,X) by
C([0, oo], ¥) being the space of bounded uniformly continuous X-valued
functions defined on [0, oc), then a simple calculation shows that the
strong infinitesimal generator 4, of {Uy,: t< R,} is given by the formula

(4:9)(y) = a(x)g'(y)
for ge C([0, oo], X) with its first derivative g’ C([0, oc], X).
If in Example 3, L,(u, X) is replaced by C([ — o, o0], X), the strong
infinitesimal generator 4, of {U,,: te RB,} is given by

(4:9)(y) = 2a(2){g(y —B)—g(y)} for geC([—oo, ], X).
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§ 3. Induced contraction semigroups

An induced contraction semigroup constructed below is of service
to the study of random ergodic theorems, and the role to be played by
this concept will be potent in the later sections. From now on, let {g,:
ne Z7} be a discrete semiflow on X, where Z} denotes the set of all N-tuples
of non-negative integers, {yy ;: (7, z)e ZY xX} a (x,y)-measurable
quasi semigroup of measure preserving transformations of Y associated
with {p,} and {T,: neZY} the skew product of {p,} and {y, ,}. Also,
let {p,: te RY} be a measurable semiflow on X, {yp,,: ({, z)e RY x X}
a (t,xz,y)-measurable, u-measure preserving quasi semigroup on Y
associated with {p,} and {T,: te RY} the skew product of {p,} and {y;, ,}-

Unless otherwise noted, we write ¢ = ¢, and T = T, in the case
of N =1.

When we want to regard f(z, ) as a function defined on Y for an z
arbitrarily fixed in X, we shall write f,.(y) for f(x,y) in what follows.

THEOREM 1. Suppose that m is finite and p is o-finite. Let {Ug, ,:
(n, x)e ZY X X} be a strongly B-measurable discrete contraction quasi semi-.
group on L,(u,X) (1 <p < o0) associated with {p,}. Then there exists
a discrete contraction semigroup {Un: meZ%Y} on L,(m X u,X) such that

for any fe L,(m X p, X), there is a set E(f) of m-measure zero such that for
any ve X —E(f),

(U:f)z(?/) = (U(n,.c)(Tnf).c)(y)) anJ—r’

almost everywhere on Y.

We shall call {Uy: neZ"} the discrete contraction semigroup induced
on Ly(m X u, X) by {U, »: (0, 2)e Z%¥ x X} (more briefly, induced (discrete)
contraction semigroup).

The proof of Theorem 1 will be accomplished in a series of the fol-
lowing lemmas.

LeEMMA 1. Let fe L,(mXu,X) with 1<p< oo and neZy. Then
the function (U, 2 (Tof).)(*) is strongly B-measurable as an L,(u, X)-valued
function defined on X.

Proof. Let us 'denote by 9, the set of functions f of the form:

f(m’ y) = 2 ainAiXBj(w) y)’
=1 j=1

D' Y lllagllPm(4,) p(By) < oo,

=1 jm1

aijex, i,j=1,2,...’

where {4,} and {B;} are measurable partitions of X and Y, respectively
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and yp(-) stands for the indicator function of the set K. It follows then
that

L,(m X pu, X) = the closed linear hull of %,.

If the function f(x, y) is of the form a-y 4, pz(x, ¥) with u(B) < oo, then
(3.1) (U(n,a:)(a"x_AxB)x)(') = xA(m)(U(n,x)(“'XB))(')-

Since { Uy, } is strongly B-measurable and since y 4 () is a finite numerically
valued function which is measurable, the function (3.1) is strongly B-
measurable (Hille and Phillips [14]. Theorem 3.5.4).

Now for any fe L,(m x u, X), we can choose a sequence {gi} of %,,-
functions such that

]jrn ||9‘z§') - Tnf”Lp(mxp,I) = 0.
Thus, finding an appropriate subsequence {¢»} of {§}, we get

Hm g8, () — (Tnf)e (W, z = 0 m-ave.

k-0

and so

(3:2)  m [Tz (987)) () = (Ui (T e} (V]iy 0,3 = O m-aee:

However, since every function (U, ,(gi),)(-) is strongly B-measur-
able, there is a countably L,(x, X)-valued B-measurable function (A{?),(-)
satisfying

(3.3) lim A2 () = (Uin, 2y (98)a) M|z 1y = O me-ae.
Hence from (3.2) and (3.3), we have
’}'lm “(h’g}))x( (U(n :r:) nf)z) ”Lp(;l X — = 0 m-a.e. ]

which proves the lemma.

A function f in L,(m X u, X) is regarded as a representative of an
equivalence class f. And then, for almost all z, Uin,z)(Tpnf), is a representa-
tive of an equivalence class Ug, ,( nf As mentioned in § 2, a function
(Un,z)(Tof).) (y) may not be measurable with respect to (z,y). But, as
will be shown below, we can choose a function [U, .,(T,f).](-) from the equlv-

alence class U, ,( ,‘f in such a way that the functlon [U(m)( TN
is measurable in (2, y). -

LEMMA 2. For any feL,(mXxpu,X) with 1< p< co and meZY,
there exists a (x,y)-measurable version [Ug, ,(T,f).1(:) of the functwn
(Uin.o)(Tnf)e) (y) such that

“[U(n,z)(Tnf)a:] (°) - (U(n,a:)(Tnf):c) (')”Lp(l"i) = 0 m-a.e.
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Such a version [Ug, \(T,f).1(:) is uniquely determined up to sets of m X u-
measure zero. ’

Proof. For the function (U(n,z)(Tnf)x)(')y there are countably
L,(u, X)-valued B-measurable functions (¢{),(-) which satisfy

(3°4) éﬂ“(g%n))z( ’U(nz)(Tnfz) )“ Lp(s,%) — =0

uniformly on X — F/(f), where E(f) is a set of m-measure zero, since
(Utn.e)(Tnf)z) () is strongly B-measurable in compliance with Lemma 1
(Hille and Phillips [14], III, 3.5). Thus

lim [[(g8™), () — (g5 ()l P B = 0

i,j—00

uniformly on X — E(f). Noticing that every gi® (=, y) is B xF-measurable
and considering the finiteness of the measure m, one obtains

im (g8 — ¢§”llz s,z = 0,

1,00
s0 that there exist a function gfe L,(m x u, X) and a subsequence {g{™}
of {¢M} satisfying

(3.5) lim || (¢%), —(9} (')”Lp(u,x) = 0 m-a.e.

k'—oo

Therefore, it results from (3.4) and (3.5) that

” g}n) )e(*) — (U(n 1:) )(.)”Lp(/‘-i) = 0 m-a.e.

It is now facile to verify that such a function g{” is uniquely determined
except for an m X p-null set. Finally, taking the function [Ug, (T, f),] (¥
to be g "(@,y), we have the desired one. The proof of Lemma 2 is
hereby completed.

With the function g{” chosen in Lemma 2, we define a mapping U,
from L,(m X p, X) to itself as follows:

Unf = ¢ (= (U o(Tof).])  neZ¥.
Next, starting with the function U)f, we see that U, U,f = g("" for

me ZY. Moreover, as is easily seen, it holds that if we write L,(f) = g{
then in L,(m X u, X)

(3.6) L) = La(ULS) (= L,(Unf)),
Ly (cify +€afs) = 01 Ly (f1) +¢2 Ly (f2) -

LeEMMA 3. {Ur: neZ} is a discrete contraction semigroup on
L,(m X u, X). Furthermore,

WOl mxuny <1 whenever  [|Up yllz_un < 1.
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Proof. ‘Let fe Ly(m x u, X). Then by virtue of Lemma 2,
ll( Unf)a(*) — (U(u,z)(Tnf)z)'(')”Lp(u.x) = 0 m-a.e.,
(3.7) ”( U:n U:f)z(') - (U(m,a:)(Tm U;f)z) (‘)”Lp(u,z)
= (On UnHz(*) = (Upm,) U(n,tpmz)(Tm-{-mf)z)(')HLp(y.i) =0 m-a.e.,
“( Uninf)z() — (U(m+n,a:)(Tm+nj)x) (')”Lp(y,x) =0 m-a.e.,
wherefore, in view of (2.1) and (3.7),
T2 ialel) — (U U2 e( My = 0 m-ace.

Consequently, cons1dermg that gi"*"(«, y) and g‘"" (2, y) are BxF-measur-
able, we get, in L,(m X u, X), Onf

Uninf = UnUsaf,  Ucf =,

which implies that {Uy: ne ZY} is a semigroup. It is apparent from (3.6)
that for each ne ZY, Uy is additive and homogeneous. Lastly, the contrac-
tion properties of U;

"U f”L (mxp£)< ”f”Lp(mxu,I) fOI‘ fe Lp(mxﬂ, x)i

" U1J”Lm(mxn X = < ”f"Lm(mxp,i) for f‘ Lp(m X ﬁ? I)an(m Xy x)’
are implied by the following inequalities:

II(Uf (Mg < I Tnf)o()lizyg,n m-a-e.

Uz < MTnf)e()lz o(u,¥) M-a.e.

The proof of Lemma 3 is now complete. We have herewith carried out
the proof of Theorem 1.

THEOREM 2. Suppose the measures m and u are finite. Let {Uuq: (1, @)
¢ RY x X} be a strongly B-measurable, m-a.e. strongly continuous, coniraction
quasi semigroup on L,(u, X) (1 < p < oo) associated with {p;}. Then there
exists a strongly contmuous semigroup {Uy: te RY} on L,(m x u, X) such
that for any fe L,(m X u, X) and any te RY, there is an m-null set E(f, 1)
such that for all xe X — H(f, t),

(UNe(®) = (O T ) (9)
almost everywhere on Y.

We shall say that {U, te RY} is the (contmuous) contraction semigroup
tnduced on Ly(m X u, X) by {Ugy 4 (, x)e RY x X} (more shortly, snduced
contraction semigroup) Now the same argument as that in the dlscrete
case is valid for the continuous parameter case.

Let fe L,(m x u, %) and let t be arbitrarily fixed in RY. In view
of Lemma 1, (U »(T,f),)(-) is strongly B-measurable as an L (p, X)-valued
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function defined on X. According to Lemma 2, there exists a (2, ¥)-measur-
able version {Uy ,(T,f).>(-) of the function (U, (T:f),)(¥) to be uni-
quely determined except for an m x u-null set, such that

‘ “<U(t,z)(th)z>(')—(U(t,z)(th):c)(')“Lp(u,x) =0 m-a.e.
We define a mapping U; from L,(m x u, X) to itself by
U;kf —g}t) (= <U(t 9 (T1).)
¢4 being the function of L,(m X u, X) chosen by Lemma 2. Tf we starb
with U], then U, U; f = g(“’) for se RY. In addition,
L (f) = Ls(U:f)(= L,(Ugf)), Ly(e\fi + ¢.fs) = e, Ly(f)) + ea Ly ( f2),

in L,(m x u,X) by taking L,(f) to be ¢g. Lemma 3 guarantees that
{U;: te RY} is a contraction semigroup on L,(m x u, X) such that

10} o pnxue <1  whenever Uy yllz gop <1.

In order to complete the proof of Theorem 2, we must show the
strong continuity of {U;: te RY}. To do this, the following lemmas are
needed.

LEMMA 4. For any fe L,(m x pu, X) and se RY, it holds that
Hm[(Tg (T, ) () = (Uge,a (Lo a) () Nz 1 = 0 m-a.e.
for a sequence {t,} with t,—s (n—o00) for which

(3.8) Lm (T, f)z() = (Ts fla(lp iz = 0 m-ae.

n—00

Proof. There is a sequence {t,} with {,—>s (n—o0) such that (3.8)
holds. Then the m-a.e. strong continuity of {U ,} shows that

(3.9) i;lgll(U(cn,z)(Tsf)z)(‘)—(U(s,x)(Tsf)x)(‘)“Lp(u,xy = 0 m-a.e.
Using the inequality
”(U(tn,:c)(Ttnf)z)(') —(Uis.(Ts 1)) (')“L (%)
STy al) = (Lo oz m +
+ II(U(in.x)(Tsf)x) ()— (U(s,x)(Tsf)x) (")“Lp(u.Ih
the desired conclusion follows immediately from (3.8) and (3.9).

LeEMMA 5. {U;: te RY} is strongly measurable in ¢.
Proof. Let fe L(m xu,X) and t = (i, ..., ty)e RY. Write

o, (1) = ([mﬂ [ntN]),

g erey
n n



3. Induced contraction quasi sémigroups 17

where [nt,] means the intergal part of the number nf;. Clearly, U} () f
is a countably L_(m X u, ¥X)-valued function defined on RN By Lemma 4,
it holds that

l}m ”( U(an,(t),z)( Tan..(t)f)x, (') —(U(t,a:)(th):r) (')”Lp(y,ij =0
n'—>00
m-almost everywhere on X, for a subsequence {o,.(t)} of {¢,()} such that

lim || (T L(t)f (th)z(')”Lp(y‘I) =0 m-a.e.

n’—-»o0

On account of Lemma 2,

U:n(z)f (%) sz) Q17 Pl %)

“(U(o',,_(t) :c)(T (t)f):r’( )— (U(t z)(th)z) )"Lp(px) m-a.e.,
whereupon,

lim (U5, () = (T z(lzyun = 0 m-ae.

n’—o00

But since p is finite and

(| U:n:(t)f)x( — (U ML, a, Bl L < 2°4(Y)- Iz omx %) 5

it follows from the Lebesgue s dominated convergence theorem that
:T; 10 a0 f — U:f”;:p(mxy,z) = 0.
For any fe L,(m X u, X), there are functions f,e L, (m x u, X) satisfying

lim|f, —fllz (mxn.ﬁ) =0,

=0’

lim "U*(n) fn_ U:fn”L mxu,¥) — O! n = 1!
k—>00 %k ®© P '
for suitable sequences {of,c"’(t)}, n > 1, with

{or()} 2 {V ()} = {eR(t)} > ...

Thus, finding a common subsequence {o,.(t)} of {oi™(t)}, n>1, by
making use of the diagonal procedure, we have

kll_lf:o I U’Zk.,(t)fn‘— Urfn“z,p(mx,.,x) =0, n=1.
However,
(3.10) UG .f — Utf”Lp(mXﬂ y < 1Tz .(fa — P omxn,n+
+ ”Uak ofa—UifallL pmx )T 10 (fo—1) Nz m %)
< 2-ifn f”Lp(mxp,I)+ U, o) Fn — U; fallz X, E)

2 — Dissertationes Mathematicae, 139 U

|1V, v
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1

Therefore, letting first £”" and then » tend to infinity in (3.10), we obtain
ky_ri“U:k,,(t)f" U:‘f”Lﬂ(mX/J,I) =0

as was to be shown.

LEMMA 6. The strong measurability of {U;: te RY} implies its strong
continuity on t. ' ’ :

For the proof of this lemma, see Dunford and Schwartz [11], VIII,
Lemma1.3.

We have hereby completed the proof of Theorem 2.

Now for almost alll z, (U(t.z)(Tt f)z)(-) is the representative of an equiv-
alence class Uy, (T,f), whenever f is the representative of an equiv-
alence class f. Once more, we note that the function {Ug (T, f),> (¥)
may not be measurable with respect to (¢, , ). But we can choose a func-
tion [U.,,(T. f).](-) from the equivalence class <U(t.,)(T,f),> in such a way
that the function [Ug (T, f),1(y) is measurable in (¢, x, y). In fact, for
the function U;, we can find a (f, x, y)-measurable function [U*f](-, *)
from the equivalence class U; f, and such a function is uniquely determined
up to sets of di xm X u-measure zero (Dunford [9], Dunford and Schwartz
[10], Ornstein [19]). Therefore, one may obtain the desired one by taking
[U,o(Tef)1(y) to Dbe [U; fl(z,y). Summing up the above, we have

THEOREM 3. Let {Uy,y: (t, z)e RY XX} be as in Theorem 2. Then
for every fe L,(m X u, X) with 1 < p < oo, there exists a (¢, x, y)-measurable
version [U,. ,(T.1).1(-) of the function (U (T, f),(y), and such a version
is uniquely determined except for a set in RY x X X Y with dt xm X u-measure
zero.

Note: The induced contraction semigroup {U;: te RY} given in
Theorem 2 may be understood as the skew product of {g,} and {Uj )}

§ 4. Discrete random ergodic theorems

In this section we shall present a general treatment of the discrete
random ergodic theorems including the results obtained by Gladysz [13]
and the author {23].

We consider in the sequel a finite measure space (X, B, m) and a o-
finite measure space (Y, &, u). Let {w,: k> 1} be a sequence of non-
negative numbers whose sum is one and let {u,: k > 0} be the sequence
defined by

Ug =1, Uy =W U+ ... WUy, k=1,

Let {8,.: k > 1} be the sequence defined by B, = w, (= u,) and, for
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k>=2,by
W [(L—wy— oo —wy_y) i wit+... 4w, <1,
0 if w1+... +'wk_1=1.

Then it is clear that 0 < u;, <1, 0 < f, < 1 for every k.
We consider a measure space (N, &/, 1) obtained by taking N to

be the positive integers and & the o-algebra of all subsets of N and 2
the measure given by

A{1}) =1, A({k}) =1—wy— ... —wp_,,  k=2.
Let W be the linear operator on L,(4) such that

k=

Woy = D Bidyy Wo=@L—Pp1) 8y,

k=1

\Y%

2,

where &,(¢) denotes the Kronecker delta. Then W is a positive linear
contraction on I, (1) as well as on L(2) and (W*6,)(1) = u, for all k > 0.
THEOREM 4. Let X be reflewive and let {U, ,: (n,0)eZ, XX} be

a strongly B-measurable contraction quasi semigroup on L,(u, X) associated
with ¢ such that

WU n,2) €Ly < Nl ury  for &€ Ly(p, X)nLy(u, X).

If fe L,(m X pu, X) with L<p < oo and g is a complex valued B X F-measur-
able function defined on X >< Y with |g(z, y)] < 1, then there exist an m-null

set B and a function f*e L,(m x p, X) such that for any v« X — E, the strong
limit

n

. 1 * *
(s1) tim — Y (g, Uy (T} () = F2(0)

k=1

almost everywhere on Y, and if 1 < p < oo,

2
(42)  Hm |[fA( )—— \ e {0, U o Ta )3 () =0,
n—»oo Lp(“.i)
and if u 18 finite and f(z,y) = h(y) for he Ly(u, X),
. 1\
(43)  Hm {0 —— M f, V(TN O =0,
n—-+00 n T=1 Ll(#.i)
Here
{gz U(l,z)(Tl f)z}*k

= {ga: U(l,z) {(Tlg)z U(l,(plz) {‘ ‘ °{(Tk—lg)z U(1.¢k_ lx)(ka):t} o } .
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7

Proof. According to Theorem 1, there exists the contraction semi-
group {U,: neZ,} induced on L,(m x u, %) by {Uy,: (n,2)eZ, xX}
such that for every.fe L,(m > u, X),

H(U;:f):c(')~ (U(n,z)(Tnf)x)(')HLI(#,i) = 0 m-a.e.
and such that by Lemma 3,
U3 Az m s, < Wllpgomeny  f0T fe Ln(m X p, X)Ly (m X p, X)),
For each ne Z,, we have

(4.4) Il{yUTf}I"(') - {9, U(1,z)(T1f)m}*n(‘)”Ll(u,x) =0 m-a.e.,

where
n

(U™ = {gUT{gUT (... {gUIf} .. ).
Let us now define, for fe L,(m xu, X) and ne¢ Z_,
(an)(wy y) = {gUff)*"(a', Y)-

Then each V, is evidently additive and homogeneous as a mapping of
Li(m x u, X) to itself, and

L VaVaf ={gUT (VO™ = {gUify ™ = Vo,
||an”L](mxy,£) = ”{9 U;{f}*n”Ll(mx‘u,X) < ”f”L](m,X/l,I) for fE Ll(”"’ X Py x) ’
”an“Loo(mxp,sc) = “{gU:f}*n“Lm(mxp,I) < Al gyomsesm, 3

for fe Ly(m X u, i)nrm(m Xty X).

Accordingly, {V,: neZ_} turns out to be a contraction semigroup on
Ly(m x u, X) as well as on Lo(m X u, X). Thus we may apply Theorem 1
of the author [23] with {V,: neZ,}, to conclude that for any f

e L,(mxp,X), 1<p< oo, there is a function f*eL,(m Xpu,X) such
that

n

1 * *
(4.5)  limos MUt 9 =17, 9)

n—00
k=1

strongly in X almost everywhere on X x Y, and if 1 < p < oo,

|

n

) 1
(4.6) lim ||f*— — E u, {gULf}** =0,
n—>00 n e Ly(m x p, %)
and if x is finite,
n
1 :
(4.7) im ||~ ¥ u,-{gUIf}™ = 0.
n—>o00 n Py Ly(m X pu, %)
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Going into details, (4.5) is implied by Theorem 1 of Chacon [7] applied
to the direct product {r,: keZ, } of {W*: ke Z,} and {V,: ke Z,} which
is a linear contraction semigroup on L;(Axm X u,X) as well as on
L (AxXm X u,X). (4.6) can be deduced from (4.5) and from the existence
of an L,-function which dominates all the functions

. n
1 .

]l—Zme)(e, z, y)}‘,
lin & |
where &(i, z,y) = 8,(4)f(z, y). To show (4.7), we suppose that u is finite.
If so, the convergence in the mean of order 2 implies convergence in the
mean of order 1 for all functions in the dense subset L,(m X u, X) of
Ly(m X u, X). Now let fe L,(m x u, X) and write

1
E, = {(a"’?/): ;g M f(z, Pl < a’}.~

fol@,¥) = (frap )@, 9), a=1,2,..

Then for each a > 1,

[ 111 falz, 9)ll12dm () du(y) = ff'!lf @, )II[2dm (@) dp(y)
XxY
< a2 m X g2 (F) < oo,

that is, the functions f, belong to L,(m x x, ¥) and possess the following
properties:

@) M fa(@, Y < Wasa (2, DI < WS @, DI, 0>
(i) T lif,(z, y) —f(2, Y] = 0 mx p-a.e.

From (i) and (ii) follows
(lli) lim ”fa _f”Ll(mx.u,I) = 0.

a—>00

If for each a > 1, we write

| : 1 O .
(4.8) Ena(is 25 9) = 47,% (rs8a) (i, @, ),
where & (i,x,y) = 8,(¢)f,(x,y) which is in L,(AXm xu,X), we have
n
1
(4:9) (L, @, 9) = W;uk-{gtf;'ﬁ.}""“(ao, )

In view of (4.5), (4.8) and (4.9), there exists a function £} e L, (A xXm X u, X)
such that

(4.10) limég, (1, 2, y) = 52(173’) Y)
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strongly in X almost everywhere on X x Y. Noticing that for each a > 1,
I, a1z ymx w3 < @y

”(E:)luLw(mxp,I) < a;

it ensues from (4.10) and Lebesgue’s dominated convergence theorem
that

(4.11) lim (&, )1 — (Ea)illzymxi,y = O-

7n—o0

However, since
, * *
”\5:)1 - (gb)l."Ll(mxy,x) < "('Ea)] - (E(n,a))luLl(mxy.x) +

F(E o)1 — (Epllz omx 3 1 e —Follzyimse s, 2y

(4.11) and (iii) show that {(&}),} is a Cauchy sequence, so that there is
a function fue L,(m X u, X) with

(4.12) lim||f, — (E2)allzymxux) = 0-

a—>0

Now

n
1 I
ooy 2w 0T
=1

Ly(mxu,X)

< "f* - (E:)l"Ll(mxp,I) + “(E:)l - (§(n,a))l”L1(1nx u,%) +”fa _f“Ll(mxy,I) )

and therefore, letting fitst » and then @ tend to infinity in the above
inequality, the combination of (4.11), (4.12) and (iii) establishes the fact
that : ,

(4.13) lim

n—00

=0.

Ll(m X llsx)

i

k=1

From what (4.5) and (4.13) say, we infer that
(4.14) (@, y) =f,(z,9) mxp-ae.

and hence, inserting (4.14) into (4.13), we get (4.7). Now (4.1) follows
immediately from (4.5) by Fubini’s theorem. Similarly to (4.6), (4.2)
can be deduced from (4.1), (4.6) and the existence of a dominating funection.
Finally, we proceed to the proof of (4.3). If the measure u is finite and
if we take f(z,y) = h(y) for he L,(u, X), then

n

L 3 1 £ * |
Tz (y) — o Z Uy ” {9U1f}x"(y)|”du(y)

k=1

~

/

1 0w
< (L@@ += ' [Tl duw)
Y k=1 Y
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1 n
= [ugz@mduam += 3" [ Ibreanilidu)
Y k=1 ¥

£
= | fzllzy(n5 + RIL G 2)s

which is plainly in L, (m). Consequently, using this and applying Lebesgue’s
dominated convergence theorem together with (4.4) and (4.7), we have
(4.3) for almost all ze¢ X and complete the proof of Theorem 4.

The method of proof of Theorem 4 used is reminiscent of that in
the author’s previous paper [23], and especially, the proof of the mean
convergence of order 1 is given for the first time in this paper.

Applications of Theorem 4 yield several variant forms including the
known results as the special cases of it. For example, the following corol-
lary as a generalization of Gladysz’s theorem ([13], Satz 5) is obtained
by taking U, , in Theorem 4 to be the identity for all .

COROLLARY 1. Let X be reflexive and let y be a measure preserving
transformation of Y. If fe L,(u, X), 1 <p < oo, and g is a complex valued
§-measurable function with |g(y)| < 1, then there is a function f*e L,(u, X)
such that the strong limit

n

1 s
lim Dlug®) - g 8 = 1)

n

holds with the exception of a u-null set. Moreover, the function f* is the limit
in the mean of order p with 1 < p < oo, and if u is finite then f* is also
the limit in the mean of order 1.

If g(z,y) =1 for all (=, y), Theorem 4 entails

CorOLLARY 2 (cf. Yoshimoto [23], Theorem 7). Let X be reflexive
and let {Ug, ,: (n,2)eZ, xX} be a strongly B-measurable contraction
quasi semigroup on L,(u,X) as well as on L (u,X), associated with ¢.
Then for any feL,(mXxXu,X) with 1<p < oo, there i8 a function
f*e L,(m X u, X) such that excepting an m-null set,

n

.1 *
lim == 3 (U o(T)s) (9) = F2(9)

n->o0 N =

strongly in X almost everywhere on Y. Except on a set of m-measure zero,
fz 18 the Uimit in the L,(u, X)-norm with 1< p < oo,and if u is finite
and f(®x,y) =h(y) for he L(u, X), fr 48 the limit in the L,(u,X)-norm.
Next we shall be concerned with generalizations of the above consi-
deration of weights with one parameter to that of multi-parameter ones.
As in the jntroduction of this section, we consider sequences

‘



-~
~

24 Induced contraction semigroups and random ergodic theorems
fw: k>1}, 1<j <N, of non-negative numbers for which

w =1, 1<j<N,

NP

k

1l
—

and the corresponding sequences {u$: k> 0}, {¥: k>1}, 1<j< N.
For each j, let 4; be the measure defined on & with the corresponding
sequence {w{’: k> 1} and the linear contraction operator W on L, (4;)
(as well as on L,(4;)) be defined as before. Set

a(ky ..., kN) = u(lgl) X..o X u(hj\sy
b(kly-'wkN) = exp{iﬂ(k1+ +kN)} (.B re&l);
C(Fyy ooy by) = a(kyy ooy by) b(kyy ..oy by).

The following theorem is an N-parameter extension of the Beck
and Schwartz’s random ergodic theorem ([5], Theorem 2, p. 1049). (Cf.
Yoshimoto [23], Corollary 2, p. 152, to which Theorem 4 reduces for the
special case that g =1, Uy, = identity and Uy, = U, Uy, ... Uk,
k>1.)

THEOREM 5. Let X be reflexive and let there be given a strongly F-
measurable quasi semigroup {Ugy ,: (k,y)e ZY XY} associated with a
discrete semiflow {y,: ke ZY} on Y, such that every U,y belongs to the
Banach space B(X) of bounded linear operators acting on X. Suppose thai
N Uguplll <1 for all (k,y)eZYxY. Then for any feL,(u,%), 1<p
< oo, the functions

n n-—1
1
.;J.\_T_ Z Z b(kl, vy kN) U(kl,...,kN,y)(f(w(kl""’kN)y))
k

-1 .
1=0 k=0

are convergent (as m—oo) strongly in X almost everywhere on Y, as well
as in the norm of L,(u,X) with 1 < p < oo. Furthermore, if p is finite,
the limit also exists in the norm of L,(p, X).

Proof. Let us define, for fe L,(u, X),

(U?k, ..... kN)f)(y) =b(kyy ey liy) U(kl,...,k_.v,y)(f('.”(k, ..... kN)?/))-

1t is quite clear that {Uy: ke ZY} is a linear contraction semigroup on
Ly(u,X) as well as on L (u,X). In addition, we observe that for all
feL,(u,X) with 1 <p <oo, the set where

n—1 n—1

iN Z Z(U?kl,....klv)f)(y).ii >a>0

n

l

has measure which tends to zero as a—oo. In fact, this results from an
ergodic lemma ([10], Lemma 16, p. 166) of Dunford and Schwartz. There-

sup
nz=1
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fore, we may get the convergence in the mean of order p with 1 < p < oo
and the convergence almost everywhere by the same way as that used
by Dunford and Schwartz [10] with the aid of Banach’s convergence
theorem to be stated below. The proof of the L,(u, X)-mean convergence
follows exactly the same line as that in the proof of Theorem 4. The proof
of Theorem 5 is herewith completed. .

Banach’s convergence theorem (which will also be cited later) can
be stated as follows.

THEOREM 6. Let A, o A, > ... be denumerable sets and for each ae A,,
let U, be a continuous linear map from a B-space ® into the space L,(u, X).
Suppose that for each ge®, we have

(1) sup|l(Ugg) (Ml < oo p-a.e.,

aeAl
and that for each g in a set dense in ®,

(i) lim sup [|[[(U.9)(%)—(U,g)(¥)lll = 0 p-a.e.

p—>o0 a,bed p

Then the equation (ii) s valid for every ge®.

Note. The original form of this theorem stated by Banach for the
special case of real valued funections can easily be extended to the vector
valued case. In particular, the above form stated by Dunford and Schwartz
[10] for the complex valued functions is also verbatim valid for the vector
valued case. For the proof, the reader is referred to Dunford and Schwartz
[11].

For the case N =1, Theorem 5 is extendable with a more general
system of weights, {¢(k)} instead of {b(k)}.

Let

Y'=¥Yx..xY, F=Fx...x¥, g =px...xu (rtimes)
PP =—Px¥x.. Z=IxIx...,

where ¥ is the set of all measure preserving transformations on Y and
2 is the o-algebra of all subsets of ¥. Let P* be a probability measure
defined on Z* by the requirement that the coordinate sequence {7,(y")}
(M (9*) = v, if 9" = {p,}) should be a (strongly) stationary process.
This requirement is, of course, equivalent to the fact that the measure P*
is preserved by the one-sided shift transformation ¢ on ¥*.

Consider the skew product 8 of o and {£,.: p*< ¥*} obtained by
the direct product &, = y; X ... Xy,, where p* = (y;, ¢a, ...).

THEOREM 7. Let X be reflexive and let there be defined on Y, a strongly
&+-measurable function U with values in B(X). Suppose that |||U (y3)]]| <1
for all y;e Y} and that the family {&,: y*e P*} is Z* x§,-measurable.
Then for all fe Ly(ur, %), 1<p < oo, there is a set E* of P*-measure
zero such that for any y*e ¥* — E*, there exists a function fye L,(uy, %)
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such that

MM 2 NY (k) U(E0y) ovn U(Ekyr oen Ep¥E)F(Ekitye oon E,0y0) = fi(yd)

strongly in X, for all y; of Y, with the exception of a u,-null set. Excepting
the set E*, the function fy. is the limit in the norm of L,(uy, X) with 1 < p
< o0, and if u 18 finite, this fumction is also the lzfmzt in the norm of
L 1(pr s %)

Proof. If for all we Y* xY;, we write Uy, ,, = identity and
 Ugwy = U(n(80) Uln(SPw)) ... Ulz(S*o)), k>1,

where 7 denotes the projection ¥* x Y; Y, we have a strongly 2* x§;-
measurable quasi semigroup {Ug, s (1, 9%, ¥7)e 2, x P* x Y7} in B(X)
associated with §, such that

T, ol <1 for all (n, p*, y7)e Z, xP* x ¥;.

Let us denote the induced contraction semmigroup of {Ug, .. y.,} by
{Ur: neZ,} (which exists by Theorem 1) and consider the contraction
semigroup {U,*: neZ } obtained by setting U,* = b(n)U, for neZ,
Then, using the function ¥ = fox for fe Lp(yf, X), all the conclusions
of the theorem can be deduced from Theorem 1 of the anthor’s previous
paper [23] (or from Theorem 4 of the present paper).

Theorem 7 is another extension of Beck and Schwartz’s theorem [5].

For notational convenience, we denote

(415)  (D(ny, -.., n)f)a(") -
1 nl—l nN—l

=——— 3 . Y dky s koMU tyguer Lty ) )

My My 2y ke

forn,>1 .yny =1 and fe L,(m X p).
THEOREM 8. Let {U, .: (n,2)e ZY x X} be a strongly B-measurable

contraction quasi semigroup on L,(u) associated with {p,: neZ%}, such
that

”U(nz)hHLm(u) ”h”Lm(u) Jor  he L;(p)n Ly (u).

(i) Let p > 1 and fe L,(m X u). Then, excepting a set of m-measure
zero, the fumctions (4.15) are convergent (as m,, ..., ny—>oc independently)
almost everywhere on Y, as well as in the norm of L,(u).

(ii) Let p =1 and fe L,(m X u). Suppose that u is finite and that f
satisfies the following

(4.16) [ [1f(@, y)ilog* |f (@, y)|dm(z)du(y) < oo,
Xx¥Y
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where the symbol log* a is defined for a > 0 to be the larger of loga and 0.
Then, except for an m-null set, the functions (4.15) converge to a function
in L,(u) almost everywhere on Y as n,, ..., ny—oc independenily, and this
limit also exists in the norm of L,(u).

Proof. We denote the induced contraction semigroup of the given
quasi semigroup by {Uy: ne ZY} (which exists by Theorem 1) and define
the semigroup {U,*: neZY} by U," =b(n)U, for neZ¥. If we take
{Wp: neZY} tobe the direct product of {W§,: ke Z,},...,{Wiyy: keZ,},
we have

(W?kl,...,kN) 5(1,...,1))(1, ceeyl) = a(kyy ..., ky)
for all (ky, ..., ky)e ZY, where
01,y (Fry -oey ty) = 01(81) X ... X 8,(2y).

Let us now consider the direct product {z,: neZ}} of {W,: neZ¥} and
{U*: neZ%}; then (z,: neZ%} is norm-contracting on I,(i;X ...
. XdyxXmxpu) as well as on L (4, X ... XAy XmXxXpu). For each

N1y ...y Ny > 1 and each ge Ly(2, X ... X Ay Xm X u), consider the average
1 nj—1 an-1
(4.17) . Ty, p 9 -
Ny My k;o LN

Applying Dunford and Schwartz’s theorem ([10], Theorem 9, p. 146) to
{vn: neZY}, we have, for ge L,(A; X ... XAy Xm xp) with 1 < p < oo,
the almost everywhere convergence and the IL,-mean convergence of the
functions (4.17) as #%,,..., ny—>o00 independently. Furthermore, the
functions (4.17) are, for n, > 1,..,ny > 1, all dominated by a function
in Ly(A, X ... XAy xm x u). Therefore, using the above facts with the
function &, ,,f (fe Ly(m x u)}), we get the first assertion (i) by Fubini’s
theorem. ,

To prove the assertion (ii), we make use of the following

LEMMA 7. Let U be a bounded linear operator on L,(m Xu) whose
Ly (m xpu) norm is also finite. Then there is a positive linear operator @
on L,(m xu) whose L,(m xu) and L, (m Xu) norms do not exceed those
of U and which is such that '

KT HOI<Q(fC)), n=1, feLy(mXp).

For this result, see Dunford and Schwartz [10], Lemma 4, p. 140.
LeMMA 8. Let U be a linear contraction operator on L,(m X u) as well

as on L (m Xpu). For each fe L,(m xpu), let

1 n-—1
(@, y) = sup ZZ(U"”(”’”)“
k=m0

n>1
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Ve

ThAen, if 1 < p < oo, we have

ff(f'(w,y))”dm(w)dn(y) —p- ff z, ) dm(x)dp(y),
—d XxV

XxY

while if p =1 (and m xu(X X Y) < o) we have

[ £ (@, y)dm(2)du(y)

XxY

—2[m><,u (X x )+ [[ 1@, llog* If (@, y)ldm(a du (y))-

XxY

For this result, see also Dunford and Schwartz [10], Theorem 8,
p. 145. '

Let

* .
V(z) = U(o,...,o.ki,o,...,o)y kieZ,, 1<i<N.
Then '

Ulkyieyf = Vig - Vs (Bay ooy Ty)e Z3

By Lemma 7 there are positive linear operators Q® (1L<i< N) on

Ly(m xu) whose L,(m xpu) and Ly (m xu) norms do not exceed one and
which are such that

WVPHOI<QL(f)), keZ., 1<i<N,

where Q¥ is the kth iterations of Q). Moreover, by Lemma 8, there are
functions f,, ..., fy in L;(m Xu) with

A(Q(l)1”1)|f|<fn n =1,
A(Q(z)"’bz)A(Q(l),nﬂlﬂ<f27 Ny Ny = 1,

oooooooooooooooooooooooooooo

AQW,ny) .. AQY, m)IfIS Sy, My .-y iy =1,

where
ng—1
A @) 1 : (7) - g N
(@ ;”’i)ff|=;b—2Qk Ifl, 1<i<N.
T k=0
Thus
1 ny—1 ny—1
| ok
. Z a(kyy ooy ky) Uy, f
Ny... Ny k=0 k=0
1 ny—1 ny-— 1
< 2 Z lU(kl ----- kN)fl
fn/l s o e n.N kl=° kN=0
1 n)—1 ny-1
N 1
=—=— > ... X v .. VS
My B

< A(Q(N)a Ny) --- A(Q(l)’ n) 11 < fas Nyyeeey My =1,
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which shows that the maultipie sequence
1

ny—1 oy ~1

2 (T(P ) 6(1 ..... 1;'f)(1,...,1)('y')

Ny ... Ny h1=o kp=0

is dominated by a function in L,(m xu). Now the assertion (ii) follows
from a ‘combination of Banach’s convergence Theorem 7, Lebesgue’s
dominated convergence theorem and Fubini’s theorem. The proof of
Theorem 8 has hereby been completed.

Application of Theorem 8 and the result ([10], Lemma 16, p. 166) of
Dunford and Schwartz gives the following result without the assumption
(4.16).

THEOREM 9. Let {Ug o (k, ®)e ZY x X} be as in Theorem 8. Then
for every fe L,(m xu), 1<p < oo, there exists a function f*e L, (m X p)
such that neglecting an m-null set,

lim (D(n, ..., n)f)(y) = F5(y) wa.e.

The function f; is the limit in the norm of L,(u) with 1 < p < oo, and if
w is finite and f(z,y) = h(y) for he Ly(u) then f, is also the L,(u)-limit.

For the proof of the L,(u)-mean convergence in Theorem 9, see
that of Theorem 4.

Theorem 8 and Theorem 9 allow, for example, the consideration
of the limiting behaviors of the weighted averages

1 ny—1 ny-1
T Z ¢(kyyoony k) U(kl ..... LA\f1
ln'] ’"’.V ](;1:0 k‘)v=0
1 n-;l n—1
—~ 2, - ¢(kyy ooy k) Ugyytepnf
% RS ky=o0
for a semigroup {U,: ke ZY} of linear contraction operators on L, as well

as on L

A simila,r argument applies to the following extension of the so-called
“pon-commuting’’ ergodic theorem ({10], Theorem 9, p. 146) due to
Dunford and Schwartz.

TueorEM 10 (Yoshimoto [24]). Let Uy, 1 <i< N, be linecar ope-
rators on L, (m) with 11U lzymy <L and ||U )l my < < J 1<i<N. Then

Jor every fe L,(m) with p > 1, the multiple sequence
1 ny—1 npy—1
(418)  ———— 3 .. D e(kyy eer, k(UG - URNS) (@)
My By

18 convergent (as m,, ..., ny—>oo independently) almost everywhere on X,
as well as in the norm of L,(m). This sequence (4.18) is dominated by a func-
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tion in L,(m). Furthermore, if m is finite then for every f in L,(m) beionging
to the Zygmund class (see (4.18)), the sequence (4.18) converges almost
everywhere on X, as well as in the norm of L (m).

THEOREM 11. Let {U, ,: (n,®)eZ, XX} be a strongly B-measurable
contraction quasi semigroup on L, (u) associated with ¢. Let {h,} be a sequence
of mon-negative B X F-measurable functions such that except for an m-null
set,

(Vo (T16)) @) < (1) (9) meae.

whenever |&(x, y)| < M (2, y) m Xp-a.e. and &e Ly(mxpyu). Then for all
fe Ly(m-xu), there is a set E of m-measure zero such that for any v« X — E,

2 (U oy (TrS)e) (9)

(i) lim &=0 —
; hk)z

n->00

exists and 8 finile almost everywhere on {y: Z (hk)x(y) > Ol.

Moreover, if every U, . ts positive the'n, for any fe L,(m xu) and
he Ly(mxu),h =0,

n—1

: kZ uk(U(k,z)(Tk f)x)(?/)
(ii) lim :_"1

e k;; ’“k( U(k,a:) (T h)x) (¥)

exists and is finite almost everywhere on the set where h > 0.

The assertion of Theorem 11 is deducible from Chacon [8], Theorem,
p- 90 (cf. Akcoglu [1]) and Baxter [4], Theorem 1, p. 278, via the induced
contraction semigroup.

§ 5. Continuous random ergodic theorems

Continuous random ergodic theorems have received an operator-
theoretical treatment little up to now. The real step in this direction
was taken by Kin ([16], [17]) who obtained some results for a more general
class which is considerably larger than that of quasi semigroups consisting
of measure preserving transformations.

The difficulty of generalizing these results for measure preserving
quasi semigroups at the operator-theoretic level consists in the measur-
ability of contraction quasi semigroups; however, it is surmountable by
means of the measurable versions of such quasi semigroups (see Theorem 2
and Theorem 3).
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In this section, we generalize and extend the continuous random
ergodic theorems for measure preserving transformations to the operator-
theoretic level. And the substance of the investigation presented here
is to survey the behaviors at infinity and the local behaviors of random
operator averages. Two measures m and g will be finite throughout this
section. .

TuEoREM 12. Let X be reflexive and let {Ugy,: (I, x)e R, XX} be
a strongly B-measuradble, m-a.e. strongly continuous contraction quasi semi-
group on L,(u, X) associated with {p,: te B}, such that

” U(t,g;)f"l,m(y,x) < HEHLm(p.i) for e Ll(:“" f) an(lu, x) .

Then for any fe Ly(m Xu, X) and any B, there exist a set E of m-measure
zero and a function f*e Ly(m Xu, X) such that for any ¢ X — E,

A

.1 . .

(5.1) i = | 6 [ U (Ti1):1(y) 8 = f2(9),
1 f |

(5.2) 1}2& a1 eiﬁt[U(t,m)(th)z](y)dt =fz(y)

strongly in X almost everywhere on Y. Moreover, if 1 <p < oo, let f

e L,(mxpu,X), and if p =1 let f(z,y) =h(y) for he L(u, X). Then for any
p with 1< p < oo,

(5.3) lim

oo Ly, %) = 0 m-a.e.

p _
L1
fxﬁzfﬁwt[U(z,z)(th)x]dt

0

Proof. Taken up with Theorem 2, there exists on L,(m xu, X) as
well as on L, (m X u, X) the induced contraction semigroup {U;: te R,}
of {Uyz: (t,@)e R, xX}. Put U* =™ U} for all te R, .

To prove the theorem, we require the continuous version of Chacon’s
ergodic theorem [7] and a vector-valued generalization of Krengel’s
local ergodic theorem [18], subject to the additional condition that

fok .
”Ut “Lw(mxu.li) < 1.

LeMMA 9. For every fe L,(m Xpu,X) with 1<p < oo, the averages

1A
(5.4) 7 ) e

approach a limit strongly in X almost everywhere on X XY as A—>oo. The
limit also exists in the norm of L,(m xu,X) with 1 < p < oo. Especially,
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if 1 < p < oo, then there exists a function f*e L,(m X u, X) such that

6o || [ wrne na)<ig@on, a0

for almost all (z,y)e X X Y.

Proof. By Fubini’s theorem, there is an m x g-null set 4* for which
the average (5.4) exists for all (z, ) not in 4*.

Now the proof will be based upon the following identity, which will
serve to reduce the present lemma to the discrete case discussed in
Chacon [7]. For A>1 and feL,(m xu, X) with p > 1,

(5.6) %wa:‘*f]dt - [ATJ{ 1 2 f[U *fla) +
[A]—1

+ [A[.]/lJ]rl [A]+1\ZU _Z f[U f]dt)

where A = [A]+7r, 0 <r < 1. While, it follows from Fubini’s theorem,
using Riesz convexity theorem, that

f f |H f LU f1(2, y)dY| | dm (o) du(y)

y(mx H, I)

Iftornad;

< fffm[U;"*f](w,y)m”dtdm(qc)du(y)

XxY 0

= [{ [/ U f1@, 9)l1iP dm (@) du(y)} dt

0 XxY

< ”f”%ﬂmx #,X)*

A fortiori,
| f 05N ey < im0
0
Thus it is seen that the functions
1 r
ftuna, [0 fat
0 0
are in L,(m X u, X). Therefore, applying Chacon’s ergodic theorem ([7],

Theorem 1, p. 171) to the right-hand side of (5.6), we have the convergence
almost everywhere of the averages (5.4) as A—>oco. That if 1 < p < oo,
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then there exists a dominated function f* in L,(m Xy, X) which is inde-
pendent of the parameter 4 and which satisfies (5.5) is inferable from
the dominated theorem of Chacon ([7], Theorem 1), using the identity
(5.6). The convergence in the mean of order p (> 1) ensues from the
convergence almost everywhere and the existence of a dominating function.
The proof of the convergence in the méan of order 1 follows exactly the
same line as that in the proof of Theorem 4. Hence the proof of Lemma 9
is accomplished.

LeMMA 10. Let for fe Ly(m X u, X) and v > 0,

. A
1 %
6 e = e s |7 [ 080 vl > o
Then
2
(5.8) m X p(e*(u)) < = Wz -

Proof. Let us denote by D the set of positive dyadic rational numbers.
By Fubini’s theorem, there is an m x u-null set 4™ for which the average
(5.4) exists strongly in X for all (z, ¥)e (X x Y) — 4™ Since U;* is strongly
continuous in ¢ and ||U; ||z pmxux <1, We have

r2f-1

%frw f]dt——hm—z U reD,

k=0

in L;(m xp, X). Accordingly, passing to subsequences and finding a com-
mon subsequence {n;} by the Cantor’s diagonal procedure, one gets

s
r2 t—1

1 4 ok *ok
= (1o e,y =tim—= > (U f)@,y), reD,

oo 2™ had
¢ k=0 "

strongly in X for all (x,y)e (X x ¥)—(4*0A4™), where 4™ is a set of

m X u-measure zero. 1f we write
1%
i=0 ™

then for any &> 0 and (¢, y) not in (4*uUA4**), there exists a number
N(r, e, ,y) such that for all » with n > N(r, ¢, z, y),

Ja(®,y) = sup

k>1

fal@,y)> |H—f[U *fl(z, y) dtm—e

3 — Dissertationes Mathematicae, 139
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So

limint £ (2, y) > m% f [U*f1(@, 9

on (X xY)—(4*u4™). But, since for each (z,¥)e (X xX)—(4*ua™),
(5.4) is continuous in A4 > 0, we obtain .

A

supll [eoregal] - sl e va)
and thus

(5.9) liminf f,(z, y) > sup
n-»00

A>0

A

1

ZfU?*f](w,y)dt”' m X y-a.e.
0 1

From (5.7) and (5.9),

[0} 0
ye U N e
n=1 k>=n
where

62('"’) = {(CL‘, Y): f;(w’ y) > u’}

Hence by Chacon’s maximal ergodic lemma ([7], p. 166),
. ooy 2
m x,u(e"(u)) < lim infm X/"(en(u)) < ;‘ * ”f“[.l(mxu,f),
n—00 .

which proves (5.8) and finishes the proof.
LeMMA 11. The set

A
1 £ 2]

f8 dense in L,(m xXpu,X) and the local ergodic theorem is valid for all
tunctions in W.

For the proof of Lémma 11, refer to Terrell [22], Lemma 1.2, p. 266.
(In fact, this lemma can be proved, with trivial modifications, by the
same argument as that used by Terrell in the case X = C.)

LeMMA 12, If fe Ly(m x u, X), then

A
1
(5.10) lim — f [U*f1(e, y)dt = f(a, y) m X p-a.e.
a0+ A &

strongly in X.
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Proof. Suppose that (5.10) is false. Then there exists a function
fe L,(m xXpu,X) such that

mxu{(e,9): timsup 1 e, wad) > e, i} > o,

A0+

from which follows that there are two positive numbers .5, 7 such that

m Xp{(m, y):. limsup

A—>0+

H—f[U;‘*f](m,y)dtm > e+|||f<w,‘y)m} = 1.

By virtue of Lemma 11, we can choose a function ge ¥ satisfying

“f_glll}l(mﬂﬂ.x) < ¥én.-,
whereupon,

mxp{(z,y): f(z,y)—g(@, Il = EE} < in.
Thus, according to Lemma 10,

11 mxpw,0: imewp] [tz s-anie, | > 14

A0}

S

a>0

= fA [T - e, wat]| > 3]

4
'E I — 9l onxux < 39

Again, by Lemma 10, we have

(b.12) m X u { (2, y): limsup
A0+

“%f[U?*(f—y)](x, y)dt”l - ,}g}

A
1
> mx (o, 0 timsup | 5 (10772, ]| > 3¢+l @, i}
0

A—0+

= mXu {(w, y): limsup

A-0+

| %f[Ui‘*f](m,y)dtm > §+Hlf(w,y)ill}

—mxp{(@,9): (@, 9)—g@, Il > 3¢} > n—1y ~

But (5.11) and (5.12) yield a contradiction, thus proving the lemma.

Now (b.1), (5.2) and (5.3) a.ppearmg in Theorem 12 are easily estab-’
lished by Lemma 9 and Lemma 12 after the fashion of the proof of
Theorem 4 and terminate the proof of Theoremn 12.
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THEOREM 13. Let the measure m be o-finite and let X be reflexive. Let
{Upz : (8, 2)e RY x X} be a strongly B-measurable, m-a.e. strongly conti-
nUOUS quasi semigroup associated with a measurable semiflow {@,: te RY}
on X, such that every U, m) belongs to the B-space B(X). Suppose that
NMUgalll <1 for all (1, z).

(i) For any fe Ly(m, X) with 1 < p < oo and any real B, the averages

1 v 18
(1 +.. +Ep)
—A1 AN! 6[ e N [U(tl,...,t_,v,z)(f(‘P(tl,...,tN)w))]_dh>< -es Xdty

converge strongly for almost all re X as A,,..., Ay—oc0 independently,
and the limitl also exists in the norm of L,(m, X).

(ii) For any fe L (m,X) and any real B, the limit

llm—_f f iA(ty+ -. Hv)[U(t ,,,,, ¢VI)(f Ry ) )]dtl o X dby

A—>00 N

exists strongly in X almost everywhere on X. Furthermore, if m is finite
then the limit also exists in the morm of L,(m, X).

Proof. Define the semigroup {U;: te RY} on L,(m,X) by letting

(U(tl ..... ) (2) = ity .. -HN)U(tl,....tN,:c)(f((p(tl,...,tN)m))

for fe L,(m,X). Then on the hypothesis bestowed on the given quasi
semigroup, {U;: te RY} turns out to be strongly continuous in ¢ and
norm-contracting on L,(m, X) as well as on L (m, X). Thus it follows
from the Riesz convexity theorem that ||Ut I, o, »n<1for 1 <p< oo

To establish (i), we may note that there emsts a function f*e L,(m, X)
sach that

s
4,

4, 4N
—...ANf f [U"ul,...,:N;f](w)dtl...dtN“l< I @)1,
0
0 Ay iy Ay >0

almost everywhere on X and then use the same argument as that used
by Dunford and Schwartz ([10], Theorem 10, p. 157).
As for (ii), we first observe that for every fe L,(m,X) with p > 1
the set where
a4

ZlN—fA...f[Uz;l,...,tN)fuw)dtl..-dtN|”>a>0
0

0

sup
A>0

has measure which tends to zero as a—oo (¢f. Dunford and Schwartz
[10], Lemma 11, p. 159). Then after the manner of the proof of Theorem 4
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and applying Banach’s convergence Theorem 6, we get (ii) and complete
the proof of Theorem 13.

This result is a continuous extension of Beck and Schwartz’s random
ergodic theorem [5] (cf. Theorem 5).
In what follows, we use the notation [M4(4,, ..., Ay)f].(+) instead
of
1 4, AN .
mf f eiﬁ(tﬁ'"””)[U(tl,...,tN,m)(T(tl,...,lN)f)x](')dtlX e Xty
0 0

for g, 4;,>0,..., 45> 0 and fe L,(m Xu).
Following Terrell [22], we shall say that

(AI’ caey AN)T*(O’ cosy 0)
if4, (>0), ..., Ay (> 0) approach zero independently and if for a ¢ > 0,
(A;f4) <o, 1<4,j<N.

Applications of Dunford and Schwartz’s ergodic theorems [10]
and Terrell’s local ergodic theorems [22] to the induced contraction
semigroups give the following results (ef. Kin [16]).

THEOREM 14. Let {Ug, 4: (f, )¢ RY x X} be a strongly B-measurable,
m-a.e. strongly continuous contraction quasi semigroup on L,(u) associated
with {p;: te RY} such that Uy yllp g < 1. Then for all fe L, (m xp) with
1<p< oo and for any B, there exist an m-null set E and a function f*
€ L,(m xu) such that for any re« X —F,

lim [My(4, ..., )fl(y) = fz(9),

A—>c0

Alirorl [Mp(A, ..., A)fl(y) = fo(9)

hold for almost all ye X. Moreover, if 1 < p < oo, let fe L,(m xXu), and
if p = 1 then let f(x,y) = h(y) for he Ly(u). Then for all p with 1 < p < oo,

lim ”f:— I:]'Iﬁ(/]., ceny A)flE”Lp(l‘) = O m-a.e.
A—o0

THEOREM 5. Let {Uy ,: (¢, )¢ RY x X} be a strongly B-measurable,
m-a.e. strongly continuous quasi semigroup of positive contractions on L,(u)
associated with {p,: te RY}. If fe L,(mxu), then, except on a set of m-measure
zero, '

lim [(Mo(Ayy ooy ANSI(Y) = f2(y)

(A AN) —> 0,.00,0)

almost everywhere on Y.
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THEOREM 16. On the hypothesis of Theorem 14, let feL (m X u), 1<p
< 00, @& and assume that if p =1, f belongs to the 7ygmund cliss (see (4.16)).
Then, except for an m-null set,

[Mp(Azy oy AN)S)2(9)

approaches a limit almost everywhere on Y as A,—o0, ..., Ay—>o0 indepen-
dently. The limit also exists in the norm of L, (u).

Proof. Let {U;: te RY} be the induced contraction semigroup of

{Upz} and put UG g = exp(iB(ti+ ... +ix) Ug,, .~ For each
Ayy ooy A x>0 and each fe L,(m xXpu), we consider the average
1 Al 11.-‘\7
(5.13) T f f (U5 o fldty ...ty
0 (1]

Then, for p > 1 and fe L,(m Xu), the average (5.13) converges almost
everywhere on X xY as A,—>o0, ..., Ay—>oco independently. The limit
also exists in the norm of L,(m xu) and the functions (5.13) are, for
Ayy ooy Ay > 0, all dominated by a function in L,(m xpu). According to
Dunford and Schwartz’s theorem ([10], Theorem 7, p. 1566), the hypothesis
(4.16) guarantees that for fe L,(m xu), the function

1 4; Y
z-,—.,“j— f PR f [ 7(’;:_‘_,tév) .f] dtl b dtl\'! ?
peen AN 0

which dominates all the functions (5.13), is i’n L,(m x ). Thus, since
the set L,(m x u) is dense in L, (m X u), we may apply Banach’s convergence
Theorem 6 to obtain the pointwise convergence of the functions (5.13)

for fe L,(m xu). Furthermore, the L,(m X u)-mean convergence can be
deduced from the existence of a dominating function. Hence we come

up to the desired conclusion of Theorem 16 by using the above facts
and Fubini s theorem.

THEOREM 17 (cf. Kin [17]). Let {Uy ): (t, x2)e R, x X} be a strongly
B-measurable, m-a.e. strongly continuous quasi semigroup of positive con-

tractions on L,(u) associated with {p;: te R, }. If f,ge L;(m xpu) and g
18 positive, then, except for an m-null set,

Hm [Mo(A)f1(y) ,
a0 [Mo(A)g1,(y)

lim [M(A)fl(y)
a0t [Mo(A)g1(y)

exist and are finite almost everywhere on the set where [ My(A)gl.(y) > 0
Jor all 4> 0,

fe= sup

0<A4y,..., Ay <0
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The proof of Theorem 17 uses the ratic ergodic theorems for semigroups
(ef. Akcoglu and Cunsolo [3], Fong and Sucheston [12], Akcoglu and
Chacon [2]). -

Finally, we note that random ergodic theorems, which are recognized
as random extensions of ergodic theorems, have some interesting applica-
tions in the theory of inhomogeneous processes. For details, the reader
is referred to the works by Beck and Schwartz [5], Révész [20] and Kin
[16], [17].
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