Zawartość
Pełne teksty:
Warianty tytułu
Abstrakty
CONTENTS
§ 1. Introduction.................................................................................................... 5
§ 2. Contraction quasi semigroups associated with, a semiflow....................... 7
§ 3. Induced contraction semigroups....................................................................... 12
§ 4. Discrete random ergodic theorems.................................................................. 18
§ 5. Continuous random ergodic theorems............................................................ 30
Słowa kluczowe
Tematy
Miejsce publikacji
Warszawa
Copyright
Seria
Rozprawy Matematyczne
tom/nr w serii:
139
Liczba stron
41
Liczba rozdzia³ów
Opis fizyczny
Dissertationes Mathematicae, Tom CXXXIX
Daty
wydano
1976
Twórcy
autor
- Department of Mathematics, Faculty of Engineering, Toyo University, Kawagoe, Saitama, Japan
Bibliografia
- [1] M. A. Akcoglu, Pointwise ergodic theorems, Trans. Amer. Math. Soc. 125 (1966), pp. 296-309.
- [2] M. A. Akcoglu and R. V. Chacon, A local ratio theorem, Can. J. Math. 22 (1970), pp. 545-552.
- [3] M. A. Akcoglu and J. Cunsolo, An ergodic theorem for semigroups, Proc. Amer. Math. Soc. 24 (1970), pp. 166-170.
- [4] G. Baxter, A general ergodic theorem with weighted averages, J. Math. Mech. 14 (1965), pp. 277-288.
- [5] A. Beck and J. T. Schwartz, A vector-valued random ergodic theorem, Proc. Amer. Math. Soc. 8 (1957), pp. 1049-1059.
- [6] R. Cairoli, Sur le théorème ergodique aléatoire, Bull. Sci. Math. 88 (1964), pp. 31-37.
- [7] R. V. Chacon, An ergodic theorem for operators satisfying norm conditions, J. Math. Mech. 11 (1962), pp. 165-172.
- [8] R. V. Chacon, Convergence of operator averages, Ergodic Theory (ed. by P. B. Wright), pp. 89-120, New York; Academic Press 1963.
- [9] N. Dunford, Integration and linear operators, Trans Amer. Math. Soc. 40 (1936), pp. 474-494.
- [10] N. Dunford and J. T. Schwartz, Convergence almost everywhere of operator averages, J. Rat. Mech. Anal. 5 (1956), pp. 129-178.
- [11] N. Dunford and J. T. Schwartz, Linear operators I, Interscience, New York 1957.
- [12] H. Fong and L. Sucheston, On the ratio ergodic theorem for semigroups, Pacific J. Math. 39 (1971), pp. 659-667.
- [13] S. Gładysz, Über den stochastischen Ergodensatz, Studia Math. 15 (1956), pp. 158-173.
- [14] E. Hille and R. S. Phillips, Functional analysis and semigroups, Colloq. Publ. Amer. Math. Soc. 1957.
- [15] E. Kin, Skew products of dynamical systems, Trans. Amer. Math. Soc. 166 (1972), pp. 27-43.
- [16] E. Kin, The general random ergodic theorem. I, Z. Wahrscheinlichkeitstheorie verw. Geb. 22 (1972), pp. 120-135.
- [17]] E. Kin, The general random ergodic theorem. II, ibid. 22 (1972), pp. 136-144.
- [18] U. Krengel, A local ergodic theorem, Inventiones Math. 6 (1969), pp. 329-333.
- [19] D. S. Ornstein, The sums of iterates of a positive operators, Advances in Probability and Related Topics (ed. by P. Ney), Marcel Dekker Inc. 2
- [22] T. M. Terrell, Local ergodic theorems for N-parameter semigroups of operators, Contributions to Ergodic Theory and Probability, Springer-Verlag 160 (1970), pp. 262-278.
- [23] T. Yoshimoto, Bandom ergodic theorem with weighted averages, Z. Wahrscheinlichkeitstheorie verw. Geb. 30 (1974), pp. 149-165; Erratum, ibid. 31 (1975), p. 161.
- [24] T. Yoshimoto, An ergodic theorem for noncommutative operators, Proc. Amer. Math. Soc. (to appear).
- [25] K. Yosida, Functional analysis, Springer-Verlag, 1965.
Języki publikacji
EN |
Uwagi
Identyfikator YADDA
bwmeta1.element.zamlynska-252fe8fe-03d7-42d6-96f6-923c313f1b2f
Identyfikatory
Kolekcja
DML-PL
