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1

1. This paper deals with the microlocal properties of a class of second order
pseudodiflerential operators (y¥.d.o.) with double involutive characteristics
and elliptic subprincipal symbol. Assuming the principal symbol to be
nonnegative a necessary and sufficient condition for hypoellipticity with loss
of the smoothness of solutions equal to 1 has been established by Boutet de
Monvel [1] and H6rmander [7]. In contrast with them we shall suppose
that the real part of the subprincipal symbo! of the operator is negative,
while its imaginary part vanishes at some points (but not identically). Then
necessary and sufficient conditions for the operators under consideration to
be (micro) locally hypoelliptic and solvable are obtained. The results are
similar to the main theorems for principal type ¥.d.o. [3], [4]

Throughout the paper the notions of wave front set of a distribution,
homogeneous canonical transformation, microlocalized Sobolev space
H: (¢ as well as of quasihomogeneous wave front set and anisotropic
Sobolev space are supposed to be well known [4], [9], [10], [12].

To begin with, several definitions are presented.

DEeriniTION 1 (classical, local). A y.d.o. P(x, D) is called locally solvable
at a point xge X if there exists a neighbourhood w3 x, such that for each
function fe Cg (X) one can find a distribution ue 2'(X) satisfying P(x, D)u
= f in w.

DeriniTION 2 (Tréves). The operator P(x, D) is called microlocally solv-
able at a point ¢°c T*(X)\0 if one can find an integer NeZ and a conic
neighbourhood I' of @° such that for each fe HY (X) there exists a distribu-
tion ue %' (X) satisfying the relation ' " WF (Pu—f) = Q.

[213]
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The operator P is microlocally hypoelliptic at the point @° if and only if
0° ¢ WF (Pu) = ¢° ¢ WF (u). The standard hypoellipticity is given by the equal-
ity sing supp Pu = sing supp u.

2. We shall consider classical second order y.d.o. with the following
principal symbol:

n—1

(1) p3(z, {) = Z a;;(x, ¥; &, mé&i &, ord; a;; = 0,

ij=1
( ( C))} y >0, aij(23 C)=aj.'(2, 0,
z=(x,))eR"" ' xR, (=(& neR" ! xR

The characteristic set of P is given by the formula

Char p = {(z,{): £ =0, n # 0}

and the subprincipal symbol p; of P is defined as follows:
& p

: _ ig

pl(zs C)_pl(zs C)+2J;16 acj

Write Z2., = {(x, y;4, M) 4 =(dxy, ..., dX,_,), ¥ = yo = const, 7 = ii°

= const # 0}. Then the prmcipal symbol pJ induces the following quadratic
form on Z:'_llc,,a,pg:

(z {), ordp =1.

n—1

(2 Y a(x, y; 0, Dmimy,  aydz; 0, 7)) = a;(z; 0, sgn 7)), fje R'\0.

iLj=1
The Hamiltonian vector field H* of the form (2) on Z*_, is
n—1 n—1 aa a
2 al"(x’ » ﬁ) i i
i,jz=l ! y i ox; a leZ 1 a B, G, ar’]

Consider now the function

n—1

(3) Isle,m= Y ap(@nym+pile), eeChar p3,

jk=1 .
n={,....Na—1)eR"1\0.

Obviously Ipe C*(Z*). As the zero bicharactenstics of Re I; will play an
important role further, we shall give an explicit formula for them.
Thus assume that the asymptotic development of the full symbol p of P
is given by
n—1

4 p~ E a;j(x, y; &, M& &+ pi(z, +polz, O+

Lj=1

ord, p_; =] >0, jeZ,
and Pilorarp? = Pile=o = P1(2; 0, 1) = |yl py (z; O, sgn n).
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Put ¢, =Re p;, d, =Im p, and suppose that c(z; 0, n) < 0. Then the
nondegenerate Hamiltonian vector field of Re Ip on X}, is

n—1

n—1 0
(5) 2 Z aij(x’ y, O’ n)nl'}_—_ Z

i,j=1 j o dgk=1 0 j

5,
; 0, ’1)"."1&?

_Z_—(x yaO '7) ’ ”ERI\O

J

((v. n) are, of course, parameters). We recall that an integral curve y of the
vector field (5) is called a zero bicharacteristic iff Re Ip|, = 0.
We now formulate the first result of this paper.

THueoreM 1. Consider a y.d.o. P(z, D) with principal symbol (1) and let
Re p’,|Chwg < 0. Suppose that Im p||cy, 9 conserves its sign in a neighbourhood
of each zero bicharacteristic v of Re Ip and Im Pilchapd does not vanish

identically on any open interval of y. Then P(z, D) is microlocally hypoelliptic
and

0°cChar p3, Puec H: . (0°) = wueH:LY*(0°

for each real s. Both P and P* are locally solvable.

No result on hypoellipticity holds when Im p’,]c,m,,g changes its sign on
a single bicharacteristic of Re Ip.

THEOREM 1. Let a y.d.o. P(z, D) have the principal symbol (1) in a conic
neighbourhood of ¢°e Char p3, Re p; (¢°) <0, Im p; (¢%) = 0. Assume that one
can find a covector n°c R"~'\0 with the properties: Re I1,(0° 1° =0 and
Im pilcnapd changes its sign at 0° along the zero bicharacteristic y of Re Ip
passing through (¢°, n°). Then P(z, D) is not microhypoelliptic at ¢°. Moreover,

there exists a distribution ue & (X) such that o°¢ WF(Pu), WF (u)
= {tg°: t > 0} in some cone about @°.

Recall that Im p| changes its sign along a curve y at a point g% if
Im pif,, <0(=0), Im pi],_ 20(<0) and Im p| does not vanish identical-
ly on any open interval of y, (y_). Here y, (y_} is the part of the curve y

positively (negatively) oriented with respect to (g°, 5°).
In some special cases a theorem on local nonsolvability is true.

THEOREM 2. Assume that P(z, D) is a y.d.o. with principal symbol (1),
0%e Char p?, Re p; (0% <0, Im p; (¢°) = 0. Suppose that there exists a covec-
tor n°e R"~ '\ 0 for which Re Ip{g° n® =0 and Im pIIICharpg has a simple zero

at ¢° along the zero bicharacteristic of Re 1, passing through (¢°, n°). Then P
is microlocally nonsolvable at @°. Moreover, for each conic neighbourhood
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I'50° and each pair of numbers s' < s one can find a function ue HS_(X) such
that WF(Puwn T = Q,

WF(@u)nI'=WF )l ={te% t >0} (e°¢WF,(u) = ¢%¢ H;,..(2°).
To illustrate our theorems a simple example is presented.

ExampLe 1. Consider in R" the Schrddinger operator with a small
perturbation of the first derivative with respect to the time variable D,:

n—1
(6) P(z,D)= ) D}+(—1+ip(x))D,,
ji=1

e(xX)eC>(R"" 1, RY), z =(xy, ..., Xo—y, ), D; = 1 i
i Ox;

I. Let ¢ = 0. The operator P turns out to be microlocally hypoelliptic at
points of the type (zo; &%, 19), £° # 0 and (zq; 0, 7°), #° < 0. In the latter case
the microlocal loss of smoothness of solutions of the equation Pu = f is
equal to 1 [1]. Boutet de Monvel has shown that a result on the propagation
of singularities is valid in a conic neighbourhood of the point (z,; 0, #°),
i >0 [2]).

1

II. Let ¢ # 0. Obviously Re I, = Y &7—n, n > 0, and therefore the zero

j=1
bicharacteristics of Re Ip can be written as follows:

x; =2E% +x; n_l
g 61.=¢9J O XL ER=T v =Y
J J

ji=1
1) Assume first that the function ¢ does not change its sign and if
¢(xo) = 0 then ¢ does not vanish identically on any interval of straight lines

I = R"! passing through the point x,. We claim that P is microlocally
hypoelliptic. More precisely,

P(z, D)ue H: (0°), ¢°¢Char p} = ueH: 2(0%;
P(z, D)ue H: (09, 0°=(20;0, 7° <0)eChar p} = uecH:!'(?;

P(z, Dyue H; . (¢9), @°=1(20;0,7° >0)eChar p} = ueH.'*(?.

mce

2) Suppose now that ¢ changes its sign along a line I passing through
xo. For the sake of simplicity we can assume that ¢ changes its sign at the
point x,. The additional assumption that ¢ is monotonically increasing
(decreasing) along ! in a small neighbourhood of x, implies the microlocal
nonsolvability of P at the point g° = (x,, yo; 0, #° > 0). Moreover, for each
conic neighbourhood I'2¢° and each pair of real numbers s <s one can
find a distribution ueH (R") such that WF(PuynI'=Q@, WFunrl
= WF,(u)n T = {tg° t > 0}.
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3) Let ¢; =0, where 1 is an open interval lying on I Suppose that
0¢/oljr =0, where [, I, ..., I,_, form an orthogonal basis in R} '. Then we
claim that the operator P is nonhypoelliptic at the points of [. Thus the
condition on Im p'llCharpg in Theorem 1 not to vanish identically on any open

interval of y is essential.

An application of the machinery of nonhomogeneous wave front sets
enables us to obtain more precise positive results concerning operators
considered in Theorem 1. Thus let the weight M =(1, ..., 1, 2) and denote
by WF,,(4) the M-quasihomogeneous wave front set of the distribution u
[9]. The symbol H*™(R") stands for the anisotropic Sobolev space with
weight [{Ix = (€2 +in)'%. The definition of the microlocalized Sobolev
space H%™ (0% is standard and we omit the details.

ProPOSITION. Consider an M-quasihomogeneous Y.d.o. P with principal
symbol

pg.M(z: C) = Z al'j(za 71)5. €j+cl (Za 77)+'d1 (Z, ?1),
iLj=1
where ord,q; =0, ord,c, = ord,d, =1, a; —a and (a,,)” 1 > 0. Suppose
that c,(z, q) <0 and assume that a point o° (zo, E% n® > 0) satisfies the
following two conditions:

PIm(@®) =0, —i{pSr, PO ain(@®) >0.(%)

Then P is M-microhypoelliptic at @° with anisotropic loss of smoothness
of solutions equal to 1/2, ie. °¢ WFy(Pu) = ¢°¢WFy () and
Pue HSM(0% = ue HS32M(p9),
ExaMPLE 2. Let
n-1
P(z, D)=} ij+(—1+i (a, x))D,, aecR""\0,

i=1
g; >0, 1 <j < n—1. Consider the point ¢° = (z,, {9, {® = (&%, #°), 1€92 = #°,
2 =(0, yo), £% = (&3, ..., &3-1), €] > 0, 1 < j < n—1. The proposition above
states that @°¢ WF, (Pu) = 0°¢ WF,,(u). On the other hand, the operator P
is neither hypoelliptic nor locally solvable at the point (0, yo; 0, #7° > 0).
In other words, 0° = (zq; 0, #° > 0)¢ WF(Pu) does not imply that (ou),
qoeCO , 18 rapidly decreasing about the direction (O, i° > 0). Assuming
0° = (z¢; £°%, 7° > 0)¢ WF,, () we have that (o) ({) is rapidly decreasmg
in the mtcrsectlon of two paraboloids with the axis (0, #°) which contain @°
(Con <P <cn; >0, 1<j<n-1).

O fguz =Y |G C)—( ,C)——(Z 050

pC -0 0)
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2

1. The idea of the proof of Theorem 1 is contained in Boutet de Monvel [2]
(see also [10]), hence only a short sketch will be given. We will show that in
each quasiconic neighbourhood I'y: n = ¢o|&|?, ¢o > O, the operator P can be
considered as a quasihomogeneous classical y.d.o. belonging to the class
S2M(ry), M=(1,...,1,2). To simplify the notation we shall suppose that
a(z, Y)eS, meR', ie. ord,a =m. Applying the Taylor formula we get

¢ 2z 0, ) )
atz, ) = .,.Z<~ac T ,,.ZN ac

Thus the remainder Ry is estimated in the following way:
IRN < CIE¥ (L +£ 18]+ ™"

NM2A+ 2+ ™Y, m—N =0,
M2 (1 + g N, m—N <0,

(z ts, ndt

V(z,)eKxT,, K €Q.
Having in mind that 149 ~ 14|nl+|* in I'; we conclude that
IRy (z, O < const(1+[n]+]&%)" M2 = 1+ [{1s)* ",

and moreover
IDEDERy(z, {)| € Cop(1+[{]p)*m N 121810 (2, )eK x Ty.

Obviously, the functions (¢ a/0&%) (x, y; 0, n) &, Ja| < N, are M-quasihomoge-
neous of order 2m—|a) in I'; and according to the definition of the class
SiwM(I',) we obtain ae S3GM(I,) [12]. The same procedure applied to the
symbols a;(z, {), p1(z, (), p-x(z, (), k 2 0, ke Z, enables us to conclude that
P(z, D) i1s a classical second order M-quasihomogeneous y.d.o. in I'; with
the following principal symbol:

n—1

(N Puz 0= Y a;(z;0,n)&&+c1(z; 0, n)+idy (z; 0, n),

ij=1
c;{z; 0, n) <O.

Because of the positivity of the matrix (a;)]; 1lch.p? the symbol p3
is either quasielliptic or of quasiprincipal type (ie. p3,(e® =0, @°
= (29, (%) €T, =grad, p3 /(0% # 0). An interesting result due to Segala,
Theorem 5.5 from [12], and the main assumption of Theorem 1 show that P
is M-microhypoelliptic in I'; and

P2M(QO)¢0 Pue H;, (QO) = “Eantez'M(QO),
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while
PIum(@”) =0, Pue HyY (09 = ueHMM(0").
2. Consider now the operator P with symbol (4) in the paraboloid
Fa={{=En: |&>2cn>=0,c> 1) It is evident that
|pl = const [£]* —const (| +n)) > ¢'|§|> —const ],

as |&| = 1. So |p] = const(|€]+|5|'/*)* and consequently |p| ~ [{]3 in I,.
The inequality |€| < [{]s, V(e I,, implies that

D3 D2 pl < (& + ")~ 2 pl, @ = (ay, ay).
In fact,
Dy pl < clél <clpl[tIu's Idd =1, and
14K
REALN
Suppose now that |x| = 2, |x|] = |B|+ 2. We have

D2 pl = |DE(D? p)| < C, (1€ + 1))~ #!
<G LW 2Pl = [C0u™ Ipl (1€ ~ [{1u in T).

To estimate in I', the derivatives of Df(1/p) we use the identities p-p~! =
and Df(p-p~"') =0 when [of > 1. We get inductively 1/pe Sy} (2 xTI',) and
therefore the operator P turns out to be M-microhypoelliptic in I',, i.e.

0° = (20, (V€@ xTy, @°¢ WFy(Pu) = °¢ WFy(u).
Moreover,

D Pl < C Cigl, a;=1.

Pue HEM(0Y) = ueH:}*M(p%, VseR'.

To complete the proof the following result will be uselul.

ProrosiTION 1. Assume that WFy (w) = {(x, y, {): { = (¢, n)eR", n>0}.
Then WF(u) = {(x, y; 0, n): IR : (x, y; &, e WF ()} [2]

Suppose now that the operator P with symbol (4) satisfies the condition
PueC™, ue 2'. Combining the considerations above and Proposition 1 we
come to the conclusion that g% =(z,; 0, 7° > 0)¢ WF (u). Standard argu-
ments {rom the theory of y.d.o. show that WF (Pu) = WF (u). The desired
microlocal smoothness of solutions of the equation Pu= f is a simple
consequence of Theorem 4.3 from [10]. We omit the details.

3

The proof of Theorem 1’ is based on some results obtained in [2] and on the
main theorem of Moyer-Hoérmander concerning the microlocal nonsolvabili-
ty of principal type W.d.o. [8].
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We shall denote by f the partial Fourier transform with respect to y of
the tempered distribution f(x, y)e ¥'(R""! xR;) and by ¥,, ¥, the
following two spaces of distributions: '

= {fe & supp (&, n) = {L = (&, m: 1> e(€+1), & = const > 0},
ve = {fed: supp f(&, m) = {: n=e(E2+1), e > 0}).

Boutet de Monvel! introduced in [2] a special integral operator U giving
a link between the classical and M-homogeneous wave front sets of distribu-
tions. This is the definition of U:

1 © . 2
8) T=Uf = | e £ (x, nydy.

The properties of U we are interested in are formulated below.

@) WU s ~ N f W= 1y2, ¥f € &+, where || f]|; is the usual Sobolev norm
and ||fll3. = [ {18+ 2> f (€, ni*dE dn.

(b) U is an isomorphism from &, onto ¥, ,; fe ¥ . n¥ < Ufe ¥;

d 0 0 52

z-—(x,y), IS_]S"—I

{c) Suppose that P'(z, D) is an M-quasihomogeneous y.d.o. with princi-
pal symbol p° M =(1,...,1,2) and fe.#,. Then one can find a classical
homogeneous .d.o. P(z, D) with principal symbol p° such that

p°(x, y; &, ) =p°(x,0; ¢, n?), Vn>0, and
9) P Uf = UPY{,

(d) Assume that a distribution fe %', coincides outside some compact
set K € R" with a function ge &. Then WF, (Uf) is the image of WF (/)
under the mapping x, x: (x, y; &, 1) = (x, 0; &, n?).

Let ¢° = (0, 0; 0, 1), {® = (0, 1). The principal symbol p3 ,; of the opera-
tor P in the paraboloid I'; is given by (7). Therefore the zero quasnblcharac-

teristic y of Rep2 m Dassing through the point (0, 0; #°, 1), Zu L @i (@) nj
+¢, (0% =0, n° =(n?, ..., nd_,), has the equations

( n—-1
=23 a;(x,0;(9¢, 1<j<n—1,
i=1
. n-— laa oc
"= X, 05 198 &= 525, 03 09,
ik=1 j 3(:J
x(0)=0,,(0)=7n% y=0,n=1.

We can suppose that d,|, = d, (x(¢), 0; {°) changes its sign from + to —
at the point g°.
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To apply (9) the classical homogeneous principal type y.d.o. Q with
principal symbol

q3(x, &, n) = Z a;(x,0; 0, 1)¢ fj‘f"?z(cl(xa 0; 0, 1)+id, (x, 0; 0, 1))
ij=1
will be investigated.

The zero bicharacteristic of Re g3(x, () (x = x(t), & = £(1)) passing
through the characteristic point A° = (0, 0: #°, 1)e Char g2 has the same equa-
tions as y. A theorem of Godin from [5] and the cited result of Moyer—
Hormander enable us to conclude that there exists a distribution fe & such

that Qf e Cy, WF(f) = {tA°: t > 0}. Repeating the same arguments as in
[2], p. 13-14, we get Theorem 1.

4

1. When proving Theorem 2 the following necessary condition for microlocal
solvability of linear y.d.o. will be used.

ProposITION 2 [8]. Assume that T is a compact cone in T*(X)\0 with
base wr € X and a y.d.o. P(z, D) is microlocally solvable in T. Suppose that
wc X is an open set with @ > wy, and NeZ is the number occurring in
Definition 2. Then one can find an integer v, a y.do. A of order v with full
symbol identically vanishing in some conic neighbourhood of T and a constant
C > 0 such that the following inequality holds:

) llull-n < CUIP* ull, +llull - w—n+ | Aulle),  ueCF (@)

(P* stands for the L, adjoint operator of P).

Thus Theorem 2 will be established at the point ¢° = (z,, {°) (e T) if the
estimate (9) is violated for arbitrary N, v, w2z, and A, where ord A = v and
o(A) =0 about o°.

The proof of Theorem 2 can be reduced to showing that the inequality

(10) llollo < CIQullo+11Qy vllo),  Voe CF (@),

breaks down, where ¢° = (xq, yo; 0, 71° > 0), zo = (x0, yo)€ @', @ is a classical
Y .d.o. of order v+ N+2 with principal symbol

n—1

Ponez =L@ Y ay(z, 0EE,  f=1 about ¢° feC¥ (),

ij=1

N—
q;+N+1,Charpg = (Pt pl'Charpg’ ord, Q; =v+N

and the full symbol ¢(Q,) =0 in a cone I' about g°.
For the sake of simplicity we assume that z, = 0. Let us fix ', € > 0



222 P. R. POPIVANOV

and the operator @, from (10). The estimate (10) fails to hold for a function
v(z) of the following type:

o (2) e 2,50 + ii.h(z)’

A >0 a parameter, ¢(z)e CF(w), h(z)e C®(w’) and Im h(z) ~ cylz|%, z— 0,
¢o > 0. It can easily be shown that for each classical symbol p,,(z, {), ord, p,,
= m, and for each pair of integers M, M’ there exists a number N, e Z,\0
such that all the derivatives of order < M of the function

M {pu(z, D) (g(z) @15 THIND)_ g0 5 (2, 3210 D (p(2) €44}
lal <Ny
are bounded in the space of the variable z (VA > 1; p\%(z, {) = & p /3", (°
= (0, ﬁo)) 0
Obviously ¢(Q)l, =0 = Q,(¢(2) gt AR} = 0(A7 ™). We shall
construct the phase function h(z) and the amplitudes ¢;(z)e C§ (@) in such a
way that

L
Q(z, D)( Y, @;(z) 477 45041 — 0 (37 R),
j=0
A—oo and R>1; 9o(0) =1, ¢;(0) =0, j > L.
To find h(z) the following nonlinear Cauchy problem will be considered:

n_1 ch oh
(11) i’jzl a;(z, 5)7' ;3;}+P1(z (9 =

grad, h(0) = n°e R""1\0

and n° is defined in Theorem 2. As we are looking for an approximate
solution modulo 0()z|”), z—0, ¢ » 1, of (11) we can assume that the
coefficients a;;, 1 <i, j<n—1 and p;(z, {° are analytic functions in @'

Without loss of generality we can suppose grad, h(0) = (1,0, ..., 0)
= n° since the assumption of Theorem 2 is invariant under rotations in
R?~!. Therefore

(12) 0# { i ajk(Z, CO)"Ij"Ik+C1 (z, Co), dy(z, CO)}M(QOs ’Io)

=2 Z ay (o ) (QO)'h

According to the Cauchy—Kovalevska theorem there exists a unique
analytic solution of the Cauchy problem for (11} with initial data

R
h|x1=o= Z Wj1Z;Z ke, =0
=1

in a neighbourhood of the origin.
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Lemma 1.64 from [6] and the inequality (12) imply the existence of a
symmetric matrix (&), Im(e;) > 0, such that

ch(0 "
( )Zl+ Z aj,Zj21+0(|Z|3), Z_’O.

0z, =1

h(z) =

The observations that z;=x; 1<j<n—1, and ||v]|§ =4 "?[c|@e(0)>
+0(1)], ¢ =const > 0, complete the proof of Theorem 2.

The local nonsolvability of the operator P(z, D) ((6), case 11.2)) is shown
in [11].

2. The proof of the Proposition is based on the well-known identity
(13) |Pullg = [|P*ull3+(Cs(z, D)u, u), VueC§(K),

where C,4(z, D) = [P*, P] (z, D).
The principal symbol ¢3 (z, {) of the M-quasihomogeneous operator
C,(z, D) is equal to

n—-1 n—-1 ad
Sulz, ) =—i{Pa Pulm(@ 0= ¥ ¥ anlz, Dée ‘(z, 1).

j=1 k=1
3 m(z, {) is M-quasihomogeneous of order 3, of course, and p;"M(QO) =0,
7° >0 = £°% 3 0. Assume that ¢, > 0 in an M-quasiconic neighbourhood
I' of the point @° and denote by ¥ (z, {) an M-quasihomogeneous function of
order 0 with respect to { having the properties: Y|, =1, I 130% I €T,
weCg(IN. Putting Y (z, D)uec CF(K) in (13) we get

IPu)il5 = Re(Cs(z, D)(Y (z, D)u), ¥ (z, D)u), VueCF(K).

Let ¢3, >0 be a 3rd order M-quasihomogeneous symbol such that ¢3
=c3y in a quasiconic neighbourhood of supp . Then (cI \(z, D)
—C3.m(z, D))oy is an infinitely smoothing operator. Garding’s inequality
[9]. [12] asserts that

(14) IPWwld = collulld;z,mn+cy lWullf . Vue CF(K),

co =const > 0, ¢, = const.
The desired M-microlocal hypoellipticity can easily be deduced from
(14). In lact, consider the y.d.o. q,(z, D) with symbol

0.(2, 0) = (@) 1+ {1372 (1 +2 [{13) V2,
e Cy(R", ¢ =1 about the point z,.

Certainly, ord; g, = s—1. A simple calculation shows that g,e S5 "™, and
moreover (g, (z, {)}o<.<; is a bounded subset of S%. On the other hand, the
estimate (14) remains true for each ue H2M(0°. To verify the last statement,
(14) i1s rewritten as follows:

(15) Il Pulld + 10y wlld pe = collpull3 o m+ e Wullf u,
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Yue CF(K), where y,(z, D) is a Oth order M-quasihomogeneous ¥.d.o.
with principal symbol (1+[{1%) Y2 ¥, S ulm. supp ¥y €. Then
uec HZM (0% = PucH2M (0% = yPuc H°(R"), etc.

Assume now ue H3 1M (0% and Pue H%M(0%. Then we can find a small

enough conic neighbourhood I', 3% I'y € I'y, for which q.(z, D)y, (z, D)u
e H:M (0%, supp ¥, € 'y, ¥, =1 about ¢°. Thus

W P(g. ¥, “)||c2)+”'/’1 q.¥; “”f,M = Coll¥g, ¥, “||§/2,M +c, [IYg. ¥, u”f.M-

Because of the boundedness of g, in S$% we have ||/, ¢, ¥, ull, » < const, the
constant not depending on &. The identity

'/’P(qc'pZ) = wch2p+w[P’ qs'l’Z]

implies that |y [P, q,¥,]ullo < const since the commutator [P, g, ;]
is concentrated in I, and the set [[P,q,¥,;)}0<,<: IS bounded in
Sslfol'Mi lWq.¥2 Pullp < const. Thus ||g, ¥y, “Ha/z,M < const, Vee(0,1] =
llgo Wt ull3 2. M < const = ue Hi.>*M(0°%. The desired M-microhypoellip-
ticity is shown.
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