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1. Introduction

Let (R, o/, # = (P,; 0 € ©)) be a statistical space and F = (%) a nondecreas-
ing family of sub-c-algebras of .«/. The main purpose of this paper is to
answer the following questions. The terms in the formulation of these
questions will be used here without detailed explanation on the assumption
that their intuitive meaning is clear. Exact definitions will be given later on.
Assume that 7 is a random size of observation with respect to F.

1. Suppose that 2 is dominated on %, for every ¢t and that %, is an
appropriate o-algebra which describes the observation of 7 and of the
“process” F up to 1. Is & then dominated on .%?

2. Let X, be, for every ¢, a sufficient statistic for .#,. Under what
conditions is (t, X,) sufficient for .7.?

T

As mentioned, we shall consider “random sizes of observation”, i.e., we
shall not restrict our attention to Markov times (which are defined by
(r < t)e #,, V). Therefore first of all we have to define a o-algebra .7,
which will be conceived so as to describe the observation of an arbitrary
random time t and of the “process” F up to 7. After that there will be given
a mathematical definition which tries to cover all possibilities of practical
generation of random sizes of observation. To motivate the necessity of such

a generalization of Markov times let us consider for example the following
four situations:

a) Independent time: First we determine randomly according to a
prescribed distribution function G a random variable r with values in the
interval [0, oo]. Alter that we observe the process up to the realization t of t.
A reasonable statistical space to describe this situation should satisfy the
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following conditions: For every 0e€@ the time t is independent of # _, and
its distribution G is not a function of 0.

b) Let us first realize an independent time 7, as described in a) and
then observe F up to a given Markov time 7,. After stopping at 7, we carry
out additional observations of size 7,, ie., the resulting random size of
observation is 0 = 1, +1,, which is neither an independent nor a Markov
time. Similar examples are 7, v 7,, T, A T,.

c) Consider the sequential randomization procedure described by
Bahadur ([1]): Let g,, n=1, 2, ... be a sequence of random variables such
that 0 < g, <1 and every g, is measurable with respect to .#,. Then the
sequential randomization proceeds as follows. If we have already conducted
observation up to time n, we carry out an auxiliary experiment Z, whose
realizations are the numbers O or 1, such that the probability of Z, =1 1s g,.
If the experiment yields 1 then we stop. Otherwise we proceed with the
(n+ 1)th observation and the next step follows. Here g, is interpreted as the
conditional probability P, (‘t =njo((r=nn .377,,)) of stopping at time n if we
have already conducted observation up to n and know the past #,.

d) Let {r;;deA} be a given set of Markov times (with respect to F),
where (4, ) is a measurable space. First we determine the realization d of a
random index D with prescribed distribution G defined on (4, ). Then we
observe the process F up to 1,. The resulting size 7, of observation is no
longer a Markov time.

A suitable statistical space to describe this method (which we shall not
try to define) should guarantee the [ollowing properties of 7, and D.

— D is independent of % and has the distribution G which is not a
function of 6.

— Every event (tp <t) should be measurable with respect to the o-
algebra generated by D and #,.

We could invent a great number of further examples of random sizes of
observation which are not Markov times. Therefore it 1s desirable to answer
the questions posed initially not for Markov times only but as generally as
possible.

The assertions stated later on can be found in [5] or are slight
generalizations of those in [5]. Most of the proofs will be omitted.

This paper differs from [5] essentially in that here more emphasis is put
on intuitive explanations and that a modification of a lemma of Sudakov is
proved which turns out to be a consequence of the results on domination
and sufficiency.

Notations. In the sequel let (£, .o/, ) be the underlying statistical
space, i.e, (R, o) a measurable space and 2 = {P,; 0 ©®} a set of prob-
ability measures defined on (2, &) and indexed by 8 ®, where @ is an
arbitrary set.
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Denote by S the interval [0, o) and by T the union Su {+ c0}. Next,
let N be the set of positive integers and N = N U {+ o }. Every o-algebra is
automatically understood to be a subset of .«.

Suppose that F = (#,),.r 1s a nondecreasing collection of g-algebras. In
all our considerations we will not assume % . to be equal to the o-algebra
generated by the .#,, teS. Il # is a g-algebra and A a subset of 2, then we
admit both 4 N # and %, as the notation for the trace {A N F; Fe#F)} of #
on A. If A is a Borel subset of T then #, denotes the class of Borel sets
belonging to A.

Given a og-algebra .#, the symbol .# denotes the closure
‘IFANA,Fe%, Ae.«7, P(A) =0} of # with respect to some probability
measure P defined on {(Q, ).

If Q is another probability measure on (2, /) and the restriction P| %, of
P to some trace .#, (with A # @) is absolutely continuous with respect to

dP
Q| # 4, then 2@ F 4 18 the Radon-Nikodym derivative of P| % , with respect

to Q| F,.

Instead of “¥, # are conditionally independent with respect to & we
shall write shortly “%, & are independent given Z”. Every random variable 1
with 1(2) = T will be called random time.

2. The ‘“past” %, of the “process” F

Let ¢ be a random time.

We shall start with more or less intuitive considerations to define the
“past”. For these considerations we will assume that we are already given a
c-algebra, say <., which describes the observation of = and of the “past” of F
up to .

Because of our formulation of the intuitive meaning of &, this o-algebra
has to enclose o (1), 1€, o(t) = Z,. The problem now is to describe ad-
ditionally the *“past” up to 7. In order to get an inclusion from below and
from above for this hypothetical g-algebra %, let us consider random events
of the kind (r 2 ¢) and (r £ t) teT

(t=21t) The trace (t = t) n &, would have to contain (t = 1) n #,. For if
we conduct observation at least up to t then the past .#, is known. From
this statement together with a(t) = ¢, it would follow that

€200 %< (1)

(r <) The trace (r < t) n %, would have to belong to o(t) n.%,. For if
we conduct observation at most up to t, then (except mformatlon on 1)
information on the process “at most up to t” is available,

t<NNZ o)V Z, 2)
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The inclusions (1) and (2) lead us to introduce the o-algebras

Fo.=0(tzt)nF,;teT)
and

Fo={Ae d;(1<1)nAec(r)u F,, teT),
which because of (1) and (2) would have to satisfy
F.cY . cF,. (3)

(The notation .#, is taken from Chung and Doob, who mentioned this o-
algebra in [2])

The inclusion % .. = #, holds in fact, but in general %, and #, are not
equal, even in the case of a Markov time 7. We could easnly find examples
which demonstrate that %, in general does not describe the behaviour of the
process F at time t (see [2], Example 2). Therefore, instead of %,,, in the
sequel we shall think ol #, as the “past” of the process F, though %,
possibly contains too much information, as we can see in (3).

Let us summarize the arguments for working with #,

— Let FF=(F) be defined by Fi=0(r<s);s<t)v #, teT
Then the past %, of F up to 1t is equal to the ¢-algebra
tAeo/;(t<t)nAeFi, te T} (see [5]). Suppose now that 7 is a Markov
time with respect to F. Then #%#; =%, te1, and we get %,
= {de o;(t <Y Ae #,, te T}, which means that our definition of &, for
an arbitrary random time 1s a generalization of the well-known corresponding
o-algebra in the case of a Markov time.

~— Let the image V = 7(Q) of the random time 7 be countable. Then
there seems to be no doubt of the choice of % because of the following
facts:

(i) The o-algebras %,, and %, are equal (i.e., from (3) would follow
F..=%,=F,). They c01nc1de with a((r =1)n F,;teV), and therefore the
exphc1t representation of the events belonging to #, is known:

F.=F=Jr=0)AF,;FeZ,tecV].
teV

(i1) A real-valued random variable Y is .# -measurable iff there exists a
(real-valued) random process (Y),., such that Y, is .%#,-measurable, te ¥V, and
Y 1s equal to the value Y, of the process (Y), at time 1, ie, Y(w) = Y, (w),
wel.

(i) Let P be a probability measure on (2, /) and E (‘) the expectation
with respect to P. Then for every random variable X > 0 we have

Exi 7y =y 1., Elua X17)

— P-as.
by P(t =t|#))
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(iv) Let (4, %) be a measurable space. If = u(D, w) 1s a function
defined on & x £ which is measurable with respect to some ¢-algebra .# for
every fixed De & and a probability measure for every fixed we Q, then u 1s
sald to be an % -measurable decision rule ([1]). We could show now the
following representation of #,: Provided (4, ¥) is a Borel space as defined
in [6], 4 is an %, -measurable decision rule iff there exists a sequence y,, te V.
of decision rules such that y, is .%,-measurable and, for every weQ and
De &, we have )

lu(D’ (U) = ou“r(m) (Da Cf)) (4)

In [5] this representation of u has been shown for random sizes of
observation (as they will be defined later on) and almost surely only. The
proof of (4) under the general conditions stated above will be published in
Wissenschaftliche Zeitschrift der Technischen Hochschule Karl-Marx-Stadt.

— Let © be an arbitrary random time and suppose that (X,), i1s a
progressively measurable random process (with respect to F). Then the value
X, of this process at time t is measurable with respect to .Z,.

— Let (X,),.r be a measurable random process and define F by .#,
=0(X,..;s€T), teT Denote by 4X the s-algebra o(z, X, .,;s€T). In [10]
under a weak condition (condition 1.11) on the set Q of the underlying
measurable space (2, .«/) the equality of 4¥* and #, is shown for the case
where 7 is a Markov time. (In fact, more is shown: %, = ¢(X,.,; s€ T).) This
condition has been reformulated for arbitrary random times in [5].

A weaker property is valid for strong Markov processes. In the fol-
lowing let P be a probability measure on (2, .o/). If (X,),.r 1s progressively
measurable and the o-algebras o(z, X,,,;s€T), %, are independent given
a(t, X,) under P, then #, is equal to 4 ([5], Theorem 1).

As mentioned above, because of (3) the o-algebra %, is possibly too
large. This might be the reason for the following fact: If we consider
the collection F = (#,),.r of closures under P of the o-algebras #,,
reT, and define the past of F up to t according to 4,
= {Aed; (1< t)nAdea(r) v.#,, teT}, then B, contains #,, but in general
the closure of &, is a strong subset of 4,. (For an example see [5], p. 131).
The equality 4, =%, holds for instance in the case of strong Markov
processes ([5], Theorem 2).

3. Random sizes of observation

Considering Bahadur’s sequential method (Example ¢) of the introduction) let
us first try to find out the essential common features of discrete random sizes
of observation. The essence of Bahadur’s method was as follows: We observe
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sequentially a random process (X,),.y- If we have realized already n obser-
vations X, X,, ..., X,, we decide — possibly with the aid of the n observed
values, and with the aid of auxiliary experiments — whether to stop or to
carry out the next observation.

But for this decision no information concerning the future X,.,,
Xp+2,... and no information on the unknown parameter § is available,
except the information enclosed in the past X, X,,..., X

These statements lead us to the following definition:

DeriniTioN 1. A random time t with values in N is called a random
size of observation if it satisfies the following requirements for every teS:

(i) The event (r =) and the o-algebra %, are independent given o ((t
> 1)~ .#,) under every Py, 0€@, ie,

Pt =tla((t=20nF) =Pt =tlo(t =2 )nF,)), Peas,0ec0. (5

(i} For the conditional probabilities Pa(t =tlo((t=t)n F,)), 006,
there exists a version which is not a function of 0, ie, a o((t =) F )
measurable random variable 9”(1 =tlo((t = t)m:?/’,)) such that

Pyt =tlo(t=z0nF) =2 =tlo(t 20N F)), Ppas, 0c0O.(6)

This definition does not make sense if 7 is a random time whose 1mage
is the whole interval T, because (5) and (6) are fulfilled for every random time
with continuous distribution functions. Therefore we shall make use of
another definition, which for 7(2) < N twurns out to be equivalent to
Definition 1 ([4]).

DerFiniTioN 2. A random time t is called a random size of observation
(with respect to F; abbreviation r.o) if for every teS the following two
conditions are fulfilled:

() The event (t <t) and the o-algebra %, are independent given
F,, 1€,

Po(t < t| F,) = Pl < t| F L), Pyas., 0c@. (7)

(i) For the conditional probabilities Py(t < t| #,), 0 @, there exists
a version that is not a function of e @®:

Pyr <t|F)=P(t<t|F), Pgas.,0e0. (8)

Obviously any Markov time fulfils these conditions (take every P,(:|°)
= I, <y)- But we can say even more:

As a particular case this definition covers essentially the definition of
Markov times: Take %, = «/; then conditions (i) and (i) are equi-
valent to the fact that the event (t<t) belongs to £,
={F,ANA; Fie #,, Ae o, Py(A) =0, 0 O} (cf. {5], Lemma 6). '
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For £ consisting only of a single measure Siegmund ([11]) gives an
equivalent definition and Pitman and Speed ([9]) use the same formulation
as in condition (i). (Condition (ii) in this case is automatically fulfilled.)
In their papers and in [5] they use the term “randomized time” instead of
“random size of observation”. In this paper we shall use the latter term to
emphasize its statistical meaning.

If 8 were regarded as a random variable (for instance in the Bayesian
approach) then conditions (i) and (ii) could be summarized as

P(t<tjo(0, F,)=Plx <t| F), P-as.,

this equation being defined on a suitable probability space (2, .«/, P). The
last definition in terms of conditional independence only is mentioned by
Dawid ({3], Section 7.4).

For any random time t let F* = (.%]),.; be defined as in Section 2. We
could easily show ([5], Theorem 3), that ¢ is an r.o. if and only if for every
teT;

() #; and # ., are independent given #, under every P,, 00,

(i) .#, is sufficient for #;.

The first condition is equivalent to the assertion that (#,, #).r Is a
Markov process under every P,, 6 @. For this property Bahadur {[1]) uses
the term “transitivity” in the case of discrete time.

Every random time t is Markov with respect to F* and, as has been
mentioned in Section 2, the past #, of F up to 7 is equal to the “usual”
past {Ae.of; (1 <t)nAeF;, teT) of FF up to . Therefore the properties (7)
and (8) would enable us to reduce all considerations to Markov times, as has
been proposed in the case of a single probability measure by Pitman and
Speed ([9]). (They do not define &, for a general v and reduce it to the
Markov case.) Such an approach would simplify shghtly the technique of the
proofs. But in the proofs auxihary random sizes of observation ¢ are used.
The past of F up to ¢ and the past of F' up to ¢ are not equal in general.
Therefore, in [5], in order to formulate all assertions in terms of the
underlying family F only, the explicit reduction to Markov times has not
been used. A simple consequence of (7) and (8) is the following. If 7 is an r.o0.,
then every Markov time o with respect to F* is an r.o. with respect to F.

Let us now return briefly to the examples mentioned in the introduction.
We shall find out if they fulfil the requirements of Definition 2.

a) Since t and %, are itidependent we have

Pyt <t| F ) =Pt <1) =G (1), Pgas.,teT, 0e0,
1€, the conditional probability on the left-hand side is a constant and
therefore .#,-measurable. So the first condition of Definition 2 is fulfilled:

Po(t < t| F ) = Py(t < t|#,). The second condition follows immediately, if
we take 2(t <t|F,) = G(1).
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b) If 1, ts an independent time, then it is according to a) an r.o. If the
time 7, is Markov with respect to F, so it is with respect to F' =(.#,'),.r.

The sum ¢ = 1, +1, is 2 Markov time with respect to F ! (because both
items are Markov). Therefore according to the last remark stated after
Definition 2 it follows that ¢ is an r.o. with respect to F.

¢) The stopping function g, was understood to be the conditional
probability of stopping at time n under the condition that we have already
conducted observation up to n,

Po(r=nlo(t=nn#,)=g. 1,>m, neN,e6.

We could easily construct a statistical space which satisfies this condition (see
[1] or [4]). Then from the .# -measurablllty of g, it follows that both
requirements of the equivalent Definition 1 are fulfilled.

d) Let us only consider the first condition of Definition 2. Suppose that
0 is fixed. Since D and %, are independent and %, < % ., the ¢-algebras
o (D) and # , are independent given #, (see for instance [5], Lemma 5), and
it follows that (D) v #, and &, are independent given #,([5], Lemma 4).
The event (1, < t) belongs to a(D) v #,. Therefore it is independent of F#
given %,, and (i) is fulfilled. In a similar manner we could prove condition
(i1) of Definition 2.

Let us finish this section with a simple consequence of Definition 2.
Suppose that V =1(Q) is countable. If X > 0 is a random variable, then
according to Section 2 its conditional expectation under %, is

Eo(li— X|F)
Eo(X | F) 1.
° =Ll p i~ 7,
If X is # _-measurable and 7 is an r.o., then it follows — essentially from the

conditional independence property (i) of t — that

_ Polt = 1| F)Eg(X| #
FoX1Z) = e ™ h = 11%)

= Z 1(r=l) EG(XI -77'), Pg'a.S., fe@.
teV
As a particular case we get the following well-known fact: If 7 is a

Markov time, then the last equation holds for every random variable X > 0,
because a Markov time remains an r.o. with respect to F il we replace %,
by .of (see the remark after Definition 2).

4. Domination in sequential analysis

Let A # @ be a random event and % a c-algebra. We shall say that the
family 2 of the underlying statistical space (2, o7, %) is dominated on the
trace %, il there exists a o-finite measure u on (A4, #,) such that all
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restrictions P,| % ,, 0 ®, are absolutely continuous with respect to u. The
measure u will be called the dominating measure on % ,. In the sequel A will
be the event (1 < c0) and % will be the g-algebra #..

Throughout this section let us make the following assumption:

For every teS the family 2 is dominated on %,. 9)

We shall not assume domination on %, because this would be in
contradiction to the fact that in the case of independent observations
domination on # _, does not hold. (This is a simple consequence of the strong
law of large numbers, see [5], p. 116).

Suppose that 7 is an arbitrary r.o. in the sense of Definition 1 and
denote by .#_ ., the trace (t < 0)n.%#,. Let us state precisely the first
question of the introduction.

— If assumption (9) is fulfilled, is then £ dominated on #,_.?

— Assume that the answer to the first question is affirmative, and
suppose that p, 18 a dominated measure on %, re S, and f,, = i—}: #,, and

(4
M < o 1s @ dominating measure on #,. .. Is it then possible to choose g,
fo.(teS), and u, ., in such a way that the Radon-Nikodym derivative of
Py| #, <, With respect to u, . o, is equal to fy ., where f,, is the function on (r
< o) defined by

.ﬁ),r ((D) = fO,r(m) (w)! wE(T < CD)

Let us start with the construction of u, . :

It is well known ([7], Lemma 7) that # is dominated on %, if and only
if there exists a finite or countable subset #* of # which is equivalent to #
on #,, ie, if F, belongs to .#,, then

Py(F) =0, VPye#* < P,F)=0, VPye?.

By £* we shall denote the union of all sets ¥, ne N, which i1s again finite
or countable. This subset #* of # is now equivalent to P on every g-algebra
F,.,teS (see [5]). Let P* be a strict convex linear combination of the
measures belonging to #*:
P*= 3 ¢, Py, 0<c0s1,2c0=1. (10)
PgeP
This specially constructed privileged measure will be the base of all further

considerations. Notice that in the construction of P* no random time plays
any role.

THEOREM 1. Let assumption (9) be fulfilled and let P* be a privileged
measure defined according to (10). Then for every random size of observation 1
(with (t < ) # Q) the family 2 is dominated on F, ., by the restriction of
P* to .. ,.
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Thus the answer to the first part of the question is positive without any
restriction, and the way to construct a dominating measure u, . , on %, ., is
extremely simple: We have to choose P* once for ever and the restriction
P*| #.., 1s dominating for every r.o. .

THEOREM 2.  Let assumption (9) be fulfilled and suppose that for some
dP,
dpP*
such that every path of the random process fo = (fo hes is right continuous.
Then for every random size of observation t (with (t < c0) # @) the “value f;,
of the process fy at time T < 0" is a version of the Radon-Nikodym derivative
of Py| F, < 4 with respect to P*| F, ., ie., the function f,  defined by f, (w)
= foctw (@) for we(t < ) is F, . -measurable and satisfies

Pot <0)nF)y= |  f3.dP*, Fe#,.

(t <a)rF

0@ there exist versions fy, of the Radon—Nikodym derivatives F,, tes,

The right-continuity condition concerning f, does not seem to be too
strong. It is fulfilled for example if F is right continuous, because (fp, F)is a
martingale on (Q, ./, P¥).

Let L: © x2 — § be the likelihood function on %, (for t€S), defined
by L (0, w) = f5,(w), 06 @, we 2. Then Theorem 1 means in other words
that from the existence of the likelihood functions L, teS, for fixed
sizes of observation it always follows that there exists a likelthood function
Liy:@ x(t < o0) — § for a procedure with an arbitrary random size of obser-
vation 7.

Theorem 2 says essentially that under weak conditions on L,, te S, the
likelihood function L, can be calculated by the help of L,, reS:

L (8, w) = L, (0, w), fe®, we(t < o).

One simple consequence of the last statement is the following: If 8, is
a maximum-hkelihood estimator for fixed size , teS, then a maximum-
likelihood estimator 0, for the procedure with a random size of observation
7 is given by é(,)(w) = Qt(w,(w), we(T < ).

5. Sufficiency in sequential analysis

As usual, we shall say that a g-algebra % is sufficient for another o-algebra
F if % belongs to % and if for every event Fe % there exists a version
P(F| %) of the conditional probabilities Py(F | %), which does not depend on
feo.

A statistic X is said to be sufficient if o(X) is sufficient.

Throughout this section let X = (X,),.; be a random process with values
in a measurable space (E, &) such that every statistic X, is sufficient for
F,,tel
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If t1s a random time, denote by (r, X,)} the mapping with values in the
measurable space (Tx E, %4, ® &) defined on 2 by

(Ts Xt)(w) = (T ((1)), Xr(m)(w))‘

We shall now try to find a general answer to the second question posed
at the beginning of the paper: If t is an r.o. in the sense of Definition 2,
under what conditions is the function (r, X,) a sufficient statistic for .#,?

First we shall consider the case of an r.o. T with a countable (or finite)
image V =1(Q) in a slightly more general speech: Suppose that, for every
teV, we are given an cg-algebra %, sufficient for #,. Denote by ¥, the o-
algebra generated by all traces (t = t)n %, te V. Roughly speaking, this o-
algebra 4, describes the observation of t and of the “value” of the random
process (%,),. at time 7. This explanation is motivated by the fact that ¥, is
equal to a(1, X,) if every %, is generated by X, (see [5]).

We shall now formulate a modification of Theorem §.1. [1], using the
introduced general notion of an r.0. and the o-algebras %, and %..

THEOREM 3. Let t be a random size of observation whose image V
= 1(Q) is countable (or finite), and let (9,),., be the sequence of sufficient o-
algebras introduced above. Then the o-algebra %, is sufficient for F ..

If we did not suppose in this theorem that t is a random size of
observation, then we would not get the sufficiency of ¥, for %, (see for
instance Example 4, [5], p.132).

Let us now return to the case of arbitrary random sizes of observation.
Obviously in the case of continuous time the formulation of Theorem 3 in
terms of the s-algebra ¥, =o((t =1)na(X,); te T) would not make sense,
because every event (t = t) could have probability zero. Therefore instead of
%, we shall consider o (7, X,). Let us start with an example which will help us
to discuss the necessary conditions for the sufficiency of (r, X,).

ExampLE. Suppose that @ consists only of the numbers 1 and 2; Z is a
random variable whose realizations are the numbers —1 and + 1 and whose
distribution depends on 6 € @ (for instance by Py(Z =1)=0/3,0€0); Vis a
random variable with values in the interval (0, ov) whose distribution func-
tion G(x) is continuous and does not depend on 6e @; Z is independent of
V under both P,, 8c©.

One could easily construct a statistical space (2, .«/, #) which satisfies
these assumptions. (For details sec [5], Example 2, p. 129. We shall discuss
this example here only intuitively and without strong proofs.)

Consider now the random process X =(X),.r defined by X,
=Z|cos(m-t/2V)] for teS and X_ =2Z, and let #,=0(X,;s<1)
=¢g(V, Z), te T This process starts at X, = Z and turns at V for the first
time to zero. The information on @ contained in %, is concentrated on ¢ (Z),
because the distribution of V does not depend on 0.
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For te T we have: (X, >0)c(Z=1), (X, <0)c(Z = —-1), Pe(X,=0)
=0, Oe @. Therefore, except in an event of probability zero, Z i1s known if
we know X,, ie, X, i1s sufficient for &#, =0o(V, Z), te T

Let 7 be equal to V; then X, is equal to zero and %, equals o (V, Z). But
the o-algebra o(z, X,) is not sufficient for .#.: though #, = o(V, Z) contains
information on 60, the g-algebra o(z, X,) = (V) does not.

Let us point out some features of the considered example.

— £ is dominated on #,, teT.

— The process X is continuous and every statistic X, is sufficient for #,.

— 1 is a Markov time with respect to F.

The example shows that these conditions do not imply the sufficiency of
(z, X,). Therefore we shall add another not too strong condition concerning
the right-continuity of the process of Radon-Nikodym derivatives. In order
to formulate this condition, let us make a remark on the representation of
the process of Radon-Nikodym derivatives.

Suppose that — in addition to the sufficiency assumption on X stated at
the beginning of the section — condition (9) is fulfilled, ie., 2 is dominated
on #,, teS. Further, let P* be the measure constructed in (10). Then,
according to a well-known theorem of Halmos and Savage ([7], Theorem 1),
for every teS and 0@ there exists a version f;, of the Radon-Nikodym
derivative of Py| #, with respect to P*|.#, which is o(X,)-measurable and
which therefore has a representation fp, = gg,(X,), where go, = gg,(x) is a
measurable real-valued function defined on (E, £). We shall denote the
functions gy, 0 ®, defined on TxE by gglt, x) = gg,(x) as “likelihood-
generating functions”.

THEOREM 4. Let P be dominated on .F, for every teS. Suppose, in
addition to the assumptions on X stated at the beginning of this section, that

— (E, &) is a metric space and & its g-algebra of Borel sets,

— every path of X is right-continuous.

If there exists a collection g,, 0 € @, of likelihood-generating functions such
that for every 0c®

go(t, x) = limgg(s, y), teS, xekE, (11)
5
then for every random size of observation t the mapping (t, X,) is a sufficient
statistic for F..
The formulation of this theorem is a slight generalization of Theorem
11, [5], which is formulated only for real-valued random processes X. The
proof would be the same as in [5]. We shall only sketch it here. It is based
on a slight modification of the above-mentioned Theorem 1, [7]:
According to Theorems 1 and 2 of Section 4 the Radon-Nikodym
derivative of Pyz| %, ., with respect to P*| % .. exists and is equal to the
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function f,, defined in Theorem 2, which because of the definition of g4 turns
out to be ge(tr, X,). Since g, is continuous in the sense of (11), it is A;@E-
measurable. Thus gg(t, X,) is measurable with respect to (1 < o) "o (r, X,).
Therefore, according to Theorem 1, [7], the random function (z, X,) iIs
sufficient for .# .. (The exclusion of the event (1 = =¢) in the proof does not
affect the result, see [5].)

Theorem 4 can be reformulated without topological assumptions about
the process X, but then (2, ) has to be a Blackwell space (as defined by
Meyer [8]):

THEOREM 5. Let (Q, </) be a Blackwell space, and let 2 be dominated on
F, for every teS. In addition to the assumptions on X stated at the beginning
of the section, suppose the o-algebra & to be countably generated and x to
be progressively measurable with respect to F.

If there exists a collection g,, 60 € O, of likelihood-generating functions such
that for every 0 @ and every we (2 the mapping hg . S — S defined by hy ,(t)
= go(t, X,(w)) is right-continuous, then for every random size of observation t
the function (t, X,) is a sufficient statistic for F..

This theorem is a corrected version of Theorem 12, [5]. The proof differs
from that of Theorem 4 only in the following argument. We cannot assume a
priori that gy(z, X,) is (1 < w) no(t, X,)-measurable, because we have not
assumed that g, 1s continuous in the sense of (11). Nevertheless this measur-
ability follows from the fact that (€2, «) is a Blackwell space and from the
conclusion (b) to Theorem III, 17, [8].

Let us finish this section with the following two remarks.

1. In Section 4 we mentioned that, as a consequence of the strong law
of large numbers, domination on #  in general cannot be assumed. But, on
the other hand, it 1s the strong law of large numbers too which guarantees
the existence of a sufficient statistic X  for & (see [5]). Thus the assump-
tions of Theorems 3, 4 and 5 are not in contradiction with practical
situations.

2. In Definition 2 we took into account any kind of randomization in
generating the r.o. t. This is the essential reason why we cannot expect
(r, X,) to be minimal sufficient for %, as we can see in the following trivial
example. Let every .#, be equal to the c-algebra [@, Q!, te T, and suppose
that 7 is a nondegenerated random time whose distribution does not depend
on e @®. Finally assume X, =0, teT Then

— 1 1s an r.o. with respect to F.

— F,.=0(1)

— o(t,X,)=0(1).

But since {@, Q! is minimal sulficient for .#,, the o-algebra o(t, X,) is
not minimal sufficient.
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6. Generalization of a lemma of Sudakov

The theorems presented in Sections 4 and 5 enable us to formulate a well-
known lemma of Sudakov ([12]) under more general conditions. Suppose that
X =(X,),.r 1s the process and (7, X,) the mapping considered in Section 5.

LEMMA. Let all conditions of Theorem 4 including (11) be fulfilled, and
let T be a random size of observation. Denote by my the measure induced by the
mapping (t, X,) on the measurable space (S xE, B;,®&) given P,, 0c®
(i.e., my(B) = Py((t, X,)™'(B)), Be #5®&), and by m* the measure induced by
(r, X,) given P*.

Then we have for every 8e®

(i) my is absolutely continuous with respect to m*;

(1) the Radon—Nikodym derivative of mg with respect to m* is determined

by

d
ET%(t, x) = golt, x), teS, xekE.
m

Instead of the domination of 2 on every #,, t€S, in [12] it is assumed
that there exists a 0, @ such that for every €S the family {m,,; 6@} of
distributions induced by X, on (E, &) is dominated by m, ,. We could easily
show that this assumption together with the sufficiency of X, for %, implies
the domination of # on %, by Py | #,, teS. This means that our domi-
nation assumption (9) is not stronger than the corresponding one in [12]; it
is even weaker, because in (10) we did not suppose that the dominating
measure P* is a particular measure Py belonging to #. Our formulation of
the lemma differs from that in [12] further in the admission of arbitrary
random Sizes of observation instead of Markov times and in the considera-
tion of general processes X. Finally, we suppose neither that #, is equal
to o(Xs;s<1), teS, nor that Py(r=00)=0, 0c® (ie, we admit
me(S x E) < 1).

Proof of the lemma. For the sake of shortness we shall write o(7, X.)
instead of (1 < w)na(t, X,). According to Theorem 1, # is dominated on
Fecw by P*| F. .. Applying Theorem 2, we get

dP
dT’?‘l F e = 9ol1, X)), P*.as., 0.
(The right-hand side is understood to be defined on (r < w).)

As mentioned in the proof of Theorem 4 under condition (11) of that
theorem, the mapping g, i1s #s®d~&-measurable, and therefore gq(t, X,) is
o(z, X,)-measurable. Thus g,(r, X,) is a version of the Radon-Nikodym
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derivative of Py|a (1, X,) with respect to P*|a (7, X)), 1.e, for every Be B;® &
we have

Po(r, X0 '(B)) = | golz, X)aP*.

©.X)~ 1(B)

By the integral transformation formula (for instance [7], Lemma 3) we
get the desired equation, which concludes the proof,

mg(B) = [go(r, x)dm*. =
B
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