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Sums over primes are of great importance in the theory of numbers. Many
problems can be reduced to estimating sums of the following kind:

(1) 2 fp or Y Amf(n).
psx nsx
For instance the ternary Goldbach problem ([15], [16]) requires a non-
trivial bound for the sum

(2) Y etmer,

LES S

The Bombieri~A. 1. Vinogradov theorem ([14], [15]) depends on the be-
haviour of the sum

(3) YIY x)

r pSx

where the first sum runs over a certain collection of Dirichlet characters, and

analytic proofs of many problems ([1], [2], [3], [4], [9], [10], [11]) are
based on investigating some integrals

T
4 1Y p " g(ar.

-T p<x
In a large class of problems f(n) is an error term, i.e, it has the form
() f(n)=F(n—v(n)
where F(n) is a non-negative function and v(n} is its expected value ([1], [2],

[3], [4]. [7]. [8], [12], [13]). After expanding f(n) into Fourier-series, or

(7]
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using the orthogonality of characters, or the Perron formula, we arrive at a
sum over primes in the forms (2') or (3) or (4) respectively. Here
(2') Z e2mistp)
psx

with some smooth real function g(n) ([7], [12], [13], [15]).

It seemed desirable to find general methods for treating these sums. The
first method is due to I. M. Vinogradov ([16]), who developed it about 1937.

Nowadays we have some alternative methods to estimate a sum (1) but
all of them are based on the same idea. It is to relate the initial sum (1) to
bilinear forms

(6) B = ZZ am bnf(mn)

mn<x
m~M

where m ~ M indicates M < m < 2M. In fact, there are several ways to
estimate a sum like (6) and the resulting bounds usually hold for arbitrary
collections of complex numbers. We distinguish two types of such sums. In

the general case we speak about type II bilinear forms, and if the b,’s are 1
identically then we call the form type L.

2

Before showing methods to relate sum (1) to sum (6), we consider some
conditions that f(n) and M must satisfy in order to obtain non-trivial
bounds for B.

We have for type I bilinear forms
(7) 1BI< Y lagl| X f(mn)]

m~M n<x/m
and for type II bilinear forms

@ BE<(X laal®)( X [b)*)x

m~M n<x/M

(max Y |f (mn)? +max ) | Y fmm)f

m~M n<xim m~M nSxim
m #m n<xim'

'n)).

(The latter can be derived from the Cauchy-Schwartz inequality.) Of course
the deeper the method we apply the deeper the result we obtain — but the
general shape of the conditions on f(n) and M can be seen even in the case
of this fairly trivial treatment. For the sake of simplicity we assume that
|lf(m) <1, |a,| €1 and |b,| < 1. The trivial bound for B is |B| <€ x. For our
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purpose the innermost sums in (7) and (8) must be small, i, S (n) must have
an “oscillating” property:

©) |2 f(mn) <Y (y, m)

n<y

and a “quasi-orthogonal” property:

(10) | 2 S (mn) (' )| < Y (v, m, mv)

n<y
with some functions Y(y,m) and Y(y, m, m') having a smaller order of
magnitude than y. For example, if (9) and (10) hold with ¥ = »'/? uniformly
in m and m', then we get

|B| < (xM)!/? in case I,

11
(1) IB| <« xM™ 12434 MU4* i case II.

This shows that we can gain a factor of x if M is not too large (in case I)
and also not too small (in case II). This situation is typical. |
To sum up, we can hope for a non-trivial bound on B if

S (n) has an “oscillating” property, and
M is not too large, -

12 T {
13 1 /) has a “quasi-orthogonal® property, and
" | M is not too large and not too small.

The acceptable ranges of M in (12) and (13) are determined by the factor we
want to gain. As we can change the roles of the a,’s and b,’s in (8), the
restrictions on M are symmetric with respect to x'/2 (in case II). If £ (n) has
the above properties, then the desired bound can be obtained by ascertaining

(14) I: M <z,,
' I1; 2 < M <<Zz or X/Zz <<M <§X/Z]_,

where z, <z, < x and z, < x. In addition, we can assume that z, > x!/%,

Note that in the cases (3).and (4) f(n) has only “average oscillating” and
“average quasi-orthogonal” properties, but it is sufficient for our purposes, as
the reader can verify himself.

3

Here we show some methods to relate sum (1) to sum (6). Our survey covers
only the recently discovered methods, because they are not only stronger but
also remarkably simpler than the old ones.
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VAUGHANS IDENTITY ([12]-[15]). For the parameters 1 < u, v < x

(15 Y Amf =Y AnS()+) ) u(mlognf(mn)—

n<x n<v mnsx
msu
=Y anf(mm+ Y3 p(m)b,f(mn)
Ao s

where a,, and b, are some real coefficients satisfying |a,) < logm, |b,| < logn,

(This can be proved by investigating the equation

(16) —%=F—MC’—MFC+(%—M)(—C’—FC)

where F(s)= Y A(mn~" and M(s) = ) pu(mm™*)

LEY)) msu

The first term in (15) is essentially trivial, the second and third are of type 1
(because logn is as good as 1) and the last is of type II. It is an easy task to
check that the parameters u, v can be chosen in such a way that (14) holds for
all bilinear forms occurring in (15) iff

(17) z; € x!'72, (JC/Zz)2 £ Z3,
or
(18) XXX

2y Z3  Zy

If neither (17) nor (18} is satisfied, then there are some parts of the right-hand
side of (15) for which we -have no good upper bound. This limits the
usefulness of Vaughan’s method.

Heata-Brown's 1DeNTITY ([10]). For a parameter z > 1 and an integer J
satisfying

(19) 2z' = x
we have

(20) Z A(n) f(n)

nsx

J
= Z (—1)"—1('{) Z pu(my) ... p(m)logn, f(my ...m;ny ... ny).
i=1 Y

ml...mjnl...njs.x
ml$z ..... MI$Z
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(This can easily be proved by investigating the equation

@y Sa-my -2 2 1y ()
where M(s5) = ) u(mym=)

The innermost sum of the right-hand side of (20) is a multilinear form
which can be rewritten into bilinear forms of type I or type II. We may
subdivide the ranges of summation into intervals my ~ M, ...,n; ~N,.
When we divide the variables into two classes in order to arrive at a bilinear
form, we can take the sizes of M,, ..., N, into account. Thus identity (20) is
more flexible than identity (15), and, indeed, it is easy to find a special choice
of z;, ..., z3 for which neither (17) nor (18) is satisfied but all bilinear forms
made from (20) satisfy (14). This has some applications ([6], [10]). Note that
an iterated application of Vaughan’s identity leads to an identity similar to
but more complicated than (20) ([5]).

4

Now we turn to our main goal, namely to the introduction of the so-called
sieve identity method. This was developed by Harman ([8]), who extended
the original idea of Heath-Brown ([10])).

In a large class of applications f(n) has the form (5). If we can use
Vaughan's identity or Heath-Brown’s identity, then we get a result in the
form

(22) Y F(p)= ) v»(p+0(.)
psx pEx

with an acceptable error term. Usually the main term can be derived from
the Prime Number Theorem because v(n) is a smooth function. If in
transforming (1) into (6) we arrive at bilinear forms not satisfying (14), then
the above identities cannot be used. The main advantage of the sieve identity
method is that we may admit a few “bad” bilinear forms if they have only
non-negative coelficients. Omitting these terms, we can get a lower bound in
the form

(23) Y F(p» Y vo(p)+0(..)

pPEX psx

which is generally satisfactory ([3], [8], [10]).
We will assume in the sequel that

(24) Xz, < xjz, € xM*P €z <z, €23 <X,
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and that f (n) has the form (5), and we will use the following notation: p(n) is
the smallest prime factor of n (n>1), P(z)=[[ p and x(n, 2) is the

p<z

characteristic function of the numbers coprime to P(z), ie,

1 if (n, P) =1,
0 otherwise.

(25) x(n, 2) ={
We have the fundamental Buchstab identity
(26) Y an, gy =3 xn2)gm~ Y ¥ x(n pa(pn).

n€x n<x z’&p<z pn€x

(This can be proved by ordering the numbers according to their smallest
prime factor.) This is the basic identity in our method although we never use
it explicitly.

The last term on the right-hand side of (26) is almost a type II bilinear
form, but its coefficients are not entirely independent. However, this depen-
dence can be controlled and in fact we have the same bounds for the type II*
“bilinear” form

(27) B* =YY a,b,x(n, z(m) f (mn)

mn<x

m~M

that we had for (6) when f was in the form (5). An iterated application of
(26) yields sums

(28) Y Y. x(n,p)g(npy ... p)

2’€p,<..<p <z n<x/py..p,

and

(29) ) Y, x(nz)g(np; ... p).

2'€p,<..<py <z NS X/PL...By

Although Heath-Brown’s identity has similar flexibility, here all the coef-
ficients have the same sign. Thus we can omit the terms which cannot
be treated satisfactory. We will restate this argument in a more exact form.

LemMma 1 (Richert’s Fundamental Identity). Let h(d) and g(d) be arbitrary
functions with

(30) h(1) =1,
We define h(d) as
R(1) =0,

(3D H(d)=h(—d—)—h(d) d>1).

r(d)
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For any z 2 2 we have

(32) ) p@g@d= Y pdhdg@d+ ) p@@h@ Y. un@)g(ds).
d| P(z) d|P(z) d) P(z) 8| P(p(d))
Proof. d|P(z) and §|P(p(d)) imply that (d, ) = 1 and d&|P(z). Collecting
the terms t = dé for the second sum on the right-hand side we get

(33) Y u@dhd) ) pd)g@dd)= Y ptyg) Y  h@.

d|P(2) 8| P(p(d)) 1|P(z) 1=d4,5| P(p(d))

Let t = p;...p, where p; >... > p,. t = dé and 8|P(p(d)) are simultaneously
satisfied iff d = p,...p;, 1 £j<r. Using (30) and (31), we arrive at

(34) > E(d)=jz h(py...p,) = 1=h(t).
=1

6|'P=(p(d))
It is also true for t =1, and (33) coupled with (34) gives (32).

CoroLLARY 1. If a, =0 whenever {m, P(z)) > 1, then

(35) ZEamx n, 2)g(mn) = 3 Y3 a, u(d)g(mdn)+

MH\I Hldll\x
m~M m~M
d|P(z),d <y
+ Y3Y anz@x(n, p(d)g(mdn).
mm;:;(z)

dZy,d/p(d) <y

Proof. We apply Lemma 1 with

1 ifd<y
36 h(d) = ’
(36) (@) 0 otherwise,
and with
(37) G(d) = ) ), amg(mnd)

mn< x/d

m~M

in place of g(d). In this case we have

1 ifd>yand d/pd) <y,
0 otherwise.

(38) h(d) = {

(35) follows from (32), (36), (38) and the following form of the sieve of
Erathostenes:

(39) Y x(n =YY u(d)g(dn).
i

Collecting the factors md on the right-hand side of (35), we can see that
the first term is of type I and the second is of type II*. In our case ((5) and
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(24)) we conclude that

(40) XY an(n, 2) F(mn) = X3 apx (n, 2)0(mn) +O(...)
aaF <

with an acceptable error term, whenever M <z, and z < z,/z,. Indeed, this
follows directly if z; < M < z,. If M <z, we can utilize (35) because we can
choose y = z;/M, and thus in the first term md < 2z, (this is acceptable by
(14)) and in the second term z; < md < 2Myp(d) < 2Myz £ 2z, (this is also
acceptable by (14)).

We will use the following definitions:

DrerINITION 1. We say that a number d is bad whenever
(41) Z,/2 <d < x/z,, X[z <d<z or z;<d.

DeFiNTioN 2. D, is the set of integers d=p,...p,, x'?>p,
>...>p, > z,y/z;, and all divisors of d (except 1) are bad and
(42) P1---P21—1P%j~<~zz for j<[r/2].

Note that 1e€D,.

DeriNiTioN 3. Dy is the set of integers d = p,...p,, ¥ =1, x> p,
> ... > D, >2,/z,, d has a good divisor but d/p, has none, and (42) holds for

J< [(r—-1)/2].

DeriNiTION 4. D, is the set of integers d =p,...p,, r=1, x'2 > p,
> ...> Py, > Z,/71, all divisors of d (except 1) are bad, (42) holds for j < r—1,
and

(43) Pl"'er—lp%r>22'
Note that D, D, and D, are disjoint.

COROLLARY 2.

@9 ) x(n, x'")gm) =YY u(dx(n, z2/z,) gldn)+

nsx dn<x
dEDo
+Z<}: u(d)yx(n, p(@)g(dm+3.3 x(n, p(d))g(dn).
4ed; ns s

Proof. We apply Lemma 1 with

(45) hay =11 T d=dody, doeDq and d,|P(z,/2)),
0 otherwise,

and with

(46) Gd)= ), g(dn)

<x/d
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in place of g(d). We have

1 ifdeD,uD,,
0 otherwise.

(47) h(d) = {

The corollary follows directly from (32).
(44) is our main sieve identity. By writing g(n) = F(n) in (44) we get

(48) Z x(n, MY F(m) 233 p(d)x(n, 25/z,) F(dn)+

n<x dnsx
deDg

+Y. Y u(d)x (n, p(d)}F (dn).

dn<x
dEDI

In this step we omitted the “bad” bilinear forms (note that F(n) is non-
negative), 1.e., it is the crucial point of this method. As de D, implies d < z,
(see (42)) the first term can be handled by (40). If de D, then d has a good
divisor. After some technical difficulties ([3]) this good divisor can be
separated and the second sum can be rewritten into the form

(49) Y. 2. asb,x(n, p(d)) F (8n).

n<x
& good

(Note that a good divisor always contains the smallest prime factor of d.)
Good §’s satisfy (14), and so (49) is a good bilinear form in the sense we have
a non-trivial bound for

(50) 2.2 asb,x(n, p(d)f (6n),

on<x
& good

(48) and (50) give
(51) Z x(n, x'F(n) 2 3 u(d) x(n, z/z;)v(dn)+

n<x dnsx
dEDO

+Y Y u@x(n, pd)vidn)+0(..)

dn<x
deDq

with an acceptable error term., Again using (44) we arrive at our main result

(52) ) x(n,x""3)F(n) > Z x(n, x'Hom =YY x(n, p(d)v(dn)+0(..)

n<x nsx dn<x
deD 5

with an acceptable error term. By (25)

(53) Y xn, x)gmy= 3 g(p— Y g(p)+g(0).
nsx "P§< p-‘EJr”'2
By )
2 — Banach Center, t. 17 M,/
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(The last term appears when x'/? is prime.) Thus (52) implies (23) provided

(54) Y. Y x(n, p(d)v(dn) < (1-c) ), v(p)
dn<x psx
deDy

with some constant 0 <c¢ < 1. This is independent of the “unknown” func-
tion F(n). In general, it can be verified by the following way. For a fixed de D,
the sum over n's can be estimated by elementary sieve methods and in some
cases it can even be determined asymptotically. Provided that the bad
intervals in (41) are not too wide, D, is a small set. These principles give (54).

Note that the use of Vaughan's identity generally requires the disap-
pearance of the first two intervals in (41).

5

Finally we mention a few cases where the sieve identity method is more
efficient than the Vaughan’s identity.

THeoreM 1 (Harman [8]). For any irrational « there exist infinitely many
primes p with

(53) lapl] < p~31°.

THEOREM 2 (Balog [3]). For any 2/5<8<1 and ¢>0 there exist
infinitely many primes p with

(56) Pl < p==rzte

(The use of Vaughan's identity gives (55) with 1/4 in place of 3/10 ([137])
and (56) only for 1/2<8 <1 ([2]))
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