CONTENTS §1. Introduction...............................................................5 §2. Covariant extension of measures..............................6 §3. An invariant extension of Haar measure..................15 §4. Covariant extension of Lebesgue measure.............22 References....................................................................26
[1] Federer, Herbert, Geometric measure theory, Springer-Verlag, Berlin-Heidelberg-New York 1969.
[2] Halmos, Paul R, Measure theory. Van Nostrand Co, New York 1950.
[3] Hewitt, Edwin, and Kenneth A. Ross, Abstract harmonic analysis I, Springer-Verlag, Berlin-Gottingen-Heidelberg 1963.
[4] Hewitt, Edwin, and Kenneth A. Ross, Abstract harmonic analysis II, Springer-Verlag, Berlin-Heidelberg-New York 1970.
[5] Hewitt, Edwin, and Kenneth A. Ross, Extensions of Haar measure and of harmonic analysis for locally compact Abelian groups, Math. Ann. 160 (1965), pp. 171-195.
[6] Hulanicki, A, Compact Abelian groups and extensions of Haar measures, Diss. Math. 33 (1964), pp. 1-58.
[7] Hulanicki, A, Invariant extensions of the Lebesgue measure, Fund. Math. 51 (1962), pp. 111-115.
[8] Hulanicki, A, On subsets of full outer measure in products of measure spaces, Bull. Acad. Polon. Sci. 7 (1959), pp. 331-335.
[9] Itzkowitz, Gerald L, Extensions of Haar measure for compact connected Abelian groups, Bull. Amer. Math. Soc. 71 (1965), pp. 152-156.
[10] Kakutani, Shizuo, and John C. Oxtoby, Construction of a non-separable invariant extension of the Lebesgue measure space, Ann. of Math. (N.S.) (1950), pp. 580-590.
[11] Kodaira, Kunihiko, and Shizuo Kakutani, A non-separable translation invariant extension of the Lebesgue measure space, Ann. of Math. (N.S.) (1950), pp. 574-579.
[12] Tarski, A., Ideale in vollständingen Mengenkörper I. Fund. Math. 32 (1939), pp. 45-83.