Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Cover of the book
Tytuł książki

Translations of functions iv vector Hardy classes on the unit disk

Seria
Rozprawy Matematyczne tom/nr w serii: 359 wydano: 1996
Zawartość
Warianty tytułu
Abstrakty
EN
CONTENTS
   Introduction...................................................................................................5
0. Preliminaries................................................................................................7
1. Fundamental properties of harmonic vector functions...............................13
2. Hardy spaces of vector functions...............................................................15
   Relations between scalar and vector Hardy classes...................................15
   The factorization theorem for $H^p(𝔻,X)$...................................................19
   Nontangential limits of functions in $h^p(𝔻,X)$...........................................22
   Properties of functions in $h^p(𝕋,X)$..........................................................27
3. Spaces $h^p(𝔻,X)$ and $M_p(𝕋,X)$..........................................................29
4. The sets of translates of harmonic functions..............................................33
5. Translations of functions from Hardy classes..............................................37
6. Translations of functions from Smirnov classes...........................................41
7. Translations of measures from $M_p(G,X)$................................................43
8. A criterion of uncomplementability of $L^p(λ_G,X)$ in $M_p(G,X)$.............53
9. Pettis integrability of the translation function for vector measures...............64
   References...................................................................................................77
Miejsce publikacji
Warszawa
Copyright
Seria
Rozprawy Matematyczne tom/nr w serii: 359
Liczba stron
79
Liczba rozdzia³ów
Opis fizyczny
Dissertationes Mathematicae, Tom CCCLIX
Daty
wydano
1996
otrzymano
1995-07-13
poprawiono
1996-02-12
Twórcy
  • Faculty of Mathematics and Computer Sciences, A. Mickiewicz University, Matejki 48/49, 60-769 Poznań, Poland
Bibliografia
  • [Bl-1] O. Blasco, Boundary values of function in vector valued Hardy spaces and geometry of Banach spaces, J. Funct. Anal. 78 (1988), 346-364.
  • [Bl-2] O. Blasco, Boundary values of vector valued functions in Orlicz-Hardy classes, Arch. Math. (Basel) 49 (1987), 434-439.
  • [Bog] W. M. Bogdanowicz, Integral representations of linear continuous operators on $L^p$ spaces of Lebesgue-Bochner summable functions, Bull. Acad. Polon. Sci. 13 (1965), 801-808.
  • [Bou] J. Bourgain, Dunford-Pettis operators on L¹ and the Radon-Nikodym property, Israel J. Math. 37 (1980), 34-47.
  • [B-F-T] J. Bourgain, D. H. Fremlin and M. Talagrand, Pointwise compact set of Baire-measurable functions, Amer. J. Math. 100 (1978), 845-886.
  • [Bu-1] A. V. Bukhvalov, Hardy spaces of vector-valued functions, Zap. Nauchn. Sem. LOMI 65 (1976) 5-16 (in Russian).
  • [Bu-2] A. V. Bukhvalov, On the analytic Radon-Nikodym property, in: Function Spaces, Proc. Second Internat. Conf., Poznań 1989, Teubner-Texte zur Math. 120, Teubner, 1991, 211-228.
  • [B-D] A. V. Bukhvalov and A. A. Danilevich, Boundary properties of analytic functions with values in Banach spaces, Mat. Zametki 31 (1982), 203-214 (in Russian).
  • [Ca] V. Caselles, Characterization of weakly sequentially complete Banach lattices, Math. Z. 190 (1985), 379-385.
  • [Cha] S. D. Chatterji, Martingale convergence and the Radon-Nikodym theorem in Banach spaces, Math. Scand. 22 (1968), 21-41.
  • [Dah] M. Daher, Une remarque sur la propriété de Radon-Nikodym, C. R. Acad. Sci. Paris Sér. A 313 (1991), 269-271.
  • [Dan] A. A. Danilevich, Boundary properties of abstract analytic functions and their applications, Mat. Sb. 100 (1976), 507-533 (in Russian).
  • [D-U] J. Diestel and J. J. Uhl, Vector Measures, Math. Surveys 15, Amer. Math. Soc., Providence, R.I., 1977.
  • [D-D] P. Domański and L. Drewnowski, Uncomplementability of the spaces of norm continuous functions in some spaces of "weakly" continuous functions, Studia Math. 97 (1991), 245-251.
  • [Dr] L. Drewnowski, Nonseparability of the quotient space cabv(Σ,m;X)/L¹(m;X) for Banach spaces X without the Radon-Nikodym property, ibid. 104 (1993), 125-132.
  • [D-E] L. Drewnowski and G. Emmanuele, The problem of complementability for some spaces of vector measures of bounded variation with values in Banach spaces containing copies of c₀, ibid. 104 (1993), 111-123.
  • [E] G. Emmanuele, Some more Banach spaces for which complementability of spaces of Bochner integrable functions in spaces of vector measures occurs, preprint.
  • [Du] P. L. Duren, Theory of $H^p$-Spaces, Pure Appl. Math. 38, Academic Press, New York, 1970.
  • [D-S] N. Dunford and J. Schwartz, Linear Operators, Part 1, Interscience Publ., New York, 1958.
  • [F-T] D. H. Fremlin and M. Talagrand, A decomposition theorem for additive set-functions, with applications to Pettis integral and ergodic means, Math. Z. 168 (1979), 117-142.
  • [F-R] F. J. Freniche and L. R. Rodrí guez-Piazza, Linear projections from a space of measures onto its Bochner integrable subspace, preprint.
  • [Gam] T. Gamelin, Uniform Algebras, Prentice-Hall, Englewood Cliffs, N.J., 1969.
  • [Gar] J. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981.
  • [Gr-1] C. Grossetête, Sur certaines classes de fonctions harmoniques dans le disque à valeurs dans un espace vectoriel topologique localement convexe, C. R. Acad. Sci. Paris Sér. A 273 (1971), 1048-1051.
  • [Gr-2] C. Grossetête, Classes de Hardy et de Nevanlinna pour les fonctions holomorphes à valeurs vectorielles, ibid. 274 (1972), 251-253.
  • [Hal] P. R. Halmos, Measure Theory, Van Nostrand, New York, 1950.
  • [H-L] G. H. Hardy and J. E. Littlewood, Some properties of conjugate functions, J. Reine Angew. Math. 167 (1932), 405-423.
  • [He] M. Heins, Vector valued harmonic functions, in: Functions, Series, Operators, Vol. 1, Colloq. Math. Soc. János Bolyai 35, North-Holland, 1983, 621-632.
  • [H-R] F. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Vol. 1, Grundlehren Math. Wiss. 150, Springer, 1978.
  • [H-P] E. Hille and R. S. Phillips, Functional Analysis and Semi-Groups, Colloq. Publ. 31, Amer. Math. Soc., Providence, R.I., 1957.
  • [Ho] J. Hoffmann-Jοrgensen, Sums of independent Banach space valued random variables, Studia Math. 52 (1974), 159-186.
  • [I-M] A. Iwanik and J. Mioduszewski, Independence with respect to families of characters, Colloq. Math. 56 (1988), 383-392.
  • [K-P-R] N. J. Kalton, N. T. Peck and J. W. Roberts, An F-space Sampler, London Math. Soc. Lecture Note Ser. 89, Cambridge Univ. Press, 1984.
  • [Ko] P. Koosis, Introduction to Hₚ Spaces, London Math. Soc. Lecture Note Ser. 40, Cambridge Univ. Press, 1980.
  • [Kw] S. Kwapień, On Banach spaces containing c₀. A supplement to the paper by Hoffmann-Jοrgensen "Sums of independent Banach space valued random variables", Studia Math. 52 (1974), 187-188.
  • [L-S] J. Lindenstrauss and C. Stegall, Examples of separable spaces which do not contain l₁ and whose duals are nonseparable, ibid. 54 (1975), 81-105.
  • [M-1] K. Musiał, The weak Radon-Nikodym property in Banach spaces, ibid. 64 (1979), 151-173.
  • [M-2] K. Musiał, Topics in the theory of Pettis integration, Rend. I.M.U. Trieste 23 (1991), 177-262.
  • [Nam] I. Namioka, Neighborhoods of extreme points, Israel J. Math. 5 (1967), 145-152.
  • [Naw-1] M. Nawrocki, The Fréchet envelopes of vector-valued Smirnov classes, Studia Math. 94 (1989), 61-75.
  • [Naw-2] M. Nawrocki, Duals of vector-valued $H^p$-spaces for 0 < p < 1, Indag. Math. 2 (1991), 233-241.
  • [Pie] A. Pietsch, Operator Ideals, Deutscher Verlag Wiss., Berlin, 1978.
  • [Pis] G. Pisier, Une propriété de stabilité de la classe des espaces ne contenant pas l₁, C. R. Acad. Sci. Paris Sér. A 285 (1978), 747-749.
  • [Ri] W. J. Ricker, Characterization of Poisson integrals of vector valued functions and measures on the unit circle, Hokkaido Math. J. 16 (1987), 29-42.
  • [R-S] L. H. Riddle and E. Saab, On functions that are universally Pettis integrable, Illinois J. Math. 29 (1985), 509-531.
  • [Ros-1] H. P. Rosenthal, Projections onto translation-invariant subspaces of $L^p(G)$, Mem. Amer. Math. Soc. 63 (1966).
  • [Ros-2] H. P. Rosenthal, On factors of C([0,1]) with nonseparable dual, Israel J. Math. 13 (1972), 361-378.
  • [Ru-1] W. Rudin, Real and Complex Analysis, McGraw-Hill, New York, 1974.
  • [Ru-2] W. Rudin, Function Theory in the Unit Ball of ℂⁿ, Springer, Berlin, 1981.
  • [Ru-3] W. Rudin, Homomorphisms and translations in $L^∞(G)$, Adv. in Math. 16 (1975), 72-90.
  • [Sa] H. H. Schaefer, Banach Lattices and Positive Operators, Grundlehren Math. Wiss. 215, Springer, New York, 1974.
  • [Sw] L. Schwartz, Radon Measures on Arbitrary Topological Spaces and Cylindrical Measures, Oxford Univ. Press, 1973.
  • [Sin] I. Singer, Linear functionals on the space of continuous functions from a compact Hausdorff space into a Banach space, Rev. Math. Pures Appl. 3 (1957), 201-215 (in Russian).
  • [Ta-1] M. Talagrand, Pettis integral and measure theory, Mem. Amer. Math. Soc. 307 (1984).
  • [Ta-2] M. Talagrand, Convex hull of sets of measurable functions, Riemann measurable functions and measurability of translations, Ann. Inst. Fourier (Grenoble) 32 (1982), 39-69.
  • [W] P. Wojtaszczyk, Banach Spaces for Analysts, Cambridge Univ. Press, Cambridge, 1991.
Języki publikacji
EN
Uwagi
1991 Mathematics Subject Classification: Primary 46E40, 46E27, 46B20, 46B22, 46G10; Secondary 46B03, 28C10, 46J15, 32A35
Identyfikator YADDA
bwmeta1.element.zamlynska-1daf756d-fb23-4b44-833d-0876d0dbb61a
Identyfikatory
ISSN
0012-3862
Kolekcja
DML-PL
Zawartość książki

rozwiń roczniki

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.