Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Cover of the book
Tytuł książki

$L_{p,q}$ spaces

Autorzy
Seria
Rozprawy Matematyczne tom/nr w serii: 164 wydano: 1980
Zawartość
Warianty tytułu
Abstrakty
EN
CONTENTS

1. Introduction...................................................................................................... 5
2. Notation and basic terminology........................................................................... 7
3. Definition and basic properties of the $L_{p,q}$ spaces................................. 11
4. Integral representation of bounded linear functionals on $L_{p,q}(B)$........ 23
5. Examples in $L_{p,q}$ theory................................................................................ 31
6. Structure of the $L_{p,q}$ spaces......................................................................... 37
7. An application in group representation theory.................................................. 57
References.................................................................................................................. 67
Słowa kluczowe
Tematy
Miejsce publikacji
Warszawa
Copyright
Seria
Rozprawy Matematyczne tom/nr w serii: 164
Liczba stron
68
Liczba rozdzia³ów
Opis fizyczny
Dissertationes Mathematicae, Tom CLXIV
Daty
wydano
1980
Twórcy
autor
Bibliografia
  • [1] S. K. Berberian, Measure and integration, Macmillan, New York 1965.
  • [2] N. Bourbaki, Intégration, Chapitre 7 and 8, Hermann, Paris 1963.
  • [3] F. Bruhat, Sur les représentations induites des groupes de Lie, Bull. Soc. Math. France 84 (1956), pp. 97-205.
  • [4] M. M. Day, Some more uniformly convex spaces, Bull. Amer. Math. Soc. 47 (1941), pp. 504-507.
  • [5] N. Dinculeanu, Vector measures, Pergamon Press, New York 1967.
  • [6] E. Dubinsky, A. Pełczyński and H. P. Rosenthal, On Banach spaces X for which $Π_2(ℒ_∞, X) = B(ℒ_∞, X)$, Studia Math. 44 (1972), pp. 617-648.
  • [7] N. Dunford and J. Schwartz, Linear operators, Parts I and II, Interscience, New York 1958 and 1963.
  • [8] R. E. Edwards, Functional analysis, Holt, Rinehart and Winston, New York 1965.
  • [9] P. R. Halmos, On the set of values of a finite measure, Bull. Amer. Math. Soc. 53 (1947), pp. 138-141.
  • [10] P. R. Halmos, Measure theory, van Nostrand, New York 1950.
  • [11] E. Hewitt and K. Ross, Abstract harmonic analysis, Vol. I, Springer-Verlag, Berlin 1963.
  • [12] A. and C. Ionescu Tulcea, On the existence of a lifting commuting with the left translations of an arbitrary locally compact group, In Proceddings of the Fifth Berkeley Symposium, Vol. II, Part 1, University of California Press, Berkeley 1967, pp. 63-97.
  • [13] A. and C. Ionescu Tulcea, Topics in the theory of lifting, Springer-Verlag, New York 1969.
  • [14] J. L. Kelley, General topology, van Nostrand, New York 1955.
  • [15] A. Kleppner, Intertwining forms for summable induced representations, Trans. Amer. Math. Soc. 12 (1964), pp. 164-183.
  • [16] H. Krajlewić, Induced representations of locally compact groups on Banach spaces, Glasnik Mathematićki 4 (1969), pp. 183-195.
  • [17] J. Kupka, A new class of Banach spaces associated with a disintegrate measure, Dissertation, University of California, Berkeley 1970.
  • [18] J. Kupka, Radon-Nikodym theorems for vector valued measures, Trans. Amer. Math. Soc. 169 (1972), pp. 197-217.
  • [19] M. Loève, Probability theory, 3-rd ed., van Nostrand, New York 1963.
  • [20] G. Mackey, Induced representations of locally compact groups (I), Ann. Math. 55 (1952), pp. 101-139.
  • [21] D. Maharam, On homogeneous measure algebras, Proc. Nat. Acad. Sci. 28 (1942), pp. 108-111.
  • [22] J. Neveu, Mathematical foundations of the calculus of probability, Holden-Day, San Francisco 1965.
  • [23] B. J. Pettis, On integration in vector spaces, Trans. Amer. Math. Soc. 44 (1938), pp. 277-304.
  • [24] M. A. Rieffel, Induced Banach representations of Banach algebras and locally compact groups, J. Funct. Anal. 1 (1967), pp. 443-491.
  • [25] H. L. Royden, Beat analysis, 2-nd ed., Macmillan, New York 1968.
  • [26] L. Schwartz, Désintégration régulière d'une mesure par rapport à une famille de tribus, C. R. Acad. Sci. Paris Sér. A-B 266 (1968), pp. A424-A425.
  • [27] I. E. Segal, Equivalences of measure spaces, Amer. J. Math. 73 (1951),pp. 275-313.
  • [28] I. E. Segal, and R. A. Kunze, Integrals and operators, McGraw-Hill, New York 1968.
  • [29] J. J. Westman, Harmonic analysis on groupoids, Pacific J. Math. 27 (1968), pp. 621-632.
  • [30] H. Widom, Lectures on integral equations, van Nostrand, New York 1969.
  • [31] A. C. Zaanen, Linear analysis, Bibliotheca Mathematica, vol. II, P. Noordhoff, N. V., Groningen 1960.
Języki publikacji
EN
Uwagi
Identyfikator YADDA
bwmeta1.element.zamlynska-1bd55e8a-85d9-444a-8133-1bf149fa8a08
Identyfikatory
ISSN
0012-3862
ISBN
83-01-01100-9
Kolekcja
DML-PL
Zawartość książki

rozwiń roczniki

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.