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1. Introduction

The L, spaces constitute a traditional and well-known class of Banach
spaces which can be associated with an arbitrary measure. If this measure
is disintegrable (Definition 2.1), then we may form a more general class,
the L,, spaces, by computing the L, norms during the first stage of
the integration procedure, and then by computing the L, norm during
the second stage. To illustrate this more precisely, let f be a measurable
function on [0,1]x[0,1] which assumes values in a Banach space. If
1<p< o and 1< ¢g< o, define

gip g

g = | f ( f I (@ piPdy) o)

Then we have |fll,, = ilfl, by the Fubini theorem, and we note that an
analogous definition can be given when p or ¢ is infinite (see Definition
3.1). Expressions of this sort have occurred in the literature from time
to time ([6], p. 634 and p. 639; [7], p. 1174; (8], p. 66b; [29], p. 628; [30],
P. 2; and [31], pp. 177 £f.), but they do not seem to have received systematic
study in their own right. This paper presents a body of basic theory sur-
rounding these L,, norms and the resulting L, , spaces. It also gives
an indication of the potential usefulness of these spaces by pointing out
that certain well-known Banach spaces which have been considered in
connection with induced representations of locally compact groups turn
out to be subspaces of certain of the L, , spaces. The simple recognition
of this fact leads both to a clarification and to an extension of the current
theory of induced representations.

The exposition is organized in the following way. In Section 2 we
gather together the basic definitions, notation, and assumptions which
will be used without further comment throughout the remainder of the
paper. The only assumption which entails an essential (if mild) restriction
of generality is that the principal measure xz be decomposable. In Section
3 the L,, spaces are formally defined (Definitions 3.1 and 3.2), and
a number of miscellaneous properties are obtained. These include the
relationship between convergence in L, , norm and convergence in measure
(Proposition 3.11), the question of completeness (Theorem 3.12), the
question of the density of simple functions (Propositions 3.14 and 3.15),
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the containment relations among the L, spaces (Proposition 3.17), the
continuity properties of the map (p, ¢)—Ilfl,, when the function f is
fixed (Propositions 3.21 and 3.23, Corollary 3.24, and Proposition 3.25),
and the question of the uniform convexity of the L,, spaces (Thcorem
3.28). In Section 4 the standard integral representations for bounded
linear functionals on the L, spaces are generalized to the L,, setting.
Attention is focussed upon the specification of general conditions under
which the linear functional norm will equal the appropriate L, norm
(Proposition 4.3 and Theorem 4.5), and upon a characterization of the
circumstances under which a given linear functional will admit the stand-
ard integral representation (Theorem 4.9). As usual, the question of
the reflexivity of the L, , spaces can be decided in the light of these
results (Corollary 4.13). Section 5 is devoted entirely to examples. Their
primary purpose is to illustrate that the L,, analogue of an L, result
may require & more complicated proof, or that it may be more compli-
cated to state, or that it may simply be false. In the principal result of
Section 6 (Theorem 6.11), a natural relationship is established between
an arbitrary (o-finite) measure space (X, 8, ¢) — with which is associated
a o-algebra of locally S-measurable subsets of X — and a o-subring
8’ of the product o-ring S x 8, on which the measure u X z may be re-
garded as disintegrable with respect to u. (In fact, 8 itself looks locally
like a product o-ring.) This relationship between x on § and u x u on
8’ is sufficiently close that, whenever u is disintegrable, a natural relation-
ship will automatically exist between the given disintegration of x and
the standard disintegration of u x p with respect to x4 (Theorem 6.12).
This latter relationship is in turn sufficiently close as to ensure that all
of the corresponding L, , spaces are isometrically isomorphic (Proposition
6.13 and Theorem 6.14). We are thereby able to associate L, , spaces
with an arbitrary measure space which is equipped with a o-algebra of
locally measurable sets, and the section concludes with an informal
discussion of the circumstances under which these generalized L, , spaces
can be represented as spaces of (equivalence classes of) functions defined
on the original measure space. (We remark that one immediate conse-
quence of this representation theory is the fact that each L, , space
associated with the measure u may be isometrically embedded in the
corresponding L, , space associated with the measure u X pu (see also
Proposition 3.27). We require this fact in the proof of our uniform con-
vexity result (Theorem 3.28).) Finally, Section 7 is devoted to an appli-
cation of L, , theory to locally compact groups. If a closed subgroup
H of a locally compact group G is specified, then there exists a well-known
natural disintegration of (left) Haar measure u on G with respect to a suitably
chosen measure on the space of (left) cosets of H. The well-known can-
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onical representations of G on the L, spaces possess natural analogues
in the L, , spaces (Theorem 7.4), and it is precisely these representations,
when they are restricted to certain subspaces of the L , spaces, which
turn out to have been previously studied in connection with induced
representations of G. Our primary aim in Section 7 is to indicate how
this observation enables some simplification of the current theory of
induced representations to be made, and then to employ our L, , dual
space theory to sketch, without detailed proofs, a separate but parallel
theorv of induced representations in the dual space setting.

2. Notation and basic terminology

The purpose of this section is to review the principal definitions which
will concern us, to establish notation, and to set out certain basic as-
sumptions. These definitions, notation, and assumptions will be used
frequently, and without further comment, throughout the remainder
of the paper.

Let F and F be subsets of some fixed set X. Then by E° we shall
denote the complement of F (in X), by E —F we shall denote the relative
complement ENnF°, and by xr we shall denote the characteristic (or
indicator) function of the set E. The symbol & will denote the empty set.

Arrow symbols will be employed in the following ways: The symbol
Awill signify “increase to a limit,” and will occur in expressions such as
K, K. When K and the K, are sets, this expression will mean that

K, cK,<cK,c..., and that K = J K,; when K and the K, are

n=1
extended real numbers ([26],§3,p. 34),it willmean that K, < K, < K3 <. ey
and that K =1lim K,; when K and the K, are extended real valued

functions, it will mean that K,(z)t K (z) for all (or for specified) points
x in their common domain. In similar fashion the symbol | will signify
“decrease to a limit.” Aside from its appearance in the standard functional
notation f: X—Y, the symbol — will be used (in expressions such as
K,—~>K) to denote convergence of a sequence in a topological space;
when K and the K, are functions, the convergence will be pointwise
(i.e., at all or at specified points in their common domain) unless another
sort of convergence is indicated. The symbol — will be used to specify
the action of a function on a point in its domain. Thus, if f is a function,
we shall treat the expressions f and x+> f(z) as synonymous; however,
the latter expression will be used only when we do not wish to specify
a symbol to denote the function. When f is a one-to-one correspondence,
we shall write «» in place of —.
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The symbol B will be used throughout this paper to denote an
arbitrary real or complex Banach space, and we shall let |jb]] denote the
norm of an arbitrary element b € B. We shall use R to denote the real
numbers, and @ to denote the field of scalars associated with B. In
practice we shall treat the elements of @ as complex numbers; the
corresponding assertions for the case @ = R will always be obvious.

By a measure space we shall mean a friple (X, 8, u), where X is
a set, where 8 is a o-ring of subsets of X, and where x is a measure on
8, i.e., a countably additive set function, with domain §, which assumes
values in the closed infinite interval [0, oo]. A set K < X will be called
measurable if K €8, and locally measurable if KNE e S for all E e 8.
A measurable set K will be called null if u(K) = 0, and a locally meas-
urable set K will be called locally null if KNnE is null for all E e S.
A property which holds for all points in X except (possibly) for a null
set will be said to hold almost everywhere (a.e.), and a property which
holds except (possibly) for a locally null set will be said to hold locally
almost everywhere (l.a.e.). A function will be called simple if its range is
a finite set, and a simple function f: X ~B will be called measurable
if the set f~'({b}) is measurable for each non-zcro value b of f. An arbi-
trary function f: X —> B will be called measurable (resp. essentially meas-
urable) if it constitutes the a.e. (resp. l.a.e.) pointwise limit of a sequence
of simple measurable functions, and f will be called locally measurable
if fyr is measurable for all £ € 8. In the special case B = R, we shall
allow a locally measurable function to assume the values —oo and -+ oo.
The function f: X—B will be called null if f = 0 a.e., and locally null
if f =0 lLa.e. Finally, if 0 < p < oo, the expression | fll, will as usual
denote (f(f(@)IPdu(x))'® (cf. [25], p. 244), and the expression ||fl,, will
denote inf{a: |f(z)| < a l.a.e.} ([28], Definitions, p. 102).

When a measure is involved in the definition of a concept, we shall
fcel free to specify that measure in a natural way whenever we deal with
the concept. Thus expressions such as u-measurable, a.e. (u), and (||fll,, #)
will occur frequently. In fact we shall omit the reference to the measure
only when it is represented by the symbol u, or by no specified symbol.

We now present and discuss a key definition for this paper.

2.1. DErFINITION. Let (X, 8, 4) and (Y, T, ») be arbitrary measure
spaces. Then we shall say that (X, S, u) (or just u) is disintegrable with
respect to (¥, T, ») (or just ») if therc exists a function y: X— Y, and
if there exists a family {u,},. of measures on § such that

(2.1.1) for all I € T, the set » '(F) is a locally measurable subset of X;

(2.1.2) for all E €8, the function y + u,(F) is »-measurable; and
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(2.1.3) for all E € 8, and for all ¥ such that F € T, or such that F° e T,
we have u(Eny™'(F)) =F.[/‘u(E)d”(y)‘

The family {u,},.y will be called a disintegration of u with respect to
v, and the octuple (X, S, u, Y, T, », v, {u,},.y) Will be called a disinte-
grable measure space. m

It is clear from (2.1.2) that (2.1.1) and (2.1.3) are valid for an arbitrary
locally »-measurable set F, and, in particular, we have u(E) = f py(E)dv(y)
for all ¥ € §. Furthermore, an easy extension of this equality will give
J f(a: du(z) = f f f(@)du,(x)dv(y) for every (Bochner) integrable function

: X—B, and also for every non-negative measurable function f on X.

We now present a typical example of a disintegrable measure space.
The analysis of Section 6 will show that, in a certain sense, the examples
of this sort will exhaust all disintegrable measure spaces.

2.2. ExampPLE. Let (X, 8, ) and (Y, T,v) be two o-finite measure
spaces, let yy denote the canonical projection of ¥ x X onto Y (i.e.,
py(y,2) =y for all (y, ) e Y x X), and likewise let ¢y denote the can-
onical projection of ¥ x X onto X. Given yeY, define a measure g, on
the standard product o-ring T xS ([10], p. 140), by letting u,(F)
= y(sz (BEn({y} x X))) for all E € T x 8. Then it is raedily deduced from
the Fubini theorem that (¥ x X, T'x S, vx u, ¥, T, », vp, {4, },cy) consti-
tutes a disintegrable measure space, and we shall call these specific u, the
standard disintegration of v x u with respect to ». m

We have not seen Definition 2.1 elsewhere, although it clearly is
similar in spirit to ([26], Definition 0, p. A424). In particular, it would
have been more in keeping with previous lines of thought to have replaced
assumption (2.1.3) by the assumption that, for all y € Y, the measure
@, i8 concentrated on the fibre p~'({y}) (i.e., that we have p, (E) =0
whenever the set E € § is disjoint from ~'({y})). (Assumption (2.1.3),
which is slightly weaker, says in effect that, for F €S, the function
y+— u,(E) resembles a conditional expectation (Definition 6.4).) We have
two reasons for favoring Definition 2.1 as it stands. In the first place,
condition (2.1.3) will be sufficient for us (in Theorem 6.12) to represent
an arbitrary (o-finite) disintegrable measure by a product measure with
its standard disintegration, and this latter disintegration clearly does
satisfy the stronger condition. In the second place, examples abound
of disintegrations which satisfy precisely condition (2.1.3), and not (neces-
sarily) the stronger condition. In the most common setting for the con-
struction of disintegrations (see, for example, [5], Theorem 2, p. 408),
the measures u, are obtained with the aid of a lifting for the measure
v ([6], Definition 1, p. 199). Whereas an arbitrary lifting is sufficient to
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obtain condition (2.1.3), it appears that the stronger condition can only
be obtained by using a “strong” lifting ([5], Definition 3, p. 406). And
whereas an arbitrary lifting will always exist in this setting ([5], Theorem
1, p. 206 ; Proposition 41, p. 337), the existence of a stronglifting is presently
known only in special cases (see, for example, [13]).

For the remainder of this paper the disintegrable space (X, 8, 4, ¥,
T, v, vy, {u,},cy) Will be fixed, and we now list some mild assumptions
which we shall make about this space. These assumptions will not usually
receive mention in the statements of results, although they will be freely
used in proofs.

First, we shall assume that both (X, §, 4) and (¥, T, ») are o-finite
and complete. Neither of these assumptions entails an essential restriction
of generality, for we may always treat the sets which are not o-finite
a8 locally measurable, and we may always form the completion of any
measure space ([10], Theorem B, p. 53). (Moreover, such adjustments will
not essentially alter the conditions of Definition 2.1.)

Second, we shall assume that (X, S, ) is decomposable (see [18],
Definition 3.3, p. 200, and the discussion following, and in particular
see [18], Proposition 3.5, p. 201; cf. [25], Problem 39, p. 243; and [27],
Definition 3.1, p. 282). This assumption constitutes a genuine, if mild,
restriction of generality, and so we shall adopt the policy of commenting
informally, whenever we use it, upon circumstances under which it may
be relaxed.

We now review the definition of decomposability with a formulation
of that definition which will facilitate the comprehension of topics in
this paper (and in particular of Theorem 6.11 and Proposition 6.13).
Let us declare that a collection R < 8§ is disjoint (resp. essentially disjoint)
if the intersection of any pair of distinct members of R is empty (resp.
null). Then (X, S, ) (or just u) is decomposable if u is o-finite, and if we
may disjointize every essentially disjoint family E < 8, namely, if we
may assign to each set F € R a measurable set B’ < E such that £ —E’
is null, and such that the family R’ = {E’: E € R} is disjoint. (We shall
call R’ a disjointization of R.) In particular, by Zorn’s lemma, there exists
at least one maximal essentially disjoint family R < § which comprises
sets of strictly positive finite measure. Any disjointization of such a family
R will be called a decomposition for u. Since u is o-finite, it is clear from
[18], Proposition 3.5, p. 201, that this definition of decomposability does
indeed counstitute a reformulation of the more standard definition ({18],
Definition 3.3, p. 200).

The expression “f is supported on E” will mean “f(2#) = 0 whenever
x ¢ B”. The expression “1 < p, ¢ < oo” will always mean “1 < p < oo and
1< g< x"; it will never mean “1 < p and g < oo”. Similar expressions
are, of course, to be likewise interpreted.
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Finally, we shall habitually organize one or more ordinary para-
graphs into a “superparagraph.” Each superparagraph will begin with
an expression such as “2.1. DEFINITION.” or “3.12. THEOREM.”, and
it will end with the symbol m. In particular, this symbol m will always
signal the end of a proof.

3. Definition and basic properties of the L, , spaces

The following definition is fundamental to this paper.

3.1. DEFINITION. Recalling the disintegrable measure space (X, 8,
ty ¥, Ty vy v, {tt,}ycy), and recalling the Banach space B, we let
1<p, ¢ oo, and we let f: X—B be a measurable function. Then we
define the L, , norm, ||fll, ., of f by the formula

(3.1.1) Wflipa = (|y—fllps 2)]ay ¥) -

If f is locally measurable, we define

(3'12) “f“p,q = sup ”fxE”p,q’
EeS

and we let &, (X, 8, u, ¥, T, v, v, {#},cr, B) denote the collection of
those locally measurable functions f: X—B for which |f],, ., is finite. m

We postpone to Lemma 3.6 the proof that the function y ({|flle, £,)
is measurable whenever f is measurable, and hence that expression (3.1.1)
makes sense for all values of p and g¢.

It is clear that (3.1.2) coincides with (3.1.1) when f is measurable,
so that no ambiguity of notation will arise. We shall omit as many of
the symbols after &, , (and after L, , below) as can be omitted without
loss of clarity ; however, we shall omit the symbol B if and only if B = &.
The following facts are straightforward to verify.

(3.1.3) £,,.B) is a vector space.

(3.1.4)  |*]l,, determines a seminorm on %, (B).
(3.1.5)  |ifll,, =0 if and only if f = 0 La.e.

(3.1.6) If feZ,, (B), then there is a set E €8 which is such that
Wfll,,q = Ifxellp,,- Moreover, if p and q are finite, then f vanishes

l.a.e. outside of E, so that f is essentially measurable.

(3.1.7) If {f,}.%, is a sequence of functions in £, (B), then we have
Ifollp,,—0 if and only if ||f, xzl,, =0 for all B eS8.

3.2. DEFINITION. Adopting the notation of Definition 3.1, we let
L,,B) =L, (X,8 u Y, T, v, v, {tt,}yer, B) denote the collection of
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equivalence classes of the functions in £, (B) modulo locally null
functions. m

From (3.1.3)-(3.1.5) it is evident that L, (B) is a normed linear
space. We shall extend to this setting the abusive practice of treating
the elements of L, (B) as functions. From (3.1.6) we may and shall
always assume that, when p and ¢ are finite, an arbitrary function
feL,,(B) is measurable.

3.3. ExaMpPLE. Let » be counting measure on the set of natural
numbers {1,2,...}. Define I, ,(B) = L,,(vx» v B), and define I,,
= lp,4(P).

When p and g are finite, we may characterize 1, ,(B) a8 the collection

of doubly indexed sequences {b,,}m,-, of elements of B for which the
00

expression (2 ( 3 b II”)”"")"" is finite; we may characterize 1, (B)

=1 m=1
analogously when p = oo or g = co. The I,, spaces constitute the
obvious generalization of the familiar I, spaces. &

The bulk of this section will be devoted to the presentation of miscel-
laneous properties of the L, , spaces, including the most important:
completeness (Theorem 3.12).

It is clear from the two stage computation of a u integral (q.v.) that
L,,(B) = L,(B) when 1< p < oo. Our first set of lemmas will extend
this observation to the case p = oo, and they will simultaneously settle
the question of measurability which arises in the definition of the L, , norm.

3.4. Lemma (L, Monotone Convergence Theorem). Let {h,}o., be
a sequence of mon-negative locally measurable functions defined on an
arbitrary measure space, and assume that h,t h l.a.e. Then we have ||k, ||, 1kl
Proof. Since 0<h, <h,<...<h la.e, it follows that |h,l,
Ihollo < -+ < ||h]l. Therefore the limit ! = lim|A,|, exists and is

n

<
\
< ||h|l. But since we clearly have h <1 lLa.e., it follows that |A],.<<1. ®

3.5. LeMMA (L, Fatou’s Lemma). Let {h,}22, be a sequence of non-
negative locally measurable functions defined on an arbitrary measure space.
Then we have |liminfh, |, < liminf |k, [l.

n n

Proof. For each fixed =, it is clear that we have inf h, < h; < |yl
k>n
La.e. for all j > n, so that we obtain inf b, < inf ||k,), 1.2.e. From this
k>n k=2n
we obtain liminf A, < liminf |j2,|,, 1.a.e., and the result follows. m

n
The corresponding assertion, that limsup ||&,|l, < [[limsup &,|l, fails

n n
for the L norm, as does the dominated convergence theorem.
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3.6. LEMMA. Let f: X—>B be a measurable function. Then the map
Y= (Iflloy 14y) 18 v-measurable.

Proof. We shall assume initially that f is a non-negative simple

measurable function. Omitting the trivial case f =0, we let f = 3'¢; x5,
i=1

where E; = f~'({c;}) for each ¢, and where ¢, > ¢, > ... > ¢, > 0. Then

we have (Iflley #y) = Z,: 1w, (Y), V;fhlere F,={yeX: p,(B,)> 0}, and

where F;, = {ye ¥Y: u,(EB;) > 0}—(UF,) forj =2,3,...,n. Thus the
i=1

map ¥—(llfle, #,) i8 v-measurable, and this result extends to an arbitrary
non-negative measurable function f by the straightforward use of Lemma
3.4. Finally, we obtain the result for the general function f by observing
that ||fll.. equals the L, norm of the non-negative function ||f(-)|. m

3.7. LEmmA (L, Fubini Theorem). Let f: X—~B be a measurable
function. Then we have (|fllws #) = ([[y— Ulflleos #yN|oos )-

n
Proof. We shall begin, as in Lemma 3.6, by letting f = 3 ¢, x5,
=1 '

where E; =f"!({¢;})eS for each i, where u(E,) >0, and where
¢;>¢C>...>¢,>0. Then we clearly have (||fllo, #) = ¢,. Moreover,
since u(E,) = [, (B,)d»(y), it follows that theset F, = {y € ¥: u, (E,)> 0}
has strictly positive » measure, Since (||fll,, #,) = ¢, for all y € F,, the
desired equality follows. In the general case it suffices once again to
assume that f is non-negative, and in this case the result follows from
three applications of Lemma 3.4. m

3.8. ProPOSITION. Let f: X— B be a locally measurable function. Then
we have (fle = Iflloer 80 that Lg,e(B) = Ly(B).

Proof. If E €8, then we have |fxgle = lIf2zllm,o Py Lemma 3.7.

Now it is clear that we may compute [|g|l, = sup {lgxzll«, and so the result
follows. m EeS

Our next definition and set of lemmas will lead up to the proof that
the L, , spaces are complete.

3.9. DEFINITION. We shall say that a set eS8 has totally finite
measure if the function y—» u, (E) is essentially bounded (with respect to
v), and if the set {y € ¥: u,(E) > 0} has finite » measure. m

The sets of totally finite measure form a convenient collection of
“well behaved” sets on which the L, , analogues of certain L, properties
are more likely to remain valid (for example, see Proposition 3.11 and
Example 5.3; see also Examples 5.4 and 5.9). The following facts are
straightforward to verify.
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(3.9.1) If the set E eS8 has totally finite measure, then ypeL, .
(= L, (P)) for all values of p and gq.

(3.9.2) The collection of sets in 8§ which have totally finite measure
constitutes a u-ideal in § ([18], Definition 3.1, p. 199).

(3.9.3) Hence, given a set E € §, there exists an increasing sequence
of measurable sets of totally finite measure whose union is E.

We remark that (3.9.3) follows from (3.9.2) by [18], Proposition 3.2,
p. 199, or by a simple direct argument. The monotone convergence theorem
now implies that (3.1.2) will remain valid if the sets ¥ in that statement
are required to have totally finite measure; however, the same requirement
would invalidate both (3.1.6) and (3.1.7).

For the next lemma, and for many of the remaining results of this
section, the norm properties of |- [, , will not crucially come into play.
Thus we may and shall consider the expression [f],, of Definition 3.1
to be defined for arbitrary p, ¢ > 0. Although we shall refer to the set
L, ,(B) (with the obvious definition) in Proposition 3.17 below, we shall
treat L, ,(B) as a space only for p,¢> 1.

3.10. LEMMA. Let0 < p, q, 7, 8 < oo, and let E € 8 satisfy |xgl,q < oo.
Then, for every mumber ¢ > 0, there exists @ number 6> 0 such that we
have |xplly,q < € for every measurable set F' = E which satisfies ||ygll,, < 8.

Proof. In order to make use of the triangle inequality, we shall
assume initially that r, 8> 1. If the conclusion were false, then there
would exist a number &> 0, and, for each » =1,2,..., there would
exist a set F, < E such that |iyg I, , <277 but such that |yz ll,,> e

(-}
Let G, = U F;. Then we clearly have |y ll,,, = ¢ while application of
j=n

the triangle inequality and of the monotone convergence theorem gives
I2%allrs < > ”x,,.jll,., < 27", Now we see that @, | some set @, so that
j=n

Xa, } xg- The finiteness of |yzl,, and of e, llr,s permits the application
of the dominated convergence theorem, and we conclude that |yl ,
=limn;_rgﬂn,,,i = 0, whereas (similarly) |lxgl,,=>¢ In view of (3.1.5),

this is impossible.

When <1 or 8 <1, we find 7/,8" > 1 such that s/r = &'/r'. The
desired conclusion now follows from the identity |[xpl,., = "JCF":{:’v and
from the special case considered above. m

Remark. The foregoing proof has been derived from a standard
argument (e.g. [10], Theorem B, pp. 125-126).

3.11. ProPOSITION, Let 0 < p, q< oo, let {f,}n-, be a sequence of
B-valued measurable functions defined on X, and let f: X —> B be a measurable
Junetion.
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(3.11.1)  If f and the f, are supported on a set E € S of totally finite measure,
then the condition |f, —fll,,—0 implies that f,—f in p measure.

(3.11.2)  If p and q are finite, and if there exists a non-negative measurable
function b such that |||, , < oo, and such that ||f,(-)I<h a.e.
for each n, then the condition f,—f in u measure implies that

12— Fllp,a—0-

Remarks. We shall use the total finiteness assumption sparingly
in the proof of (3.11.1). In particular, when p and ¢ are finite, it will
suffice to assume that the set ¥ has finite measure. It is evident that this
result will remain valid if the condition f,—f (in L, , norm or in z measure)
is everywhere replaced by the condition that f, is Cauchy (or fundamental)
in the same sense. In fact we shall need the Cauchy version for the L,
completeness proof (Theorem 3.12).

Proof. To prove (3.11.1), we let a > 0 be fixed, and welet ¥, = {vr € X:
If,. (@) —f(z)| = a} for all ». Our aim is to show that u(F,)—0.

Let p and g be finite. Since ayy < [f.(:)—f(")l, we obtain |xz I,
< a '\f,—fllp.ey and so the insertion of the numbers 1,1, p, ¢ (in that
order) into Lemma 3.10 gives the result.

Let p = oo, and let ¢ be finite. Define M = (llyr p, (E)ll, ¥) < oo.
Then, for v-almost all ¥y € ¥, we have

ty(F) = (lxz sy ty) < @ (lfa—Ffllrs #)
< a_l ”y(E)(ufn_f"co’ .uy)
<

Mqa™! ("fn —f"oo’ Auy) .

If we now compute the L, norms of these functions, we obtain |y I,
< Ma '{if, —flloq, and so the insertion of the numbers 1,1, 1, g into
Lemma 3.10 gives the result.

Let p be finite, and let ¢ = oo. Let ¥ = {y e ¥: u,(F)> 0}, and
define N = »(F) < oo. Then from (2.1.3) and from the inequality u,(F,)
< a?(|lfy—fllpy #y)? we deduce that we have

p(F) = [ py(Fr)dv(y)
F

< a P (F) (ly= (1fa —Fllos #4)%]]c0s )
= a P(F)fp—fIPc0s

and so the result follows.

Finally, in view of Proposition 3.8, the case p = g = oo is both
trivial and well known.

To prove (3.11.2), we note that the standard arguments (e.g. [19],
Theorem C, pp. 126-126) will carry over to this setting with little more
than a change of notation. m
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Remark. Likewise, the well-known elaborations of (3.11.12) (see
[7], Theorem 6, p. 122; and [19], Theorem C, p. 163) possess readily
verifiable analogues in the L,, setting. m

3.12. THEOREM. Let 1 < p, ¢ < co. Then the space L, ,(B), equipped
with the L, , norm, is complete.

Remark. We shall use the decomposability of (X, 8, x) in the proof
below. However, this assumption is not necessary when all of the functions
involved are measurable, namely, when p and q are finite; nor is it neces-
sary when p = ¢q = oo.

Proof. Let {f,};°., be an L, , Cauchy sequence in L, ,(B). Our aim
is to find a function f e L, ,(B) such that ||f, —fi, ,—0.

We shall assume initially that the f, are supported on a set of totally
finite measure. By the Cauchy version of (3.11.1), we conclude that the
f. are Cauchy in g measure, and then from the Riesz—Weyl theorem we
obtain a subsequence {f, };~, which converges a.e. to some function f.
Now let » be fixed. Then, for y-almost all y € ¥, we have ||f,(-)—f,, (")l
= f. () —=F(C) a.e. (x,), and so we may apply Fatou’s lemma (including
Lemma 3.5 when p = co) to obtain (If, —fllp, f4) < Hminf (I, —fi,l» t4)

a.e. (v). The inequality is preserved if we compute the L, norm of each
of these functions, and a second application of Fatou’s lemma (or of Lemma

3.5) now gives |if,—flpq <liminf|f,—f, ll,,- From this inequality
k

it is clear that |f,—fl,,—~0, and hence that fe L, (B).

Next we let {X,}.., be a decomposition for x, and we momentarily
let @ € A be fixed. Then it follows from (3.9.3) that X, constitutes the
union of a sequence of pairwise disjoint measurable sets such that each
of these sets has totally finite measure. Hence we shall lose no generality
by supposing that X, itself has totally finite measure. Now the sequence
{faxx n-1 18 L, Cauchy, and so, by the special case considered above,
it will have an L, , limit f,. Let us now define f(x) = f,(z) if # € X, for
some a, and let us define f(x) = 0 otherwise. Then it is clear that f: X—B
is locally measurable, and it remains to verify that |f,—fl,,—~0. It
follows easily from the triangle inequality that ||(f,—f)xgl,,—0 when
E is the union of finitely many of the X,, and it follows easily from the
monotone convergence theorem (including Lemma 3.4) that the L, , norm
of an arbitrary function g € L, ,(B) constitutes the supremum of (|gxzl, .28
E ranges through the totality of such finite unions. Again let n be fixed.
Then, since we have |[(f,—f)%gllpg < Ifo—Fumlpa+ I(fm—F)2zlpq for
arbitrary m, we obtain |f,—fl,, < 8up ||f, —fmllp, in the supremum.

m=n

It is now clear that |f,—fll,,—~0, and hence also that fe L, (B). =
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If each of the functions f, above is measurable, then so also is f, and
we immediately obtain the following result.

3.13. CorOLLARY. Let 1 < p, q < oo. Then the collection of measurable
functions in L, ,(B) constitutes a closed subspace of L,,(B). m

Remark. Since the measure space (X, §, u) is decomposable, it is
well known (and easily deduced from [7], Theorem 6, p. 335) that the
collection of real valued locally measurable functions on X constitutes
a complete lattice ([7], p. 43), with respect to the ordering f < g l.a.e. This
ordering descends to the real L,, spaces, and all of its basic properties
([7], pp. 302-305), carry over from the L, to the L, , setting with identical
proofs. In particular, the real space L,  is a complete lattice with respect
to this ordering ([7], Theorems 22-23, p. 302). (Cf. [27].) m

In the results below we examine the circumstances under which
simple functions are dense.

3.14. PROPOSITION. Let 1 < p, ¢ < oo. Then the collectton of B-valued
simple measurable functions f such that f is supported on a set of totally
finite measure constitutes a dense subspace of L, ,(B).

Note. In particular, then, the collection of simple integrable functions
in L,,(B) is dense in L, (B).

Proof. Let fe L, (B), and let {f,},>, be a sequence of B-valued
simple measurable functions which converges pointwise to f. In view
of (3.9.3), we may ensure that each of the f, is supported on a set of totally
finite measure (so that f, € L, ,(B)), and we may also ensure that ||f,(-)ll
< 20f(¢)lf for all n. We then obtain |f,—fll,,—~0 from the dominated
convergence theorem. m

3.15. PrOPOSITION. Let 1< qg< oo, and let N be a positive integer.
Then the collection of simple functions in L ,(PV) is dense in L, ,(P").

Proof. In view of Proposition 3.8, we may assume that g is finite.
Moreover, it suffices to assume that ¥ = 1, as we may treat each coordinate
separately when N > 1. It also suffices to approximate an arbitrary
non-negative function in L, , by simple functions.

Therefore, let g € L, , be non-negative, and let » =1,2,... fze X
is such that k27" < g(z) < (k+1)2™" for some k =0,1,...,n2", define
gu(x) = k27", otherwise define g,(x) = 0. Then g, is simple, locally meas-
urable, and < g, so that g, € L, ,. To show that |g, —glle.,~>0, we let
E € § be fixed. Then the finiteness of ||gll,,, implies that of (llgxzlle, #y)
for v-almost all y € ¥, and we note that we have ([(g, — 9) %gller #y) < 27"
whenever n is > (I91xl ) #,). We also have (I(g, —9)tzlle) #y) < (192zlr 1)
foralln =1,2,...,and forally e Y, o we obtain [(g, — 9) xgllw,q—0

By
W
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from the dominated convergence theorem. Finally, since F is an arbitrary
member of §, we obtain (g, —gll,,,—0 from (3.1.7). m

If the function g above is measurable, then so also is each of the
d., and we immediately obtain the following result.

3.16. COROLLARY. Let 1 < q< oo, and let N be a positive inleger.
Then the collection of simple measurable functions in L, (PV) is dense
in the space of measurable functions in L, (V). ®

In the next series of results, we shall examine the containment relations
among the L, , spaces, and, along with these, we shall examine the map
(Py ©)—fllpq, where f: X—>B is a fixed locally measurable function.

The norm properties of |- ||, , will not be required, and so we recall the
remarks which were made prior to Lemma 3.10.

3.17. PROPOSITION. Let 0 < p, ¢ < oo, and assume both that the set
X 8 measurable, and that X has totally finite measure. Then we have
L,,B) < L, ,(B) whenever r and & simultaneously satisfy p <r < oo and
(<8< oo,

Proof. It clearly suffices to verify that L, (B) < L,,(B), and that
L, ,(B) < L, ,(B). These containments follow easily from [6], Proposition
22, p. 239 (and its obvious generalization to the case p <l or g<1). m

3.18. DEFINITION. If f: X— B is a locally measurable funection, then
we shall let D, denote the set {(p, q) € (0, c0]x (0, co]: [filpq < o} W

We shall endow the set D, with the relativization of the standard
product topology on (0, o] Xx (0, oo].

In general, if the measurable function f: X—B is supported on
a set of totally finite measure, then Proposition 3.17 asserts that D, will
have the “box-like” property that: If (p, q) € D,, then (0, ] x (0, ¢] < Dy.
In particular, we may conclude that D, is arcwise connected. This weaker
fact remains valid when f is not supported on a set of totally finite measure,
and its proof will be clear from the following result.

3.19. ProPOSITION. Let f: X—B be a locally measurable function,
let 0<p,,qy P2y gy < 00, and let p, <p<p,. Under the convention
1/o0 =0, let 0 <2< 1 be such that 1/p = A/p,+ (1 —2)/p,. Then we have
Ifllp,q < Ufllp 0, I lipyy» where q is defined by the identity 1/qg = Alq,+
+(1—-4)/q,.

Proof. In view of (3.1.2), we may assume that f is measurable. We
then obtain the inequality (||fll,, pty) < (Ifilp,s #,)* (Ifllpys #2,)' ™" from the
standard application of Hoélder’s inequality ([5], p. 237). With note of the

fact that Agq/q,+(1—2)g/g, = 1, we apply Holder’s inequality a second
time to obtain

J Ul 2@ @) < [ [ (W1, )@ @] [ (1lpys )% ()]0~
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when ¢, q,, and ¢, are finite, and an analogous inequality otherwise.
The result follows. m

It is important to note that the set of pairs (p, g) which satisfy the
conditions of Proposition 3.19 constitutes a Jordan (or simple) arc in
the extended plane [— oo, 00] X[ —oc0, oo]. Hence the following result
is immediate.

3.20. CorOLLARY. Let f: X— B be a locally measurable function. Then
the set D, is arcwise connected. m

In the three propositions below we investigate the continuity prop-
erties of the map (p, q)— ||fll, , for the fixed locally measurable function
f: X—B. The first of these will suggest the precise nature of the are
in D, which will always connect two given points of D,.

3.21. PropPOSITION. Let f: X—>B be a locally measurable function,
and let A be any of the following sets:

(3.21.1) @ wertical line x = a, or a horizontal line y =b (where
0<a, b )

(3.21.2) a line y = cx (where 0 < ¢ < o0); or

(3.21.3) a  hyperbola of the form (z—a)(y—Db) = ab (where
0 < laf, [b] < o0).

Then the map (P, @) ||fll,., t8 continuous on the set AnD,.

Note. We intend to include the “infinite end points” of 4 as part
of 4. Thus we consider the point (a, c0) to be part of the hyperbola
(x —a)(y—b) = ab, we consider the point (oo, o0) to be part of the line
y = ¢z, and so forth.

Proof. It is clear that the expression log/||fll, ,, where (p, ¢) € AN D,,
may be regarded either as a function of 1/p or of 1/q. (We preserve the
convention that 1/co = 0.) The fact that this function is convex (and
hence continuous ([26], pp. 108-110)) is obtained from Proposition
3.19 after a brief analysis of the set 4. The result follows. m

The remaining continuity properties of the map (p, ¢)— Ifl, , essen-
tially constitute corollaries of this result and of the following lemma.

3.22, LevMmA. Let f: X—>B be a locally measurable function, let
0<p, g, <00 form =1,2,...,let p,—>p >0, and let q,—>q > 0. Then
Ifllp,e < liminf jIfl, o .

]

Proof. We shall assume for notational purposes that p and ¢ are
finite, and also that ||f]l,, is finite. Given ¢ > 0, we first approximate
f (via the monotone convergence theorem) by a simple measurable function
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h such that 0 < h(2) < [|f(z)| for all z € X, and such that ||f|f,, < k], +
+¢/4. Let b = ET ¢; Xk, Where the sets E; € § are pairwise disjoint. We

=1
next approximate each function y— u,(¥;) by a simple »-measurable
function A; such that 0 <h(y) < pu,(B;,) for all ye¥, and such

that ki, < ([ (X ePhi(y) " dv(y))"*+e/4. Let B, = 2 dytr, for all
t=1 =

t =1,2,...,n, where the sets F,eT are pairwise disjoint. We may
assume that the ¢;, the d,, and the »(F;) are all finite, so that, following
routine algebraic manipulations, we obtain

Ifllpe < (2’" [( anf’?dﬁ)lm ]qv(Fj))l/q‘i'e/z

i=1

(3.22.1) < (Zm‘ L( j‘o{?dﬁ )‘”’ — 5]“v(F,))""+3e/4,
=1 i=1

(3.22.2) < (Zm‘ I chfd,., ) — 8 ]%» (7)) )wk+e,
f=1 " {=1

(3.22.3) < (Zm‘ -(ZnO‘Pkdij)llpk]qu(Fj))llqk_l_e
j=1 " i=1

< Wbl g, + ¢
< "f”pk,qk + 6’

where 6 > 0 is chosen sufficiently small that (3.22.1) is valid, and where
k is then chosen sufficiently large that first (3.22.2) and then (3.22.3)
become valid. Since ¢ is arbitrary, the result follows.

The proofs of the remaining special cases of this lemma require little
more than suitable changes of notation in the preceding proof as we
have presented it. As usual, Lemma 3.4 must replace the monotone
convergence theorem when the L norm is involved. m

3.23. ProposITION. Let f: X—>B be a locally measurable function.
Then the map t,(p, q) = Ifllp,q 28 continuous on the set A = int(D,)v Dy,
where int(D,) denotes the (topological) interior of D,, and where D; denotes
the complement of D, in the set (0, oo]x (0, oo].

Proof. Let 0<p,q< oco. If ||f],, = oo, then the continuity of
7, on A at the point (p, ¢) follows at once from Lemma 3.22. It therefore
remains to establish this fact when (p, ¢) lies interior to D,.

We shall assume initially that p and ¢ are finite. Given ¢ > 0, we
use the continuity of 7, along horizontal and vertical lines in D, (Prop-
osition 3.21) to enclose the point (p, ¢) in the interior of a rectangle
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R = [ry, r,] X[8;, 8,] = D,in such a way that we have ||ﬂ|,.1._,j <1+ 9, .
for each ¢,j =1,2. If (r, 8) € R, then two applications of Proposition
3.19 will esta.bllsh the existence of numbers 0 < A4; <1 (whered,j =1, 2)

such that 2 2; =1, and such that |If], , < n I j[l,“J It therefore follows

=1 1,5=1
that [fll, , < (14 ¢)llfl,,.- As eis arbitrary, this inequality, in conjunction
with Lemma 3.22, completes the proof that z, is continuous at (p, q)
([25], Problem 14, p. 37).
When p = oo or ¢ = oo, the proof is conceptually identical, except
for the fact that the point (p, q) will lie on an “edge” of the appropriate
rectangle K. m

3.24. CoroLLARY. Let f: X—>B be a measurable function which 18
essentially bounded and which is supported on a set of totally finite measure.
Then the map (p, q)— |fll,,q i8 continuous on (0, co] X (0, co]. m

As an informal corollary to Propositions 3.12 and 3.23, we remark
that the behavior of the map (p, ¢)— ||fl, , along that portion of each
arc (3.21.1)—(3.21.3) which lies in (0, oo] X (0, oc] is analogous in every
respect to the behavior of the standard map p— |fll, along the axis
(0, oo].

The intuitively clear terminology of the next proposition will be
explained precisely during the proof of that result.

3.25. PROPOSITION. Let f: X—>B be a measurable function which is
supported on a set of totally finite measure. Then the map v,(p, q¢) = ||fllp,q 8
continuous from the lower left on (0, 00] X (0, oo], and it is also continuous
from the upper right on D,.

Proof. Let {(p,, 9,)}>-. be a sequence in (0, co] X (0, oo}, and let
(P, 9) € (0, o] x (0, oo].

To prove the first assertion, we must show that if p,}p and ¢,1g¢,
then ||fll,, o, | fllp,q- By Proposition 3.23, we may assume that (p, q) € D,
and we ghall also assume initially that p and ¢ are finite. In view of Prop-
ositions 3.17 and 3.21, the map 7, will be continuous at (p, q¢) along the
line segments which join (p, q) to the points (0, q), (0,0), and (p, 0).
Therefore, given > 0, we may determine a closed rectangle R < D,
(cf. Proposition 3.23) such that (p, q) constitutes the upper right-hand
corner of R, and such that |f|l,,< (1-+¢)|fll,, for each of the three
remaining corners (r, 8) of R. The proof now proceeds exactly as in
Proposition 3.23.

When p = oo or ¢ = oo, the proof is conceptually identical, except
that the “line segment which joins (p, g) to (0, 0)” must be replaced by
a suitable arc which can be well defined in this setting. When p =
and ¢ is finite, any hyperbola of the form (x—a)(y—q) = aq, whero
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a < 0, will suffice; when p is finite and ¢ = oo, any hyperbola of the
form (z—p)(y —b) = pb, where b < 0, will suffice; and when p = ¢ = oo,
any straight line through the origin will suffice.

To prove the second assertion, we must show that if (p, ¢) and the
(Pn) ¢,) are all € Dy, and if p.|p and g,| g, then (|fi,, o —Ifl, .. However,
this is an immediate consequence of Propositions 3.17, 3.21, and 3.23. m

It should be emphasized that the technique of Propositions 3.23 and
3.25 is as important as the results themselves, for it enables questions
of joint continuity of the map 7, to be reduced to questions of one-dimen-
sional continuity along suitable arcs, and not necesarily just the
arcs which were specified in Proposition 3.21. For example, it is a straight-
forward consequence of Proposition 3.21 that, when f: X—»B is locally
measurable, the topological boundary of D, in (0, co] X (0, co] may be
parametrized as a Jordan arc in some neighbourhood of an arbitrary
boundary point (p, ¢). (We are excluding the degenerate case D, = {(p, ¢)}.)
As a result, the technique of Proposition 3.23 may be used to show that
7, is continuous on D, at a boundary point (p, q) € D, if and only if it
is continuous along the boundary of D, at (p, ¢). (The details of the
proofs of these assertions are somewhat tedious, owing to the proliferation
of special cases.) The suggestion clearly emerges that if this technique
cannot be employed to establish the continuity of z, on some subset of
D,, then v, will probably not be continuous on that subset, as can indeed
be the case, even when the function f is supported on a set of totally
finite measure (see Example 5.9).

3.26. ProBLEM. Characterize the circumstances under which the
map r, would be continuous on D, at some boundary point (p, q) € D,;. =

The final result of this section (Theorem 3.28) treats the question
of the uniform convexity of the L,, spaces. We have been unable to
find an elementary (or at least a more direct) proof of Theorem 3.28;
instead, we shall use a major representation theorem from Section 6 in
conjunction with the following result.

3.27. PROPOSITION (). Let (X, 8, ) and (X, T, ») be arbitrary o-finite
measure spaces, and let 1 < p,q < oo. Then the space L, ,(v X pu, B) is
isometrically isomorphic to the space L,(v, L,(u, B)).

Remark. With straightforward changes to the proof below, this
result may be extended to the case where p or ¢ is infinite, provided that
attention is entirely restricted to measurable functions. Example 5.2
essentially illustrates the pitfalls of further generalization.

Proof. Given a function f e L, ,(» X 4, B) and & point y € ¥, define

(!) We are grateful to Mr. Ian Inglis for suggesting this result to us.



3. Definition and basic properties 23

U(f)(y): z—f(y, ). Then it is clear that U (f)(y) constitutes a well defined
element of L,(u, B) for almost all y € ¥, and that the map U consti-
tutes an isometric embedding of L, ,(» X g, B) into L (v, L,(u, B)). That
U maps onto all of L, (v, L,(z, B)) is also clear if we note that a simple
function F e L,(v, L,(u, B)) constitutes the image of a (not necessarily
simple) function fe L, ,(v X , B). Then, given an arbitrary element F
of L,{v, L,(u, B)), we let {F,}7., be a sequence of simple functions in
L, (v, L,(u, B)) which converges to F' in L, norm. If F, = U(f,) for each
n, then the f, comprise a Cauchy sequence in L, ,(» X x4, B), and it follows
from the completeness of this space that they converge to a limit
fe€ L, (v X u, B). Clearly we have F = U (f),and so the proof is complete. m

3.28. THEOREM. Let 1 < p, g < oo, and assume that the Banach space
B is uniformly convex. Then so also i3 the space L, ,(B).

Proof. It follows from Theorem 6.14 and Proposition 3.27 that
L, ,(B) is isometrically isomorphic to a subspace of L (u, L,(u, B)).
Therefore it suffices to show that this latter space is uniformly convex.

However, this follows at once from two applications of [4], Theorem 2,
p. 504. m

It is clear from Proposition 3.27 (including its extension to infinite
values of p and ¢) that the space L, ,(B) need not be uniformly convex
in the absencc of any one of the hypotheses of Theorem 3.28.

4. Integral representation of
bounded linear functionals on L, (B)

The structure of the dual spaces of the L, , spaces is entirely analogous
to that of the duals of the L, spaces. Consequently our attention within
this section will be devoted principally (1) to equating the appropriate
linear functional and L, , norms, and (2) to characterizing when a linear
functional admits the standard integral representation. This latter ques-
tion arises in the L, setting only for the case of L,(B), and seems not
to have been treated.

In the next paragraph we set out the notation which will be adopted
within this section.

4.1. NOTATIONAL CONVENTIONS. If 1 < p < oo, we shall let p’ denote
the unique number which is conjugate to p. (Thus, under the convention
1/c0o =0, we have 1/p+1/p’ =1.) If V is a normed linear space, we
shall let V* denote the space of linear functionals on ¥, and we shall
let ¥* denote the dual space of V. Given » € V, and given »* € V*, we
shall write (v, v*) in place of v*(v) whenever the former notation is more
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convenient. Without ambiguity we shall denote all linear functional norms
by the same symbol |- which is used for the norm in B. Finally, if
1<p,qg< oo, weshalllet I,, = {FeS8: yzeL,,} That I, , constitutes
a u-ideal in S ([18], Definition 3.1, p. 199), is clear from (3.1.4), from (3.9.1),
and from (3.9.2). m

We now recall precisely the sort of integral representation which
we wish to obtain for certain linear functionals on the L, , spaces. Let
1<p,q< oo,let feL,,(B),let g: X—>B" be a locally weak* measurable
function (i.e., the function x—<b, g(z)> is locally measurable for all b € B),
and assume that |lg(*)ll € L, o . Then it is readily verified that the function
o {f(z), g(z)) is locally measurable; moreover, from (3.1.2) and from
two applications of Holder’'s inequality we deduce the inequality
<A1 9() Dt < gl g 1fllp,o» Where figlly. ¢ = || g ()]l {|¢-- It follows that the
function z—{f(z), g(z)) is essentially measurable, so that we may define
a (finite) u-integral for this function without essential alteration to the
standard procedure (e.g [256], §3, pp. 225 ff.; cf. [28], Definition, p. 91).
Moreover, all of the basic properties of the standard u-integral remain
valid for this extended u-integral, with the important exception that,
in general, the disintegration of x may not be used to compute it (see
Example 5.2). Therefore, in spite of this limitation, it is clear that the
expression G(f) = [{f(z), g(=))du(x) determines an element G € L, ,(B)*
in the whose linear functional norm (@] is < ligll, ¢ -

We may now state more precisely the two questions which will
concern us in this section: (1) When do we have ||G| = lgl,,? and
(2) Given G € L, ,(B)*, when can we find a function g to represent G
in the manner which was indicated above?

For the first of these questions we shall initially consider the case
B = ¢. For this case the function g is P-valued and locally measurable,
and the expression {f(x), g(x)) reduces to the simple product f(z)g(x).

4.2. LEMMA. Let ¢: Y—>D be a (locally) v-measurable function and
let f: X—B be a u-measurable function. Then, for v-almost all y € ¥, we
have either that [@(y(x)) f(z)du, (@) = @(y) [ f(x)du,(x), or that both integrals
fail to exist. We also have (90 ¥)flws #ty) = 199 (Ifllesy 2y) G-. ().

Proof. Let ¢ = gy, where F T, and let f = by, where b e B,
and where F € 8. Then it is readily deduced from assumption (2.1.3)
that we have Jp,,(Enw“(F)) dv(y) = [ p,(B)xp(y)dr(y) for all GeT,

G

so that u, (Eny™Y(F)) = p,(E)xr(y) a.e. (v). Since we have ¢(y(z))f(z)
= bxgny-1m () in this case, the desired equalities follow. By considering
simple functions, and then by using the convergence theorems in the
standard manner (in particular, as in Lemma 3.6), we may extend the
result to arbitrary f for fixed ¢ = x5, and thence to arbitrary ¢. m
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4.3. PROPOSITION. Let 1 < p, ¢ < o0, let g € L, ., and define the linear
functional G e Ly, , by the identity G(f) = ffgdu for all feL,, (where
the nature of this (extended) u-integral was discussed above). Then we have
1G] = llglly,q -

Proof. It remains to show that ||@|| > |igll,-,o- By (3.1.2) we may and
shall assume throughout this proof that ¢ is measurable, and not just
locally measurable. We shall also maintain the convention 1/oc =0
throughout.

Let 1 < p, ¢ < oo. Eliminating the trivial case |igfl,- o = 0, we define
a function f: X—>@ by the formula

fla) = ig@)F"™® (g(2) /19 (@)]) ([1g(0)I Bty () gl %R,

where g(z) denotes the complex conjugate of g(z), where A = —(1/p’) +
+(q'/qp’), and where x € X is such that this formula makes sense, i.e.,
specifies a well defined scalar. For other x € X, we define f(z) = 0. Then,
in the light of Lemma 4.2, it is routinely verified that |fi,, =1, and
that [ fodu = lglly,q-

Let 1 <p< o, and let ¢ = 1. Given ¢ > 0, we deduce from the
o-finiteness of » that there exists a set #' € T such that 0 < »(#) < o0,

and such that we have (llgll,, #,) = 9l o —€ for all y e F. We now
define

f(@) = 19(@)*" (g(2)/1g(@)]) ( [ 19(0)[" Bppyiz) (0)) =75 (F) " 15 (p())

when this expression makes sense, and we define f(x) = 0 otherwise.
Again it is straightforward to check that |f],, =1, and that [fgdu
= liglly, .o — & Since ¢ is arbitrary, the desired inequality follows.

Let p =1, and let 1 < ¢ < oo. By (3.9.3) we may assume that g is
supported on a set of totally finite measure (Definition 3.9), and by
Proposition 3.16 we may assume that g is simple. Hence, if we define the
set F ={weX: 0<|g(@)l = (|glloy Hyz)} We see that F has totally
finite measure, and (what is most important) we see that u,(F)> 0
whenever (||g/l., #,) > 0. Eliminating the trivial case ||g|l,, = 0, We now
define

F@) = pyi)(B)7" 2p(2)(g (2)/19()1) (lglloos Pz lglIT?

when this expression makes sense, and we define f(z) = 0 otherwise.
The identities ||ff,, =1 and [fgdu = |igll, , aTe routine as usual.

Finally, in view of Proposition 3.8, the case p = ¢ = 1 is well known,
and it is also trivial ([28], Corollary 6.1.1, p. 156). m

4.4. DEFINITION. Let 1< p, ¢ < oo, and let @ € L, ,(B)*. Then the
set function determined by @ is the function mgy: I, ,—~B* which is defined
by the identity <b,mg(H)) = @(byg) for all b e B, and for all Eel,,.
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We shall say that & is couniably additive if mg is weak®* countably additive
(i.e., if the function Ew—{b, mz(E)> is countably additive for all
beB).=m

We shall write m in place of m; whenever clarity will not be sacrificed.
From inequalities which are similar to (4.5.5)—(4.5.7) below, we may
readily deduce that Im|(E) < |G|lxgl,, , for all E €I, ,, where |m| denotes
the (total) variation of m ([6], p. 32). Note also tha.t if g represents G in
the manner described earlier, then m will constitute the (weak*) indefinite
integral of g with respect to u on I,, ([18], pp. 198-199).

4.5. THEOREM. Let 1 < p, ¢ < oo, and let g: X—B* be a locally weak*
measurable function which i3 such that |g(-)| 28 locally measurable, and
which 18 such that the function mr—-( f(z), g(x)) is integrable (possibly in the
extended sense (q.v.)) for all f e L, ,(B). Define G(f) = f(f(a:), g(z))du(x)
for all feL, (B), and let m be the set function determined by @.
If we may now assume that we have

(4.5.1) [m|(E) = fllg(w)lldp(:c) for every set E in a dense subset of
E

I,, ([18], Definition 3.1, p. 199),
then we may conclude that

(4.5.2) 161 = llglly,y < o

Proof. We shall assume initially that |ig(-)fl € L,  ,. Under this
assumption the dominated convergence theorem may be applied to yield
the countable additivity of G. The countable additivity of |m| now follows
from [18], Lemma 4.6, p. 203, so that, from (4.5.1) and from [18], Prop-
osition 3.2, p. 199, we obtain the equality |m|(E) = [ |lg(=)|du(x) for
all Eel,,. E

Since we have noted the inequality |G| < ligll,-, in the previous
discussion, it remains to establish that |G|l > |igll,- ,-. This we shall accom-
plish by way of inequalities (4.5.3)—(4.5.8) below, and we shall now explain
the notation which occurs in these inequalities. Given ¢ > 0, we first
obtain from Proposition 4.3 a (non-negative) measurable function h € L, ,
such that ||4], , < 1, and such that (4.5.3) is satisfied. From the monotone
convergence theorem we next obtain numbers a, > 0 and pairwise disjoint
gets E;e 8, for 4 =1,2,...,n, such that Z‘a,xE h, and such that

i=1
(4.5.4) is satisfied. Noting, then, the finiteness of |m|(Z,) for each i, we
next obtain pairwise disjoint sets E;, € 8§, for j =1,2,...,n,;, such that

E;, = U E,, and such that (4.5.5) is satisfied. For each ¢ and j we now
find an element b, € Bsuch that ||b;| < 1, and such that (4.5.6) is satisfied.
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(The absence of a.bsolute value signs in (4.5.6) is critical to this argument.)
Define f = D Z a;b; xg,;- Then we have |fl, <1, so that (4.5.7) and

f=1 f=1
(4.5.8) are immediate. The complete string of inequalities now follows.

(4.5.3) gl < [ h(@)lig(@)ldp(@)+e/4

(4.6.4) <[] Za. lg (@)l 2z, (#)] dp(@) + &2
hSnja;l’ml E)+e/2

(4.5.5) Z a;llm (Byy)|+3e /4
1= lj—l

(4.5.6) <) Za«b,, m(By)>+e
t=1 §=1

(4.5.7) = G+

(4.5.8) < G +e.

Since ¢ is arbitrary, the desired inequality follows.

We shall complete the entire proof by showing that if ||gll,q,
= oo, then there would exist a function f,eL,,(B) such that
J {foul®)y g(@))du(x) = oo, contrary to assumption. Let M={Fel
19%Elly g < o0} Then M is a wu-ideal, and, from the special case a.bove,
we obtain ||Ggl = llgxgll,,¢ for all E e M, where Gz(f) = G(fyg) for
all feL,,(B). It follows at once from [18], Proposition 3.2, p. 199,
that @ cannot be bounded. In fact, if ¥ € M, then G cannot be bounded
on the space of functions in L, ,(B) which vanish on E. Therefore, given
a positive integer n, we may find a set E, € M and a function f, € L, ,(B)
such that E, is disjoint from E, such that f, is supported on E,, such
that [f,ll,,< 27", such that (f,(x), g(z))>0 for all e X, and such
that G(f,) > 1. From this observation, in conjunction with the obvious
induction argument (cf. [5], pp. 234-235), we may easily construct a function
f» with the properties specified above. m

When ¢ is locally measurable, then (4.5.1) is automatically valid
because of [7], Theorem 20 (a), p. 114 (cf. (18], p. 209). Hence the following
corollary is immediate.

4.6. CoROLLARY. Let 1< p, q<< oo. Then the space L, q(B*) i8
tsometrically isomorphic to a (closed) norming subspace of L _q(B) (see
[18], Definition 4.5, p. 203, and the discussion following). Therefore its
intersection with the unit ball of L, ,(B)" is weak* dense in the unit ball. m
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If suitable definitions are made, then Theorem 4.5, and its proof,
will extend at once to the more general form of integration which Dinculeanu
considers in [5] (Chapter II, and in particular pp. 228 ff.). We obtain
a generalization of his Theorem 7 (pp. 233-236) even in the L, setting,
since his arguments appear to rely crucially upon the stronger assumption
that g is (locally) measurable. Moreover, the corresponding generalization
of his Theorem b (pp. 228-232) will then follow as an immediate corollary.

In view of [18], Example 6.1, p. 213, it would be unreasonable to
expect an automatic generalization of Proposition 4.3 from the secalar
to the general case. Hypothesis (4.5.1) is about the weakest additional
condition which can be imposed, since it is implied by (4.5.2) when p
and g are finite. (However, we may obtain (4.5.1) when p = oo or ¢ = oo
by assuming that |Gzl = lgxglly,, for all sets E in a dense subset of
I, . where Gg(f) = G(fyg) for all fe L, ,(B).) The idea of the proof
is to let A > 0 be the Radon-Nikodym derivative of |m| with respect to
4 ([18], Theorem 3.4, p. 200). The inequality & < |ig(-)| l.a.e. is easily
established, and we contradict (4.5.2) (or its strengthened version when
p = o or ¢ = oo) if we assume strict inequality on a set of positive
measure. For a discussion of criteria which are allied to (4.5.1), see {18],
p- 209.

We turn now to the question of when a linear functional @ € L, ,(B)"
may be represented by a B*-valued locally weak* measurable function g.
We shall not deviate from the standard practice of obtaining ¢ as a Radon~
Nikodym derivative of the set function mg; (Definition 4.4) with respect
to u. Therefore it will be feasible to study the action of G only upon the
measurable functions in L, ,(B).

4.7. DEFINITION. If 1 < p, ¢ < oo, we shall let L7 (B) denote the
space of (equivalence classes of) measurable functions in L, (B). =

That L7 ,(B) is a Banach space follows from Corollary 3.13, and
from (3.1.6) we obtain L7, (B) = L, ,(B) when p and g are finite. As
usual, we shall write L7}, in place of L7} (B) if and only if B = &.

4.8. DEFINITION. Let 1< p, ¢< oo, and let @ e LT (B)*. Then we
shall say that G has the dominated convergence property provided that, if
we are given a sequence {f,}..., of functions in L7, (B), and if there exists
a non-negative function & € L7, such that ||f,(-)| < & for all n, then the
condition f,—+0 a.e. implies that G(f,)—~>0.m

In view of the dominated convergence theorem, the following facts
are straightforward to verify.

(4.8.1) If 1<p, ¢< oo, and if the linear functional G € L7 (B)* has
the dominated convergence property, then G is countably
additive (Definition 4.4).
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(4.8.2) If1<p,q< o, then every linear functional G € L7 (B)"* has
the dominated convergence property.

4.9. THEOREM. Let 1< p, ¢ < o, and let G € L7 (B)*. Then G has
the dominated convergence property if and only if there ewists a function
g: X—>B* such that:

(4.9.1) g s locally weak* measurable;

(4.9.2)  lg()ll ¢s locally measurable, and we have |G| = ligll,:q3
and

(4.9.3)  for all fe L (B), we may compute G(f) = [ {(f(x), g(@))du(z).

Moreover, if the space B* is separable or reflexive, then g may be chosen to
be locally measurable, and not just locally weak* measurable.

Remark. The assumption that (X, S, u) is decomposable will tacitly
be made when we apply [18], Theorem 5.5, p. 212, below. However, when
p' and ¢’ are finite, the usual sort of argument (e.g. [7], p. 288) will render
this assumption unnecessary.

Proof. If g satisfies (4.9.1)-(4.9.3), then an easy application of the
dominated convergence theorem will establish that G has the dominated
convergence property.

Now let @ have the dominated convergence property, and let m be
the set function determined by @G. Then from (4.8.1) we obtain the countable
additivity of &, and from the comment which followed Definition 4.4 we
obtain the finiteness of |m| on the u-ideal I, ,. Therefore we may apply
[18], Theorem 5.5, p. 212, in conjunction with Theorem 4.5 to obtain
a loecally weak* measurable function g: X->B* which satisfies <b, m(E))
= [<b, g(2))du(z) for all b e B and for all EeI,,, and which is also

E

such that, whenever |gygll, s < oo, we have |Ggll = lgxgly,e» Where
Ge(f) = G(fyg) for all fe L7 (B). It is now clear that we have |jg, ¢
< |G| < oo, so that (4.9.2) and (4.9.3) follow.

Finally, when B™* is separable, the local measurability of g follows
from a slight generalization of [23], Theorem 1.1, p. 278 (cf. [18],
Lemma 4.7, p. 203). When B"* is reflexive, the local measurability of ¢
may be obtained by applying Theorem 5.7 (p. 213) of [18] in place of
Theorem 5.5. m

The dominated convergence property is neither an unexpected nor,
we suspect, an avoidable criterion for the integral representation of
bounded linear operators in any setting. For example, it can be seen to
be equivalent to the standard assumption which is made in the setting
of the Daniell integral ([25], pp. 286 ff.).

In the following corollary of Theorem 4.9, the first of several, we
investigate conditions under which the converse of (4.8.1) is valid.
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4.10. COROLLARY. Let 1 < p, ¢ < oo. Then the set of countably additive
linear functionals in LI (B)* coincides with the set of linear functionals
in L7 (B)* which have the dominated convergence property if and only if
the collection of simple functions in Ly (B) is dense in Ly (B).

Proof. We note from the proof of Theorem 4.9 that only the count-
able additivity of G was required in order to obtain the Radon-Nikodym
derivative g. The dominated convergence property was needed only to
verify (4.9.3), which is automatically valid on the closure of the simple
functions in L7’ (B). H this closure constitutes all of L} (B), then it
follows that ¢ will have the dominated convergence property.

Conversely, if the simple functions in L7 (B) are not dense in L7, (B),
then the Hahn-Banach theorem will yield a non-zero linear functional
G € L} ,(B)* which vanishes on the space of simple functions. That @
is countably additive is trivial, whereas G could not have the dominated
convergence property without being identically equal to zero. m

Thus from Example 5.4 we see that, even when B = &, there will
exist countably additive bounded linear functionals which do not have
the dominated convergence property. From [7], Theorem 16, p. 296,
we may readily deduce that there will also exist bounded linear functionals
which are not even countably additive. In particular, such linear functionals
may be defined on L_([0,1]) (with Lebesgue measure), and we may
obtain such linear functionals on the spaces I, ,([0,1]x[0,1])(with
product Lebesgue measure) when p = oo or ¢ = oo by embedding
L. ([0, 1]) into L, ,([0,1] x [0, 1]) in the obvious way, and then by appro-
priately using Proposition 3.17 and the Fubini theorem.

4.11. DEFINITION. If 1< p,¢< oo, we shall let LY. .(B*) denote
the collection of those bounded linear functionals on L7 (B) which have
the dominated convergence property. =

Of course this notation makes sense only in the light of Theorem
4.9. It is readily verified that LY ,(B*) constitutes a closed subspace of
LR, (B)*, and hence a Banach space in its own right. By exploiting the
notion of a “type ¢” function ([18], Definition 5.1, p. 209), we may realize
Ly (B*) as a space of equivalence classes of locally weak* measurable
functions modulo functions which are l.a.e. equal to zero. It will thereby
be seen to resemble the space L, ,.(B*) more closely than might other-
wise have been supposed. (That it i8 not identical to L, ,(B"), in general,
is illustrated by [18], Example 6.3, p. 214.) We now summarize these
remarks as part of the next corollary.

4.12. CoroLLARY. Let 1 < p, ¢ < oo. Then we have

(4.12.1) L, ,(B*) = Ly, . (B*);
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and
(4.12.2) L% .(B*) < L?,(B)*.

Moreover, these containments may be strict; however, we obtain equality in
(4.12.1) when B* is separable or reflevive, and we obtain equality in (4.12.2)
when both p and q are finite.

Note. The notation in (4.12.1) is, of course, slightly abusive (cf.
Corollary 4.6). @

4.13. CoroLLARY. Let 1 < p, ¢ < oo, and let the Banach space B be
reflexive. Then so also i3 the space L, ,(B).

Proof. Cf. [7], Corollary 24, p. 67; Corollary 2, p. 288. m

Subject to two precuations, the principal results of this section will
generalize in a natural and straightforward manner to linear operators
on L, ,(B) which assume values in an arbitrary Banach space D. The
first precaution is that, in order to apply [18], Theorem 5.5, p. 212,
in the proof of the analogue of Theorem 4.9, it may be necessary to allow
the function g to assume values in #(B, D**), and not just in #(B, D)
(where #(B, D) denotes the space of bounded linear operators from B
to D, and where % (B, D**) is defined likewise). The second precaution
is that inequality (4.5.6) is meaningless in the more general setting. As
a result it can happen that |G| < |jgll,- ,; however, the arguments of
Theorem 4.5 may be used to establish the identity

190l = SuPIZHG(biXE‘)": f= Zbiin € Lo (B); fllp,e < 1}‘
i=1 i=1

The remaining details present no real problems, and we omit them.
(Cf. [6], pp- 256 ff.)

5. Examples in L, , theory

In this section we collect together a few elementary examples. Their
primary purpose is to illustrate certain aspects of L, theory which do
not generalize to the L, , setting, and to elucidate certain of the previous
arguments which may have appeared to be unnecessarily cumbersome.

In the next paragraph we set out some notation which will be common
to many of the examples.

5.1. NoTATIONAL CoNVENTIONS. We shall use the symbol I to denote
the unit interval [0, 1], and we shall use I* to denote [0,1]x[0,1]. We
shall let 2 denote Lebesgue measure on the Lebesgue measurable subsets
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of R, and we shall let A? denote product Lebesgue measure 4 x 4. In de-
ference to the customary notation for points along the z-axis, we shall
denote the standard disintegration of A% with respect to 1 (see Example
2.2) by {A.};cr- A standard elementary function will be a Lebesgue meas-

urable function f: R*—>R of the form > ¢,xg .r,, Where the sets K,
n=1

(< R) are pairwise disjoint. We note from the nonatomic nature of 1 that
we shall be free to choose the ¢,, the A(E,), and the A(F,) arbitrarily to
suit the purpose at hand. Moreover, when we specify or construct a stan-
dard elementary function, we shall use the symbols ¢,, E,, and F,, as
defined here, with no further comment. m

We have made an apparently fussy distinction between measurable
and essentially measurable functions, and, in marked contrast to the
L, norm, we have defined the L, , norm in a two stage procedure. Our
first example will illustrate the necessity for all of this.

5.2. EXAMPLE. Given z €I, we define I} = I* x {z}. Then we may
clearly transfer A2 from I* to I?, and we define (X, 8, x) (in this case)
to be the direct sum of the resulting measure spaces ([27], Definition 3.1,
p. 282).(Thus X = (J I2, and the family {I3},., constitutes a decomposition

zel

for . It is well to visualize X not as the standard unit cube [0, 1] X [0, 1] X

x[0,1], but rather as an extremely long (two-dimensional) ribbon.)
We disintegrate u with respect to A on I by carrying over the standard
disintegration of A on I* with respect to A2 on I in the obvious manner.
(In particular, then, we have y(z,¥,2) == for all (z,v,2)eX.) We
denote the resulting disintegration by {u.},er-

We now consider, for example, the set N = {(z,¥,2) e X: ¢ =z}
This set N is locally null, and hence y, is an essentially measurable function
which represents the zero linear functional on I, () for all values of
P and q. However, we have u_(N) = 1 for all # € I. Thus the linear func-
tional norm of y, would not equal |xyll, , if (3.1.1) were used exclusively
to compute the L,, seminorms. Moreover, if we employed the formula
f u.(E)di(z) to extend u to the smallest o-ring which contains 8 and
{N}, then we would obtain an essentially different measure space. (Even
the L, spaces would be different.)

It might nevertheless be suggested that Definition 3.1 was contrived
artificially in order to facilitate the dual space representations. However,
it is easy to construct a set K which is similar to N, but which is such
that the function zwspu,(K) is not measurable, or which is such that
p.(K) =1 for all © eI, whereas both of the functions x> u, (NNK)
and z—pu,(NUK) fail to be measurable. Thus the collection of locally
measurable sets £ such that the function xi-u,(F) is well defined and
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measurable is far from being a o-ring, and likewise the collection of locally
measurable functions f such that the expression (||zs (I|fll,, #.)|4, 4) is
well defined and finite is far from being even a vector space. It would
appear, then, that there is no useful way to apply (3.1.1) to locally
measurable functions as well as to measurable functions.

On the other hand, when p = o or ¢ = oo, locally measurable
functions need to be considered, if only to serve as linear functionals.
Therefore, in consideration of the dual space isometry results (Proposition
4,3 and Theorem 4.5), and in consideration of the canonical extension
of any measure u to the g-algebra of locally measurable sets ([1], Exercise
1, p. 53; Exercise 21, p. 183; cf. [28], Scholium 3.10, p. 90), we suggest
that formula (3.1.2) constitutes the unique natural choice for an extension
of (3.1.1) to locally measurable functions. m

Our next example will illustrate that, whenever p # q, convergence
in L,, norm need not imply convergence in measure. Therefore, some
sort of piecewise construction (in Theorem 3.12) of the limit of an L,
Cauchy sequence of functions in L, ,(B) would seem to be unavoidable.

9.3. ExaMpLE. Whenever p # g, there exists a standard elementary
function fe L, ,(R? 2%) such that the sequence of partial sums f,, =
m

Zoan,,x F,» Where m =1,2,..., converges to f in L, , norm, but does
nel

not converge in A* measure.
Assume that 0 < p < g < oco. Define ¢, = A(H,) =1, and define

A(F,) =n"' Then we have |f|2, = Zn‘“”’ < oo, we have ||f,—fI2,

-]

= 3 n -2?_,0, and, whenever 0 < a<1, we have
ne=m-1

({(m;y e R*: |fn(®,y)—flz,y) = }) 2 n~! = oo.
n=m+1
It is also evident in this case that ||f,, —fll,.—0.
Now assume that 0 < qg<p < oo. Define ¢, =1, define Ai(Z,)
=n~ P2 gand define A(F,) =n/i(E,. Then we have |f|2,

o0
= > nl4P)=% < oo, and the remaining conclusions are analogous to those

ne=l
above. Moreover, we may draw the same conclusion for the case p =
by redefining A(E,) = 27" in this case. m
Our next example will illustrate that the collection of simple functions
need not be dense in the space L, ,(B), even when B = @. A minor con-
sequence is that we cannot reasonably compress inequalities (4.5.3) and

(4.6.4) into a single inequality. In view of Propositions 3.14 and 3.15,
we must have both 1<p < o and q =

3 — Dissertatlones Mathematicae CLXIV
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9.4. ExaMPLE. Whenever 1< p < oo, there exists a standard ele-
mentary function f e L, . (I? 4*) which cannot be approximated in the
L, . norm by any bounded function in L, . (I% 27).

Define ¢, = 2", define A(E,) = 27", define A(F,) = 27", and let
g: I'>® be a measurable function such that (Jig|l,, A*>) = a finite con-
stant M. Then, for any positive integer » such that 2" > M, and for
A-almost every point z e E,, we have (|[f—gl,, 4,)=> (2" —M)P2~"»)'»
=1—M27", It follows that ||f—gl|, ., > 1.

We remark that we have required the function f to be supported
on I? rather than just on R? in order to illustrate that even support on
a set of totally finite measure will not necessarily render f approximable
in the L, ,, norm by a bounded function (see Definition 3.9 and the com-
ment following it). m

Our next example will illustrate that Proposition 3.15 was special
to the case B = &V, even when X = I°. Thus, whenever p = oo or
g = oo, simple functions need not be dense in L,  (B).

5.5. EXAMPLE. Let 1< ¢< oo, let H be any infinite-dimensional
Hilbert space, let {e;};., be a doubly indexed orthonormal subset of
H, and let {E,}]>, be a sequence of pairwise disjoint measurable subsets

[- -]
of I such that A(B,) =27° for each i. Define f = 3 ;x5 Then
if=1

Ifll,, =1, 80 that fe L, (I? 4*, H), and we shall show that f cannot
be approximated in the L., norm by any simple function ge
L, (% 2, H). B
To this end, let z € B, for some i. If we had (||f —gll., 4,) < ¥2/2,
then, because g has only finitely many distinet values, it would follow

from the triangle inequality that |e;— e, [l < V2 for some j #+ k. However,
this contradicts the equality |le,; — el = Y2 which is valid for any pair
of orthonormal elements. Hence we must have (||f—gll,, 4,) = 1/5/2, and
it follows that ||f— gl o> V2/2.

We remark that, unlike the situation in Example 5.4, the collection

of bounded functions in the general space L, ,(B) is dense in L, ,(B),
as is easily verified. m

We now consider some examples of the set D, (Definition 3.18).
The simplest such examples occur when the function f is of the form
(z, y)—f1(x)fs(y), where f; and f, are functions with domain R, or when
f i8 of the form yz, where E = R’. We gee at once that D, can be the
cartesian product of any pair of intervals in (0, oc], including singletons.
(In particular, D, can be a singleton, or a horizontal or vertical line seg-
ment.) We also see that D,n R* can be any convex cone in (0, co) X (0, oc)
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which emanates from the origin. Furthermore, we may automatically
obtain additional examples by noting that

(5.5.1) the collection of subsets of R? of the form D,n R as f varies,
is closed under the formation of finite intersections.

The following definition will clarify why this is true.

5.6. DEFINITION. We shall say that two locally u-measurable sets
E, and H, are totally disjoint if there exist disjoint subsets #, and F,
of Y such that E; < »~'(F;) for : =1,2. m

Thus, if the locally measurable functions f and g are supported on
totally disjoint sets, and if 0 < p < oo, then we have |If+ |2, = IflIZ .+
gl , when 0 < ¢ < oo, and we also have ||f+ gl e = Max {[|fl, 00 1g]lp,c0}

It follows that D, , = D,nD,, whereupon (5.5.1) is readily
verified.

In each of the examples above, the set D,NR? is convex. Our next
example will illustrate that D,Nn R* need not be convex in general, even
when the function f is supported on a set of totally finite measure. (How-
ever, it is clear from Proposition 3.19 that, with the usual convention
1/00 = 0, the set {(1/p,1/q): (p, q) € D,} is convex.)

5.7. ExaAMPLE. Let a and b be (non-zero) real numbers, and let the
standard elementary function f be defined by ¢, = n, by A(E,) = n~>"},
and by A(#,) =n"° Then we have D,nR* = {(p, q) € (0, o) X (0, c0):
(p—a)(¢—Db) < ab}, and we note that this set is not convex. (In fact
the “equinorm contour lines” for this function f will lie along the hyper-
bolas of the form (x—a)(y—b') = ab’, where b’ < b, and including the
degenerate case b’ = 0 when b > 0.)

Continuing in the same vein, we see that D, can be any of a variety
of shapes bounded by hyperbolas of the form (z—a)(y —b) = ab (where
a and b vary), and that it can form part of such a hyperbola. (In particular,
let ¢, =n"Y, let A(B,) = nb*), and let A(F,) = n®) Therefore, while
D, is arcwise connected in all cases, it can happen that the only arc in
D, which will connect two given points of D, is of the form specified in
Proposition 3.21. =

5.8. ProBLEM. Characterize the set D, for an arbitrary locally meas-
urable function f: X—>B. =

It is well known (and it is also a special case of Proposition 3.21)
that the map p— |fl, is continuous on the set {p e (0, co]: ||f]l, < oo}.
Our final example will illustrate that this fact does not generalize to the
L, , setting, even when the function f is supported on a set of totally
finite measure. It will also illustrate that the partial continuity results



36 Ly,q spaces

of Proposition 3.25 rely crucially upon the assumption of support on
a set of totally finite measure.

5.9. ExampLE. Let 0 < p, ¢ < o0, let p,—>p, let ¢,—>¢, and let ¢ > 0
be fixed. Suppose that we are able to construct a standard elementary
function f which, for each » =1, 2, ..., satisfies the following conditions:

(5.9.1) o A(F,)%wPrA(E,) = 1+¢;

(5.9.2)  ¢A(F,)¥PA(B,) = 27"

and

(5.9.3) if 1<i<m, then o%A(F,)WPi(E,) <

Then we may deduce from (5.9.3) that f eL, . (R2 %) for all n, we
may deduce from (5.9.2) that [|f|2, = 2 c"J.(F Y/PA(E,) =1, and we

may likewise deduce from (5.9.1) that ]]fl]p .4, = 1+¢ for all n. Under
these circumstances we clearly cannot ha.ve [ fllp,,q —>|flp o (In fact
we may readily verify that lim mf||f]|p = (1+¢)> 1, 5o that it is

possible for the inequality of Lemma 3.22 to be striet.)

In order to obtain conditions (5.9.1)-(5.9.3) for a variety of choices
of the p, and the ¢,, we shall adopt the following strategy. We solve for
A(E,) in (5.9.1) and in (5.9.2) to obtain

(5.9.4) AME,) = (1 +e) e mA(F,) Wen = 2""0;“).(11’“)“1/".
Assuming that g, # ¢, we next solve for ¢, in (5.9.4) to obtain
(5.9.5) ¢, = [(1+¢)2" M@ DA(F,) *n/tn-0

where, for each n, we define k, = ¢,p,' —qp~". Finally, we insert expres-
gion (6.9.4) for A(#,) and expression (5.9.5) for ¢, into (5.9.3) to obtain

(5.9.8) cHA(F,)UPiA(E,) = 27 "A(F,)4[(1+ ) 2" A(F,) *n @i~ D/n=2),
and we insert expression (5.9.5) for ¢, into (5.9.4) to obtain
(5.9.7)  A(B,) =2 "AF,) P [(14£)2" A(F,)*n] oo,

We now choose A(F,) (either arbitrarily small or arbitrarily large) in
such a way that expression (5.9.6) is <27 for each ¢ <, and also,
whenever possible, in such a way that expression (5.9.7) is < 27", (For
if we can ensure that we have A(E,) < 2~" for all », and if we can also
ensure that the A(F,) are bounded, then the function f will be supported
on a set of totally finite measure.) Once A(F,) is determined, we define
¢, by (5.9.5), and we define A(Z,) by (5.9.7). Conditions (5.9.1)-(5.9.3)
follow.



Examples 37

It remains, then, to obtain the A(F,) as desired above, and it is clear
that this is feasible only if we may ensure that the exponents of the A(F,)
in expression (5.9.6) will all have the same sign. To this end, let us impose
the restriction that the p, and the g, must both converge in a strictly
monotone fashion. With this restriction the desired consistency of sign
is readily obtained, both in expression (5.9.6), and also (simultaneously)
in expression (5.9.7). In particular, we may first specify either the p, or
the ¢, in advance, and we may then select the members of the other
sequence by an obvious induction argument. Moreover, if the p, are
specified in advance to obtain p,|p and g¢,1¢, or if the g, are specified
in advance to obtain p,}p and g¢,lq, then the exponents of the A(F,)
in both (5.9.6) and (5.9.7) may all be chosen to be strictly positive. Hence
the A(F,) may be chosen to be arbitrarily small, so that the function
f may be chosen to be supported on a set of totally finite measure.

We remark that, for the case p,1p and ¢,}¢, we may obtain support
on a set of finite measure for the funetion f, so that even this relatively
restrictive assumption about f is not sufficient to imply the conclusions
of Proposition 3.25. On the other hand, it is interesting to note the different
ways in which this example will break down if we select the p,, ete. in
accordance with the hypotheses of Proposition 3.21 or of Proposition
3.25. m

6. Structure of the L, spaces

A disintegrable measure space constitutes a natural generalization
of a product measure space, and this fact lends intuitive appeal to the
definition of the L, , norm in terms of a “double integral.” At the same
time the generality of the L, , concept appears to be limited. The prin-
cipal results of this section are aimed, in part, at elucidating the minimum
amount of machinery which is actually essential to the construction of
the spaces L, ,(B), up to isometric isomorphism. Specifically, using only
the collection {y~!(F): F €T} of locally measurable subsets of X, we
shall associate with the space (X, 8, u) a subspace of (X x X, §x 8,
u X u) which is such that, given certain sets E €8, a suitably defined
“conditional expectation” of y, will be usefully related to the action
of the standard product measure disintegration (see Example 2.2) upon
the image of ¥ in 8§ x 8. One important consequence of this result is
that the space L, ,(B), when it is defined, will be isometrically isomorphic
to the associated L,, space, and hence to a subspace of L, ,(u X u, B).
It is therefore reasonable to take this subspace as the definition of L, ,(B)
when a disintegration of x is not given, and we shall conclude the section
with an informal discussion about the representation of this more general
space L, ,(B) as a space of (equivalence classes of) B-valued, locally
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measurable functions defined on X itself, and equipped with an intrin-
sically defined “L,,” norm.

All of the material to follow is preliminary to Theorem 6.11, in which
we shall construct the appropriate subspace of (X x X, S x 8, uXx u).
None of these results (including Theorem 6.11 itself) will exploit the
disintegrability of u, and in fact we need only assume that (X, S, )
is an arbitrary o-finite measure space. For while the decomposability of
u# will be used to promote conceptual clarity (especially within the some-
what formidable Theorem 6.11), it is not crucial to the principal conclusion
of Theorem 6.11, as we shall remark.

Some of the following results are derived from and run parallel to
the work of Maharam in [21). Speaking loosely, we may say that Maharam
treated the measure theoretic analogue of the question: When does
a Banach space have a basis? We shall treat the analogue of the question:
When does a subspace of a Banach space have a complement in that
Banach space? Our own notion of ‘“complementation” (to be compared,
very roughly, with [7], p. 653) will immediately follow the list of notational
conventions for this section.

6.1. NoTATIONAL CONVENTIONS. If £ and F are subsets of X, then
we shall write ¥ <, F when the set & — F is locally null. We shall declare
that F and F are u-equivalent, and write £ =, F, when we have E <, F
and F <, B. If M is a collection of subsets of X, and if K = X, then we
shall let M |, denote the collection {ENK: E € M}, we shall let o(M)
denote the o-ring generated by M, and we shall let [M], denote the
collection of equivalence classes of the sets in M with respect to the
equivalence relation =,. We shall simplify notation by habitually refer-
ring to the elements of [M], as sets rather than as equivalence classes
of sets modulo null sets. Thus, if we refer to a set £ € (M ],, we shall mean
an (arbitrarily selected) member of some equivalence class in [M],.

In particular, let M, and M, be o-subrings of 8, and let U: [M,],
—>[M,], be a function. Then we shall call U a ring homomorphism if we
have U(Q) =, @, and if, for all sets E, Fe M,, we have U(EVUF)
=,U(E)VU(F) and U(ENnF) =,U(E)nU(F); we shall call U a o-ring
homomorphism if U is a ring homomorphism, and if, for every sequence

{E,)}3., of sets in M,, we have U(|J E,) =, |J U(E,). We note that if

n=1 Ne=l
U is a one-to-one ring homomorphism, then U will be a ¢-ring homo-
morphism if and only if the range of U constitutes a o¢-ring (or, more
precisely, if the collection of sets in M, whose u-equivalence classes belong
to the range of U constitutes a o-ring). If, under these circumstances, the
range of U is all of [ M,],, then we shall refer to U as a o-ring isomorphism,
we shall let U~': [M,],—~[M,], be the standard inverse of U with respect
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to the composition of maps, and we shall define a measure U(u) on M,
by specifying that U(u)(E) = u(U~'(E)) for all F e M,. Finally, we
shall occasionally also apply the preceding definitions (with = replacing =,)
to a function U: M,>M,.

(We remark that we have been using the specific measure u for

illustrative purposes; we may and shall use all of the above notation in
connection with other measures.)

We recall now the following measure theoretic conventions about
the symbol x: When it appears between (the symbols for) two o-rings,
then we shall be indicating the standard product o-ring ([10], p. 140);
when it appears between two measures, we shall be indicating the standard
product measure ([10], p. 145); and when it appears between two other
sets, we shall be indicating the standard set theoretic cartesian product
of those sets.

As we shall freely employ the axiom of choice, it will be sufficient
for our purposes to define a cardinal number as an ordinal number x
each of whose members has strictly smaller cardinality than ». If A is
any set, then we shall let |A| denote the cardinality of A (that is, the
uniquely determined cardinal number which can be put into a one-to-one
correspondence with 4). If y is any ordinal number, then we shall let
y* denote the successor ordinal yuU{y}.

Finally, we remark that we shall make frequent use of the phrase
“standard o-ring argument.” By this phrase we shall intend a (straight-
forward) application of [22], Problem I.4.5, p. 19, the proof of which is
entirely similar to that of the better known lemma on monotone classes
([10], Theorem B, p. 27). In most instances, arguments along different
lines will also be possible. m

6.2. DEFINITION. Let K be a measurable set of strictly positive
finite measure. Then two measurable sets F and F, each < K, will be
called independent with respect to K (or just K-independent) if we have
U(ENnF) = u(K) *u(E)u(F). Two collections @ and R, each < S|z, will
be called K-independent if F and F are K-independent whenever E €@
and F € R. A collection R of locally measurable sets will be called com-
plemented in K if there exists a o-ring R* < §|; such that K € R, such
that R | and B+ are K-independent, and such that [S|z], = [¢(R |V R")],.
The o-ring R+ will be called complementary to R in K. m

The notation B+ should not suggest that R' is in any way uniquely
determined. The requirement that K € B+ is made for technical reasons,
and we note that if K ¢ R1, then we could replace Rt by o(RLuU{K})
without damage to the other two properties. The definitions below are
preliminary to Lemma 6.5, in which we indicate the significance of this
notion of complementation.
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6.3. DEFINITION. We shall say that a o-ring R< § is o-finite if
u4lg (the restriction of x4 to R) is a o-finite measure. m

The o-finiteness of R is precisely the assumption which is needed

in order to adapt the notion of conditional expectation ([19], p. 341), from
the setting of probability measures.

6.4. DEFINITION. Let R be a o-finite o-subring of S, and let & be
a non-negative measurable function defined on X. Then an R-measurable
function will be called the conditional expectation of h with respect to R,
and will be denoted by EFh, if we have

(6.4.1) J hiy = [ E"hdp  for all G e R.
¢ G

If Ee 8, then we shall let kz = E¥y;. m

Since R is o-finite, the existence of EFJh follows from the Radon-
Nikodym theorem (see also [10], Exercige (7), p. 131). Moreover, equation
(6.4.1) uniquely determines the equivalence class of E®h modulo null
functions, so that reference to a funetion as “the” conditional expectation
constitutes a tolerable abuse of terminology. We shall use precisely the
following properties of the operator EE,

(6.4.2) If h, and h, are non-negative measurable functions, then we
have EE(h,+hy) = E¥h,+ E®h, a.e.

(6.4.3) If the function k, in (6.4.2) is R-measurable, then we also have
ER(hlhz) = hlEha a.e.

(6.4.4) If {,}>., is a sequence of non-negative measurable functions
such that h,}h a.e., then we have E¥h, t EEL a.e.

These properties are essentially well known (cf. [19], §25, pp. 347 ff.),
and their proofs are entirely straightforward.

6.5. LEMMA. Assume that p is finite (so that S i3 a o-algebra), let R
be a o-subalgebra of 8 which is complemented in X, and let R+ be comple-
mentary to R in X. Then there exists a o-ring isomorphism U: [RX R'],,,
—[8], for which we have

(6.5.1) U(FxX)=,F for all FeR;
and
(6.5.2) U (@) = ,u(X)kU(G)(m) a.e. for all Ge R xR-L,

where {u_},.x denotes the standard disintegration of u X p with respect to u.

Note. Thus the measures U(u X u) and u differ only by the constant
multiple x(X).
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Proof. Given F € R, and given E € R, we define U(F x E) = FNnE.
There is now precisely one way to extend U to a ring homomorphism
defined on [@],,, Where @ is the field which comprises the finite disjoint
unions of rectangles of the form F x E, and it is readily verfied both that
this extension is well defined, and that it is indeed a ring homomorphism.
It is also clear that we have (uX u)(@) = u(X)u(U(@)) for all G€Q.

We now employ a standard device (cf. [25], p. 322). Under the corre-
spondence G« xg, we embed [R X R'],,, into L,(u X u), and similarly
we embed [8], into L,(u). By the Carathéodory extension theorem, the
set [Q1,., is dense in [R x R'],,, with respect to the metric topology
which is induced by this embedding. Since [S], is complete, and since
U is essentially an isometry on [Q],,,, it follows that U extends uniquely
to [RX RB'],,, in such a way that we have (ux u)(@) = u(X)u(U(&)
for all @ € R x R*. Since the Boolean operations are continuous ([10],
Theorem A, p. 168) it follows that the extended U is a ring homomorphism.
But it is clear that U is one-to-one, and, since X € R+, that U maps onto
{S8].. Hence U is a o-ring isomorphism.

Since property (6.5.1) is evident, it remains only to verify (6.5.2).
To this end, let F € R, and let E € R+. Then an easy computation will
show that kp = u(E)u(X) ' a.e., so that an application of (6.4.3) will
yield equality (6.5.2) for @ = F x E. That this equality is valid for an
arbitrary set G € R X R* now follows from a standard o-ring argument. &

In the light of this result we may now outline our overall strategy.
We shall produce a decomposition {X,},., for (X, S, #) which is such
that the collection of inverse images of measurable subsets of Y is com-
plemented in each of the X,. We shall then use Lemma 6.5 to represent
each X, by a (genuine) measurable rectangle in X x X, and we shall
do this, moreover, in such a way that the “overhang” between any two
of these (pairwise disjoint) rectangles resembles exactly the overhang
between the corresponding pair of X,. (We informally describe the
“overhang” between two (disjoint) sets to be the extent of their deviation
from total disjointness (see Definition 5.6). In the absence of a disintegration
for u, it can be determined by an examination of conditional expectations.)
It will therefore be clear from Lemma 6.5 that, locally, an arbitrary
o-finite (disintegrable) measure x looks exactly like a produet measure;
at the same time, the preservation of the overhang betwcen different
local elements will ensure the global isometric embedding of L, (B)
into L, ,(u X u, B) for all values of p and g (see Theorem 6.14).

Our immediate goal, then, is to establish that complemented sets
occur in sufficient abundance to exhaust essentially all of X.

6.6. DEFINITION. Let B be an arbitrary collection of locally measurable
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subsets of X. Then a set K € S will be called an R-atom (for u) if u(K) > 0,
and if [8|g], = [Rlg],. m

We note that if K is an R-atom of finite measure, then the o-ring
R' = {@, K} is complementary to R in K. In the special case R = {@, X},
an R-atom constitutes an atom in the ordinary sense ([9], p. 138), so
that the following result generalizes the well-known lemma of Halmos
([19], Lemma 2, p. 139) on non-atomic measures.

6.7. LEMMA. Let R be a o-finite a-subring of S, let K € 8 contain no
R-atoms, and let h be an R-measurable function on X which 18 such that
0 < I < kg a.e. Then there exists a measurable set E = K suchthat h = kg a.e.

Note. We have kr <1 a.e. (8ee Definition 6.4).

Proof. We shall agsume initially that u(K) < oo. Using induetion,
we produce a sequence {E,}> , of pairwise disjoint measurable subsets
of K such that E, =@, and such that, for each » =1, 2, ..., the set

n—1
E, is selected from the collection of measurable sets G < K— () E;
n-1 i=0
which satisfy kg < h— D kg, a.e. Moreover, if 8, denotes the supremum
1=0

of the u(@) for all such sets @, then E, is selected in such a way that
o0
u(E,) > s,/2. We now define ¥ = { J H,, and conclude, by combining

) ne]
(6.4.2) and (6.4.4), that kg = Y} ky <h ae. Let K' = K—F, and let

na==l

k' = h—kg. Then from (6.4.2) we obtain 0 < b’ < kg a.e. Suppose that
we did not have A’ = 0 a.e. Then there would exist a measurable set
E’ < K’ such that u(E’') > 0, and such that kg < A’ a.e. But from the
finiteness of u(K) we must conclude that s,—0, so that £’ could not have
strictly positive measure. Hence we must have A’ = 0 a.e., as desired.

(We remark that the somewhat technical construction of the E,
may be circumvented if resort is made to the axiom of choice in the form
of Zorn’s lemma.)

It remains, then, to produce the set E’ as desired above, and this
we accomplish by an easy adaptation to this setting of the argument
in the proof of Lemma 2 on p. 110 of [21]. The one point which needs
to be checked is the existence of a measurable set G = K' for which the
set {reX: 0 < kg(z) < kg ()} has strictly positive measure. But if no
such set @ existed, then, for all G € S|g., there would exist a set F' e R
such that kg = kg x» a.e. A routine computation would then show that
G =,K'nF, so that K’ would be an R-atom, contrary to assumption.
(We remark that the “principle of exhaustion” which is mentioned on
p- 110 of [21] may be understood to be an application of [18], Proposition
3.2, p. 199.)
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If u(K) = oo, then we let K,}K, where u(K,)< oo for each
n =1,2,... An easy induction argument, based upon the special case
above, will establish the existence of a sequence {E, )7, in § such that
E, < K, for all n, such that kg (x) = min{h(2), kg,(z)} a.e. for all n,
and such that E,,T some set E. The equality h = kE a.e. now follows
immediately from (6.4.4). m

6.8. LEMMA. Let X € 8 (so that u 18 totally o-finite), let R be a o-finite
a-subalgebra of S, and assume that X contains mo R-atoms for u. Let L
denote the Lebesgue measurable subsets of [0, 1], let A denote Lebesgue measure
on L, and let {E }3_, be a sequence of (not necessarily distinct) seis in 8.
Then there exists a o-subalgebra S' of 8 such that R < 8’, such that E, € 8’
Jor all n, and such that there exists a a-ring isomorphism U: [R x L],,,—~[8'],
Sfor which we have

(6.8.1) U(F x[0,1]) =,F for all F e R;
and
(6.8.2) 1,(@) = kyg(2) a.e. for all GeRx L,

where {1}, x denotes the standard disintegration of u X A with respect o u.
Note. Thus the measure U(u X 1) coincides with x on 8.

Proof. Let B’ (¢ to suggest “inverse image”) denote the ¢-algebra
{F x[0,1]: F € R}. Then, in view of the Carathéodory extension theorem,
and in view of the fact that 4 is a non-atomic measure, it is not difficult
to verify that X x[0, 1] contains no R’'-atoms for u x . It is also straight-
forward to verify the identity (E® 1) (@, 1) = 2,(G) a.e. (ux4) for all
G € R X L. Therefore, given a set K € R x L, and given an R-measurable
function b on X which is such that 0 < h(z) < 4,.(K) a.e.,, we may use
Lemma 6.7 to obtain a set @ < K in B X L such that h(z) = 2,(@) a.e.

We shall initially define U upon sets rather than upon equivalence
classes of sets, and we shall do this is an induection procedure which will
require precisely two simple arguments. For the first of these, let K € R x L,
and let K'e€ S be such that kg (z) = 1,(K) a.e. Now K’ contains no
R-atoms for u. Therefore, given any set G = K in R x L, we may obtain
from Lemma 6.7 a measurable set G’ < K’ such that kg (z) = 4,(G) a.e.
Furthermore, it follows from (6.4.2) that kK,_G,(w) = A, (K —@) a.e. For
the second of these arguments, let P = {4, ...,G,} < RX L bea partition

of X x[0,1](i.e., the G, are pairwise disjoint, and wehave X x[0,1] = U Q).

Similarly, let P’ = {Gy,...,G,} < 8 be a partltxon of X, and let P’ be
such that we have k¢ (2) = ). (G;) a.e. fori =1,2,...,n Now a typical

set G € Q = o(R*UP) is of the form (J G;nH,, where H; € R' for each 1.

=1
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n
Let us define U(Q) = | G;nF,, where, for each ¢, the set F, e R is de-
i=1
termined by the identity F;x[0,1] = H;. Then, by using (6.4.2) and
(6.4.3), we may readily verify that U constitutes a o-ring isomorphism
from @ onto @’ = o(RUP’), and that we have 1.(G) = kyi(v) a.c. for
every set G €¢.

We note as well that, because of the applicability of Lemma 6.7
to subsets of X x[0,1], both of these arguments may be reversed (i.c.,
so that we may obtain sets in R x L which correspond, as above, to given
sets in S).

We turn now to the actual construction of the desired o-ring isomor-
phism U. Let M = {@,};., be a countable subset of R X Z which is such
that [R X L], = [o(R'VUM)],,,. Now let P, be the partition {@&,, G}.
Using the first argument above, we obtain a partition U(P,) = {U(G,),
U(GS)} of X such that ky@,(®) = 4.(G,) a.e.,, and then, using the second
argument above, we define the ¢-ring isomorphism U from @, = o(R'UP,)
onto ¢(Ru U(P,)). Now let P; be the least common refinement of the
partitions {E,, E{} and U(P,). (Thus we have P; = {F,, Fy, Fy, F,},
where, let us say, ¥, = E,nU(G,), where ¥, = E{nU(@®,), and so on.)
As before, we obtain a partition U~'(P;) = {UY(F,),..., U} (F,)} of
X x [0, 1]such that &, = U~} (F,)v U"}(F,), such that 2,(U~(F,)) = kr (@)
a.e., and also such that analogous identities hold for ¥, and F,. As before,
we obtain the o-ring isomorphism U~! from @, = ¢(RUP;) onto o(R'U
U~Y(Py)), and it is readily verified that this mapping U~! does indeed extend
the original mapping U~' on o(RuU U(P,)). We are now ready to begin
a second cycle. Let P, be the least common refinement of the partitions
{G,, G5} and U~'(P,), and extend U from o(R'U U~} (P;)) to @, = o(R' UP,)
just as we did for U~! above. Continuing back and forth by the obvious
induction procedure, we obtain an increasing sequence {@,}r., of o-subal-
gebras of R x L such that &, € @, for all n, and we obtain a ring isomor-

phism U defined on the field @ = | J @, which is such that F, € U(Q,,,)

n=]

for all n, and which is such that we have 1,(@) = ky(2) a.e. for all
G €Q. These last equalities imply, in particular, that x(U(@)) =0 if
and only if (ux 1)(@) = 0, so that U automatically determines a ring
isomorphism defined on [Q],.:, and this we shall also denote by U.

Let 8 = o(U(Q)). Then, if y is finite, we may follow the procedure
of Lemma 6.5 to extend U to an isometry, and hence a ¢-ring isomorphism,
from [0(@)]uxa = [B X L],xs onto [8'],. Property (6.8.1) is evident, and
we obtain property (6.8.2) from a standard o-ring argument. If x is not
finite, we let X x[0,1] = | J H,, where the H, € R’ are pairwise disjoint,

ne=l
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and where (uz X A)(H,) < oo for each n. We then extend U, in the manner
described above, on each ring (@] H, Jux separately, and we piece together
the resulting mappings in the one obvious way.®

6.9. LEMMA. Let T" (v again to suggest “inverse image” (see Theorem
6.12)) be a o-algebra of locally measurable subsets of X. Then the collection
of sets E € 8 such that T' is complemented in E constituies a dense subset
of 8 ([18], Definition 3.1, p. 199), so that there exists a decomposition {X  }..4
of (X, 8, u) such that T' is complemented in each of the X,.

Remarks. Of course when p is totally o-finite, then X admits the
usual sort of decomposition into at most countably many 7‘-atoms together
with at most one non-null set £ which contains no 7"-atoms. If, in addition,
ulg is finite and separable, then the proof below shows that T" is auto-
matically complemented in E.

It is also worth mentioning that in all cases we shall construct the
complementary o-ring R' in such a way that y is non-atomic on R'.
Further discussion follows Theorem 6.14.

Proof. In view of [18], Proposition 3.2, p. 199, it suffices to show
that every non-null set K €8 contains a non-null measurable subset
in which 7* is complemented. Since 7" is trivially complemented in
a T'-atom, it suffices to assume that K contains no 7T*-atoms.

Given any set ¥ € §, and given any o-ring @ such that " |, = @ = §|,
let us define »(E; Q) to be the smallest cardinal number 6 for which there
exists a set M < @ such that [M| = 6, and such that [@], = [o(T'[gUM)],.
(We may informally describe »(E; Q) as the minimum number of sets
in @ which must be added to 7"|; in order to generate all of @, up to
p-equivalence.) Now to each non-null measurable subset ¥ of K we associate
the cardinal number »(E; S|gz), we let » be the smallest member of the
resulting set of cardinal numbers, and then we single out a specific non-null
measurable subset F of K for which »(E; S|z) = ». The minimality of
» will now enable us to show that 7' i3 complemented in E, and to show
it by simply iterating the argument of Lemma 6.8, possibly transfinitely
often. (Cf. [21], Theorem 2, p. 111.)

Since K contains no I"-atoms, it follows that » >N,. If » =N,,
then we let T"|; play the role of B in Lemma 6.8, and we obtain from
that lemma a o-ring isomorphism U: [R X L],«;—[S|g], for which we
have 1,(G) = kyg(x) a.e. whenever G € R x L. (The symbols L, 4, and
A, were defined in the statement of Lemma 6.8.) If we now define R' to
be the o-ring of subsets of E of the form U(E x H), where H € L, then
it is easily seen that R' is complementary to 7" in K.

If » > N,, then we choose any subset M = {E.},., of 8| for which
we have [S|g], = [o(T"|gVM)],. Given y €%, we shall construct o-rings
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R*(y) and 8(y) with the following properties:
(6.9.1) RL(0) = {O@, E};
(6.9.2) R1(y) and T'|g are independent with respect to E ;

(6.9.3) if 8 < y, then R(B) < R1(y);

(6.9.4) 8(y) = o(I'|gUR(»));

(6.9.5) E,e8(y*) forall yex;

and

(6.9.6) x(E; 8(y)) < max {|y], N} for all yex.

By transfinite induction it suffices to fix y € », and to assume that R+(B)

and 8(#) have already been constructed for all § < y. If y is a limit ordinal,

we define R (y) = o({JRL(p)), so that 8(y) = (| S()). Then (6.9.3)
B<y B<y

and (6.9.5) are immediate, while (6.9.2) follows from a standard o-ring
argument (and is essentially an instance of a well-known result ([22],
Proposition IV.4.1, p. 126). Moreover, it is obvious that x(E; S(y))
< |y xy| = |yl, 8o that (6.9.6) follows. If y = 8% is a successor ordinal,
and if E, € 8(f), then we may let R (y) = RL(B). Otherwise we note
that ¥ contains no S(p)-atoms, for if ¥ < ¥ were an S(f)-atom, then,
by [10], Theorem E, p. 25, we would have x(F; 8|z) = x(F; 8(8)|5)
< %(E; 8(B)) < %, contrary to the minimality of x». Therefore we may
let S(B) play the role of R in Lemma 6.8, so that, exactly as for the case
% =N,, we obtain a o-ring S(B)' = S|; such that 8(8) and S(8)* are
E-independent, and such that Ej € o (S(8)VS(B)*). We now define B+ (y)
= o(RL(B)US(B)L), so that 8(y) = o(S(B)US(B)!). Then (6.9.3), (6.9.5),
and (6.9.6) are immediate, while (6.9.2) follows from a standard o-ring
argument (see [22], Corollary, p. 126). The construction of the R!(y)
is now complete, and, in view of the arguments above, it is clear that
the o-ring R* = o(|J R*(y)) is complementary to I" in E.m

yex

The transfinite induction argument of this lemma was inspired by
a suggestion in [21], Theorem 1, p. 109. The argument of Lemma 6.8
generalizes the somewhat more intricate argument which Maharam used
to prove Lemma 1 on p. 110 of [21]. Maharam’s argument may be adapted
to this setting, but it would require that the sets E, of Lemma 6.8 con-
stitute a single set. Thus it could have been used in the proof of Lemma
6.9 for the case » > X,, but (apparently) not for the case x» = N,.

One final lemma of a purely technical nature will complete the pre-
paration for Theorem 6.11.

6.10. LemmA. Let (X, 8, u) and (X', 8', u’) be arbitrary o-finite measure
spaces, and let U be a o-ring isomorphism from [8], onto [8'),. Then,
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for every Banach space B, there exists a one-to-one correspondence Upg be-
tween the associated 3paces of equivalence classes of B-valued measurable
Sunctions modulo null functions which is uniquely determined by the following
three properties:

(6.101) Ug(bye) = bxyw a.e. (p') for all b e B, and for all E € S;
(6.10.2) Upg s linear;

and

(6.10.3) of f,—f a.e. (u), then Ug(f,)—> Ug(f) a.e. (&').

Moreover, the mapping Uy possesses three additional properties. Let
f: X—B be measurable.

(6.10.4) If h: X— D i8 measurable, then Ug(hf) = Ug(h) Ug(f) a.e. (¢').

(6.10.5)  If D is a Banach space, and if p: B—D i3 a continuous function,
then Up(pof) = eoUg(f) a.e. (u). (In particular, we have

Ur(IF()) = 1T ()N ae. (u').)
(6.10.8) (1T (f)llows #') = (Iflleoy 8)-

Remarks. This sort of result is well known for the case B = @
(cf. [19], §31.1, pp. 430-432; and [25], Problem 7, p. 319). Since the stand-
ard proofs employ properties which are special to the real numbers, we
shall present an entirely different approach. While we have stated the
result in precisely the generality which we shall require, two additional
facts are worth noting: The definition of Uy below, as well as properties
(6.10.1)-(6.10.5), requires only that U be a o-ring homomorphism; more-
over, in the presence of decomposability assumptions, it is clear that
Uy can be extended to (equivalence classes of) locally measurable functions
(see [18], Proposition 3.5, p. 201).

Proof. Without ambiguity we shall hereafter denote all of the func-
tions Uy (as B varies) by the one symbol U.

If f =) bxx, i8 a B-valued measurable function, we define U(Y)
n T==1
= D'b, Zv,- Then, because U is a ring homomorphism, it is clear that
=1
the equivalence class of U(f) is uniquely determined independently of
the representation of f.
Let {f.}s~, be a sequence of B-valued simple measurable functions
such that f,—0 a.e. (1), and let F €S be such that f, is supported on
E for all n. Then, using Egoroff’s theorem, we produce a sequence {F;};2,

of pairwise disjoint measurable subsets of E such that ¥ =, (J E,, and
i=1
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such that f,—0 uniformly on E; for each j. Now if, for a fixed number
£> 0, we have |f,(z)| < e for all « € E;, then it is clear that we also
have |U(f,)(z")|| < & for (u'-almost) all &’ € U(K;). Since the U(E;) exhaust
U(E), we obtain U(f,)—=>0 a.e. (u').

We are now prepared to define U(f)(z’) = lim U(f,)(z') a.e. (u'),

n—-»oo

where f: X— B is an arbitrary measurable function, and where {f,}22, is
any sequence of simple measurable functions which converges pointwise
to f a.e. (u). In view of the above observation, and in view of the com-
pleteness of B, itis straightforward to verify that U(f) is well defined a.e.
(u'), that the equivalence class of U(f) is independent of the choice of
the f, (and hence of the equivalence class of f), and that the function
U possesses all of the stated properties. (In particular, the argument of
the last paragraph will essentially establish (6.10.3), and Lemma 3.4
will establish (6.10.6).) m

We are now in a position to convert Lemma 6.5 into global represen-
tation for (X, 8, u). However, we cannot simply represent each set X, (in
a suitable decomposition for u) by the rectangle X x X, because this
would destroy the information about the “overhang” between different
X,. In order to preserve this information, we shall construct a “baseline”
Y’ < X (which is to serve as a substitute for Y), we shall project each
(sufficiently “thin”) set K € § onto a set N(K) < ¥’ (which is to serve
as a substitute for the set {y € ¥: uy(K) > 0}), and we shall then repre-
sent X, by the rectangle N(X,) x X, in place of X, x X,. (And while
it will be true that N (N(K)) =,N(K), i.e., that N is a genuine projection,
we shall not need to make use of this fact.)

To illustrate these ideas more concretely, let us consider the case
where X = R? equipped with product Lebesgue measure A x A, where
v is the natural projection onto ¥ = R = the x-axis equipped with
Lebesgue measure i, and where T" constitutes the collection of y inverse
images of the Lebesgue measurable subsets of Y. Then the first part
of Theorem 6.11 says, in effect, that we may find a set Y’ < X to replace
Y (for example, Y’ = R x[0, 1] equipped with product Lebesgue measure),
and, given K in § (or, more properly, in the S° of Theorem 6.11), we may
find a set N(K)< Y’ to replace the set P(K) = {z € R: 1,(K) > 0}.
(In this case we may take N(K) = P(K) x[0,1].) Moreover, we may
obtain the sets N (K) (as K varies) in such a way that whenever two
sets K,, K, e 8 “overhang” one another (i.e., whenever P(K,)NP(K,)
is non-null), then the corresponding intersection N (K,)NN(K,) is also
non-null, even though K, and K, may be disjoint. The following diagram
illustrates some of the entities of Theorem 6.11 as they apply to this
example.
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6.11. THEOREM. Let T' be a o-algebra of locally measurable subsets
of X, let 8% (v to suggest “thin”) denote the collection of those sets E € 8 for
which T'|, 18 o-finite (see Definition 6.3), and then, given any set E € 8*
which contains some measurable set K, let Ny (K) denote the set {x ¢ E:
E® yp(x) > 0}, where Q = T'|z. Then there exists a locally measurable set
Y' < X, and, for every set K € §°, there exists a set N(K)e S* such that

(6.11.1) N(K)<,Y';

(6.11.2) u(K)>0 if and only if u(N(K)) > 0;
and

(6.11.3) for any set E € 8° which contains KUN (K), we have N (K)
=, Ng(K)nY'.

It follows that, for G € T", the correspondence KNG—N(K)NG determines
a a-ring isomorphism Ug: [T'|g),~[T"|nmls-

Now let {X, },.4 be a decomposition for (X, S, u) which is such that
T* is complemented in each of the X, (see Lemma 6.9), let U, = Ux_ for
all ac A, and let R = o (U T'| xa). Then there exists a o-ring 8’ < 8§ x 8,

and there exists a o-ring isomorphism U: [8],—[8'], which is such that,
Jor all a e A, we have

(6.11.4) U(X.NQ) =, (N(X)NG) x X, for all G e T';

4 — Dissertationes Mathematicae CLXIV
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and
(6.11.5) 1, (U(B) = p(X.) Uy(kg)(z) a.e. for all E eS|y,

where {u.}..x denotes the standard disintegration of u X u with respect to u.

Remarks. We recall from Definition 6.4 that k; = E®y;, and we
recall the construction of the function U,(%kz) in Lemma 6.10. The assump-
tion of decomposability (q.v.) is not strictly necessary to the construction
of the o-ring isomorphism U. We preserve it in this proof because it
clarifies the construction of U, and because the additional arguments
which would be needed in its absence are entirely routine.

Proof. It is worth pointing out that if ET' xx were well defined for
all K € § (e.g. when g is finite), then we could let Y’ = X, and we could
let N(K) = {reX: ET yc(x) > 0}. Our construction of N(K) in the
general setting is based upon this distinguished special case.

For reference purposes we first make note of two nearly trivial prop-
erties of the set N;(K) which was defined above.

(6.11.6) For all @ € T%, we have Nz(KNG) =, Nz(K)NnG.

(6.11.7) If Fef" and if E < F, then we have Ng(K) =, Ny(K)nE.

We now obtain the set Y’ by means of Zorn’s lemma. Let us declare
that the sets K,, K, € S are essentially totally disjoint (cf. Definition 5.6)
if there exist disjoint sets ,,G, e T* such that K; <, @; for ¢ =1, 2.
Let {K,}, be a maximal family of non-null sets K, € §° which are
pairwise essentially totally disjoint, and define Y’ = sup K., where the

yeC

supremum is taken with respect to the ordering =, (see [27], Definition
2.6, p. 279; Lemma 3.2.2, p. 284).

We next obtain the set N (K) for an arbitrary set K € §°. For every
y € 0, let us consider the set N (K) = KynNKuKy(K). Clearly N, (K)
is non-null if and only if the “companion” set KN N Kux,(Ky) is non-null.
Moreover, because the K, are pairwise essentially totally disjoint, it
follows that, as y varies, the pairwise intersections of these companion
sets will all be null. Therefore, because x is o-finite, we see that at most
countably many of the companion sets can be non-null, i.e., that at most
countably many of the N,(K) can be non-null. Define N(K) to be the
(countable) union of the non-null N,(K). Then property (6.11.1) is evident,
and it is also clear that N(K) is null whenever K is. Moreover, as the
sets K and K, are essentially totally disjoint whenever N, (K) is null,
we cannot simultaneously have u(K)> 0 and u(N(K)) =0 without
violating the maximality of the K,. Thus (6.11.2) is established. Finally,
let eS8 be > KUN(K). Then, in view of (6.11.7), it is not difficult
to verify that N, (K) =, N (K)nK, for all y € C, and so (6.11.3) follows.
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Now it is immediate from (6.11.3) and from (6.11.6) that we have
N(KnG) =, N(K)NnG for all @eT'. It follows, in particular, that
#(En@) > 0 if and only if u(N (K)NnG) > 0, so that the correspondence
KNnG@—N(K)NnG does indeed determine a o-ring isomorphism Ug:
[T'1g], =T IN(E)];;'

We now define U on the measurable subsets of X, for each a sep-
arately. Let R'(a) be complementary to R (and hence to T%) in X, (see
Definition 6.3). Then from Lemma 6.5 we obtain a o-ring isomorphism
Uy: [81x,),~{T|x, % Bt (a)]ux, such that U,(F)=F x X, for all Fe
T'|x_, and such that u,(U,(E)) = u(X,)kg(z) a.e. for all B e 8|y . Now it
follows easily from the Fubini and Radon-Nikodym theorems that
the measures u x u and U, (u) X u sharethe same null sets in T" |y x , X B* (a).
Therefore, in the spirit of Lemma 6.5, we may easily construct a o-ring
isomorphism U,: [T‘]xale(a)]px"A[T‘ Inix g X R*(a)),x, which is such
that Uy(F x E) = U,(F)x E for all FeT'[x , and for all E e R*(a),
and which therefore satisfies u,(U,(@)) = U, (w u,(@)) () a.e. for every
set & € T'|x, X R*(a). If we now define U(E) = U,(U,(E)) forall E € 8|y ,
then property (6.11.4) is evident, while property (6.11.5) follows at once
from (6.10.2).

Finally, we define §' = a( (T N(X,) x Bt (a))), we extend U in the

one obvious way from each of the 8|x_to all of S, and we thereby obtain
the desired global o-ring isomorphism U: [8],—-[8'].x,- ®

It is clear that we may represent (X, S, z) and T" by an explicitly
defined disintegrable measure space (X', &', u', ¥', T, v', ¥', {t, }ycv'),
and, with the possible exception of 7', there are obvious natural choices
for all of the entities involved. The obvious choice for 7" is T"'|g.; the
correct choice is T = o(|J I"|g,). The reason for the addition of the K, is

v

to reduce the sets in T"|y. to manageable size (or, more precisely, to make
T' < 8); however, we note that locally the two o-rings are essentially
the same (or, more precisely, that [T'|g], = [(1"|y)|g], for all E € 8,
as is readily verified).

In the following result we examine what this theorem says in the
special case that u is disintegrable. This special case will help to clarify
the motivation behind the general result, which is somewhat lacking in
intuitive appeal. We shall preserve without comment all of the notation
of Theorem 6.11.

6.12. THEOREM. Let T' = {y~'(F): FeT or F'eT)}, let ac A be
fized, let Y, = {ye Y: p,(X,)> 0}, and let Y, = N(X,). Then, for F € T,
the correspondence Y, NFoY Ny Y (F) determines a o-ring isomorphism
V. [T} l,u],—>[.’["|},:l Ju- Furthermore, for every set E € S|y_, we have

P’::(U(E)) = ”(Xa)#w(r)(xa)‘lVa(y'_'.uu(E))(w)



52 L, spaces

a.c., and, for every index f € A, we have V, = V, on their common domain
[Zlr,nr,l-

Alternatively, there exists a o-ring 8’ < T x 8, and there exists a o-ring
tsomorphism V: [8],—~[8"],., which i3 such that, for all a e A, we have

(6121)  V(X.nyp () =(Y.nF)x X, forall FeT;
and
(6.12.2) ty (V(B) = p(X,)py (X)) ' (BE)  ace. () for all BEe8\x,

where {u,},.y (also) denotes the standard disintegration of » X u with respect
to v.

Note. The assumption of decomposability is not crucial to the con-
struction of V, just as it was not crucial to that of U in Theorem 6.11.

Proof. We begin by establishing the appropriate link between the
“concrete” notion of disintegration and the “abstract” notion of conditional
expectation. To this end, let K € 8° be fixed, and define Y, = {y e ¥:
4, (K) > 0}. Then, in view of the key assumption (2.1.3), it is easy to see
that the correspondence YN F«— Kny~!(F) determines a o-ring isomor-
phism Vi: [T|YK],—>[T‘]K],,. Now let Q = T"|, and let E be any meas-
urable subset of K. Then, for all ¥ ¢ T, we have

pEny™NE) = [ BEp(@) dp(@) = [ u,(B)dv(y)
v I(F) F
= [ Vi u(B)(x)dVg(¥) ()
v 1(F)
(see Definition 6.4, assumption (2.1.3), and [25], Problem 7.b, p. 319).
We thus obtain the desired link:

(6.12.3) E°yg(x) = gx(@) Vg (yu,(E)) ae. for all E eS|,

where gx: K-—>(0, oo) is the Radon-Nikodym derivative of V(v) with
respect to u.

In particular, the relation V (#) = Ua( an(F)) for all F €T |y (and
for all @ € A) shows that V, is indeed a o-ring isomorphism, and we shall
now establish the two stated assertions about ¥V ,. For the first of these,
we allow X, to play the role of the set K in equality (6.12.3), we apply
U, to both sides of that equality, and then from (6.10.4) we obtain
Uu(kg)(@) = U,(g9x,) (@) V,(y— u,(E)) () a.e. In particular, by setting
E =X,, we may explicitly compute U,(gx)(2) = gy (X.)™' a.e,
so that, for an arbitrary set EeS|y we obtain u,(U(E) =
B(X o) e X ) Vo (yo uy (B)) (%) a.c. as a direct consequence of The-
orem 6.11. For the second of these assertions, let f € A, and let F € §°
be > X, UX;UY,UY;. Then, by allowing E to play the role of the
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set K in (6.12.3), we may easily conclude that Ny (X,) =, Eny~!(¥,),
and likewise for g. Therefore, if F € T'is = Y ,n Y, we obtain Enyp~!(F)
<, Ng(X )NNg(X,), and so it follows from (6.11.3) that we have
Eny Y(F)nY' <, ¥Y,nY,. It is now clear that V (¥) and V,(F) are
each =, y 1 (F)NnY,NXy,, ie., that V, = V, on their common domain.

The construction of the alternate o-ring isomorphism V is virtually
identical to that of U. It is simply a matter of using Y as a baseline in
place of Y’. Thus we replace each set ¥, by Y,, we replace each “pro-
jection” U, by the corresponding mapping onto [T'|y_],, which is precisely
Vx., and we consequently obtain ty(V(EB)) = p(X,) Vii(kg)(y) ae. (v)
for every set E eS|, and for every index a € A. Property (6.12.1) is
(again) evident, while property (6.12.2) may be obtained from the above
equality by a brief computation in the spirit of the last paragraph.
(Alternatively, we could obtain V by composing U with a “change of
baseline” o¢-ring isomorphism. It would resemble the map U, which was
defined in the proof of Theorem 6.11.) m

It remains now only to establish that the conclusions of this theorem
are sufficient to ensure that the corresponding L, , spaces are isometrically
isomorphic for all values of p and ¢. This we accomplish in the following
general result.

6.13. ProrosiTiON. Let (X, 8, u, X, T, v, v, {tt,}yey) and (X', 8, u’,
Y, T, ¢, {#y}yey) be disintegrable measure spaces, and assume that
both u and u' are decomposable. Suppose that there exists a o-ring isomorphism
U: [8],~[8'],, and suppose that we may associate with U a decomposition
{X .}acq for u which has the following property: namely, that, for all a € A,
we may specify a o-ring isomorphism V,: [T| Ya],—>[T’|Y'a ), where Y,

={yeX: p,(X,) >0}, and where ¥, ={y e X': p,.(U(X,) > 0}, and
we may specify a non-negative measurable function h, on X, such that p,. (U (E))
= ho(y') Valy py (E)} (y') ace. (v') for every set E € 8| x, Assume, moreover,
that, for all a, p € A,we have V, = V, ontheir common domain [T | Yanyp],.
Then, for 1 < p,q< oo, the spaces L, . (u, B) and L, (u', B) are isome-
trically isomorphic.

Remarks. All of the arguments in the proof below are valid for
arbitrary p, ¢ > 0. As usual, the assumption of decomposability (q.v.) is
required only for the purpose of piecing together a family of locally
defined measurable functions into a globally defined (locally) measurable
function; thus it may be abandoned when both p and ¢ are finite.

Proof. If f: X—B is an arbitrary locally measurable function, then
we may and shall determine a locally measurable funetion I(f): X'—>B
by specifying its values on each set U(X,) separately. Thus, let a € 4
be fixed, let g,: Y.,—(0, co) be the Radon-Nikodym derivative of »'
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(restricted to T” |, ) withrespect to V,(»), and, for (4'-almost) all 2’ € U (X,),
define

I(f)(a) = gal’ (@) ha(y’ (@) U (frx,) (=),
under the usual convention 1/00 = 0. Then it is clear (in particular, from
(6.10.2)) that this mapping I will determine an isometric isomorphism
between the spaces L, .(u, B) and L, ,(x’, B), provided that we can
establish the identity |fll,, = IZ(/)l,, for all fe L, ,(B).
We shall obtain this identity first for a non-negative simple measurable

Tl =] @

A such that K C"jul X, let H =;U1 Yaj, and let H' =le Y;j. Then it

is clear from the compatibility of the V,, that there is a uniquely deter-
mined o-ring isomorphism V: [T|g],—>[7'|g], which extends each of
the V., ; moreover, if g: H'—(0, oo) is the Radon-Nikodym derivative
of »' (restricted to T'|4.) with respect to V(»), then it is clear that, for
each j, we have g = ga, 3. (») on Y;j. Aceordingly, when p < oo, we
may readily deduce the identity

(6.13.1)  (IZ(Hllpy ) = 9@ )V (y=>(Ifllpy )| (%) ace. (v')

by using Lemma 4.2 together with (6.10.1)-(6.10.3) and (6.10.5); fur-
thermore, it is easy to see that we have {y'e Y': u,(U(E)) > 0}
=,V({yeXY: u,(E)>0}) for every measurable set E < K, so that,
when p = oo, we may deduce (6.13.1) by representing f as, for example,
in Lemma 3.6. In view of (6.10.6), the indentity ||fl,, = II(f)l,, now
follows easily in both cases.

With suitable definitions for V and ¢ (and it is clear how to make
them), we may extend the identity (6.13.1) to any fixed measurable
function in L, (4, B) by a routine use of the monotone convergence
theorem (including Lemma 3.4) together with (6.10.3) and (6.10.5). The
isometry itself then follows just as it did for the simple function f. Conse-
quently, if fe L, (u, B) is completely arbitrary, we obtain |fxgl,,
= |I(f) xv@mllp, for all E e § from (6.10.4), and so the identity |fl,,,
= [IL(f)li, , follows immediately from (3.1.2). m

In view of Theorem 6.12, the following theorem constitutes an
immediate corollary of Proposition 6.13, and, just as in Proposition 6.13,
the assumption that (X, 8, u) be decomposable is not crucial when both
p and q are finite.

”n n
function f = 3'¢;xgz,. Let K = ) E;, let {a;)}2; be any sequence in
oo 4 oo

6.14. THEOREM. There exists a o-ring S8’ < SX 8, and there exists
a o-ring I’ < 8 such that, for 1 < p, q < oo, the space L, ,(u, B) i8 1is0-
metrically 1isomorphic to the space L, (X xX,8') uxu, X,T', n, B)
< Ly o(@ X py B).
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Alternatively, there exists a o-ring 8’ < T xS such that, for 1<
Py q < oo, the space L, ,(u, B) 8 isometrically isomorphic to the space
L, (YxX,8"vXu Y,Tyv,B) < L, ,(vX u, B). &

This theorem clearly provides information which is relevant to the
problem of classifying the L, , spaces, as Banach spaces, up to isomorphism
and up to isometrie isomorphism. It is implicit in Lemma 6.8, and more
explicit in [21], that the original decomposition {X }, , in Theorem 6.11
may be chosen in such a way that, for each a € 4, the restriction of u to
T'|x_ is equivalent to product Lebesgue measure on a huge cube ([10],
§38, pp. 154 ff.). (By “equivalent” we mean that there exists a o-ring
isomorphism between the corresponding o-rings modulo null sets, and
by a “huge cube” we mean a cartesian product each of whose factors is
[0,1].) The number of factors in this cube might be uncountable ([10],
Exercise(2), p. 158), or it might be zero (namely, when [T"|x ], = [{3, X, }1.).
We may likewise ensure that the restriction of u to the complementary
o-ring R'(a) is equivalent to product Lebesgue measure on a (possibly
different) huge cube. (In fact both of these equivalences may be obtained
by the transfinite induction procedure of Lemma 6.9.) From this point
of view, the classification problem is naturally divided into two parts:
locally, a study of the L,, spaces which are associated with product
Lebesgue measure on huge cubes; and globally, a study of the various
configurations of “overhang” which emerge when a collection of huge
cubes is piled into a heap. (From an alternate point of view, the classi-
fication problem may be subsumed under the problem of classifying the
subspaces of the L, spaces (see Theorem 6.14 and Proposition 3.27).)

We shall conclude this section with a discussion of the more general
definition of an L,, space which the foregoing results make possible.
Given a (decomposable) measure space (X, 8, z), given a o-algebra 1" of
locally measurable subsets of X, and given 1 < p, ¢ < oo, let us formally
define L, (X, §, #, T", B) to be the space L, (Xx X, 8, uxu, X, T,
u, B) which was mentioned in Theorem 6.14 and explicitly constructed
in Theorem 6.11. Then Theorem 6.14 states precisely that, up to isometric
isomorphism, the more general definition coincides precisely with our
original definition whenever the latter can be given.

The question which arises naturally is: Can we represent these new
L, , spaces just as we did the old ones, namely, by spaces of equivalence
classes of (locally) measurable functions which are defined on X itself?
We shall now indicate an answer to this question for the case p < oo.

Let f: X— B be a measurable function. Then, preserving all of the
notation of Theorem 6.11, we define

(6.14.1) 1130 = (|| X Oa(BR 05 P 2, )] | 2 #4)s
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where the sum is taken over those (countably many) ae A for which
Sfxx, is not a null function. If f is locally measurable, we define

(6.14.2) Iflzg = = sup Ifx&lipe-

Now it is clear that ||fli7, = 0 if and only if f = 0 La.e. Therefore, the
mapping ||-||§'q may be assumed to act upon equivalence classes of
locally measurable functions module locally null functions, and we may
form the space Lff.q(y, B) of those equivalence classes for which expression
(6.14.2) is finite. Proving virtually nothing about this space, we may
establish that it is isometrically isomorphic to the L, space which we
have already defined. To this end, let f: X—B be locally measurable.
Then, in the spirit of Proposition 6.13, we may specify a locally measur-
able function I(f) on X x X by defining I(f)(z’) = u(X,)"? U(fxx,)(a")
for (u'-almost) all 2’ € U(X,), and for all a € A. With the techniques of
this section it is straightforward to verify that I determines the desired
isometric isomorphism.

Now it may be inconvenient to use R (and hence the sets X, of
Theorem 6.11) to obtain the norm ||-||[¥ . Therefore, let {X,},.» be any
other decomposition for (X, 8, u), let R’ = a(U T x ), and replace R

by this a-rmg R’ in all of the definitions of the last paragraph. We obtain
a space LE (u, B) which turns out to be isometrically isomorphic to
LE (u, B), and we shall now indicate how to construct a natural isomor-
phism between the two spaces. Given y € C, we may assume without loss
of generality that X, < X, for some ae A. Let H, = Nx (X,). Then,
for @G € I", the correspondence H NG+~ X NG determines a o-ring iso-
morphism W,: [T"|g Juo—>{T"1x,), and we let h,: X,—(0, c0) be the
Ra.don—leodym derivative of W. »(#) with respect to u (restricted to
Y il x, ). If we are now given a locaﬂy measurable function f: X— B, then
we may specify a locally measurable function I(f) on X by defining
I(f)(z) = h,(x)"""f(x) for all z € X,, and for all y e C. With the tech-
niques of this gection it is (again) straightforward to verify that I|II(f)|Z,
= |IfIE,, and hence that I determines the desired isometric isomorphism.

Continuing in the same vein, we may use the W, and the %, to show,
via Proposition 6.13, that if a different baseline (Y’') and a different
decomposition ({X,},.,) are chosen in Theorem 6.11, then the resulting
L, , spaces will still be the same, up to isometric isomorphism, for all
values of p and ¢. Thus it may be said that the procedure of Theorem
6.11 uniquely determines each of the spaces L,, (X, S, u, T, B), inde-
pendently of how the various ancillary entities within that theorem are
chosen.
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At the same time there does not appear to be a natural choice for
a specific space equipped with a specific norm which we may call “the”
space L, (X, 8, u, T, B). One obvious candidate for a natural expression
(which would be associated with a function f on X) is

(6.14.3) Wl = (|| E™ (IF P2 s 2)3

however, because the sets in T may be too “large”, the conditional
expectation operator EZ' is not well defined in general. In this light the
definition of R (or of R’) may be seen to be an artificial device for cutting
the sets in 7" “down to size” so that a conditional expectation operator
(of some usefulness) might actually be obtained. On the other hand,
since E® is not really the same as ET, its use in the definition of an
“L, . norm” cannot be expected to yield a natural expression. We may,
of course, let R’ (as above) be = T" precisely when 7" is itself a o-finite
o-subring of § (and in particular when y is finite). In this case we are also
free to let ¥’ = X, and under these circumstances it is clear that the less
natural expression (6.14.1) will reduce to the more natural expression
(6.14.3).

We remark, finally, that we are unable to extend these observations
to the case p = oo without introducing ancillary measures directly into
the space X itself (cf. [26], Definition 0, p. 424). However, it is not always
possible to do this in a satisfactory manner ([10], Complement and Detail
No. 1, p. 370), and so we omit further discussion.

7. An application in group representation theory

The aim of this section is to illustrate, for the most part without
detailed proofs, that L, , spaces arise naturally in connection with locally
compact groups, and that they play an especially useful role in the study
of induced representations of these groups.

The notation within this section coincides as far as possible with
that of Rieffel in [24], pp. 481 ff., and detailed existence proofs of the
various entities posited may be found in [2].

7.1. NoTATIONAL CONVENTIONS. Throughout this section the role of
X will be played by an arbitrary locally compact Hausdorff topological
group G. We shall let S denote the Borel subsets of G (that is, the o-ring
generated by the compact subsets of G), and we shall let x be a fixed
left Haar measure defined on 8. To obtain the space (Y, 7, ») in this



68 L, , spaces

setting, we specify a closed subgroup H of @, and we equip this subgroup
with a left Haar measure . Then the role of ¥ will be played by the
set of left cosets of H in G, which we shall denote simply by G/H. We
shall let v be the canonical projection of G onto G/H, and we shall equip
G/H with the quotient topology determined by y. Note, then, that G/H
constitutes a locally compact Hausdorff space in its own right. We shall
let T denote the Borel subsets of G/H, and we shall let v = 1 be a fixed
quasi-invariant measure defined on T'. All of these measures are assumed
to be regular Borel measures, so that, since such measures are always
decomposable ([5], Proposition 41, p. 337), we are free to apply all of our
previous theory. If # € ¢, we shall abbreviate y(z) to #, and we shall
also denote an arbitrary element of G/H by z with the understanding
that, unless it is otherwise specified, « is to denote an arbitrary element
of the set »~!({Z}).

In order to obtain an explicit disintegration of u with respect to A,
we let 4 and 6 denote the modular functions of G and H, respectively,
and we let g: G—(0, co) be a continuous function with the property
that o(xs) = —j% e(z) for all xe@ and se H. Then it is always
possible to determine the measure A in such a way that a disintegration
{t;}scqir ©f p with respect to 1 can be defined by the formula

A(s)

i (E) = o(2)™ 5(s) xe(28)ap(s)
H

for all E € 8, and for all # € G/H (cf. [24], Proposition 10.1, p. 482). Notice
that this expression is independent of the choice of z € p~!({2}) precisely
because the modular functions are homomorphisms. The L,, spaces
which we shall discuss in this section will without exception be defined
in terms of this disintegration.

We shall preserve the notational conventions of Section 4, partic-
ularly in connection with the Banach space B and its dual space B”.
We shall let C,(B) denote the space of continuous functions of compact
support from G to B.

In practice, H and B arise because of the existence of a strongly
continuous isometric representation of H on B. By this we mean a group
homomorphism 8— U, from H into the group of isometric isomorphisms
of B onto B which has the property that, for each b € B, the map s—> U,(b)
from H into B is continuous. We shall assume that such a representation
has been given, and we shall hereafter abbreviate U,(b) to sb. We now
recall that to every representation of H on B there corresponds a canonical
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representation of H on B* which, for s € H and b* € B*, is defined by (b, $b*>
= (87! b, b*) for all b € B. We shall refer to this representation of H on B*
as the dual of the original representation of H on B. Clearly, if the
original representation is isometric, then so also is the dual representation;
and if the original representation is strongly continuous, then the dual
representation is weak® continuous in the sense that, for each 5* ¢ B*,
the map s+ sb* from H into B* is continuous in the weak” topology on B".
We remark that we shall not consider any continuity properties which
a representation may possess other than the two which have been de-
scribed in this paragraph. m

Our primary consideration is the problem of inducing a represen-
tation of & in a natural way from the given representation of H. This
problem has received extensive treatment to date, and among the best
known papers which deal with it we include [3], [15], [16], [20], and
[24]. The general procedure has consisted of the painful de novo con-
struction of a class of L,(B)-like Banach spaces; on each of these spaces
a strongly continuous isometric representation has been constructed
which bears a natural relationship to the original (strongly continuous
isometric) representation of H on B. These spaces in fact turn out to be
subspaces of the L, , spaces; moreover, the induced representations of
G constitute precisely the restrictions to these subspaces of the analogues
in the L, , spaces of the well-known canonical representations of G on
the L, spaces. Two principal consequences flow from this observation:
first, an extension to the general setting of Rieffel’s relatively simple
proof ([24], Lemma 10.10, p. 490) that the induced representations are
strongly continuous; and second, an extension of the entire theory to
a parallel theory associated with the dual representation of H on B*.
Thus our immediate concern is to obtain these canonical representations
of @ on the L, . spaces, and this we accomplish in the three results below.
Because of the basic nature of these results, complete proofs are included.

7.2. LEMMA. Every compact subset K of G has totally finite measure
(Definition 3.9).

Proof. The function o(x)~! is continuous on K, and so is bounded
there by a constant r. Let C = (K 'K)nH. Since H is closed, it follows
that C will be compact in H, so that the ratio 4(8)/4(s), which is continuous
on H, will be bounded on C by a constant d. Now the expression u_(K)
vanishes unless @ € y(K), a set which is compact and which therefore
has finite 4 measure. If, then, we have u.(K) > 0, it follows that we may
choose z to belong to K, so that (x"'K)nH < (. It is now easy to see
that we have u;(K) < rdf(C) < oo, 8o that the map &+ u;(K) is uniformly
bounded. m
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7.3. PROPOSITION. If1 < p, ¢ < oo, then C,(B) < L, ,(B); if, moreover,
both p and q are finite, then C .(B) i3 dense in L, ,(B).

Proof. Since the functions in C,(B) are bounded, the first assertion
is an immediate consequence of Lemma 7.2 and of (3.9.1). For the second
assertion we consider first a characteristic function ygp € L, (D). If F
has compact closure, then, in view of Lemma 7.2 and of the regularity
of u, a straightforward application of Lemma 3.10 will yield the existence,
for every £ > 0, of a compact set K < ¥ and an open set U > % such
that |lyy_ gl <eée I feC,(P)is chosen to be such that yz < < xyp,
then we clearly obtain |xz—fll, , < ¢ as well. Moreover, since every set
E € 8 is contained in a countable union of compact sets, the extension
of this approximation to an arbitrary characteristic function in L, ,(®)
follows from the dominated convergence theorem. In view of Proposition
3.14, the further extension to simple and thence to arbitrary functions
in L, (B) constitutes a standard triangle inequality argument. m

7.4. THEOREM. Let 1< p, q< oco. Then, under the convention that
1/00 = 0, the representation of G on L, ,(B) which is given by

Ip—1}
Q(w) )]P qf(z-lm),

e(z"'z)

(of) (@) = (

where z, x € G, and where f € L, ,(B), is isometric, and it is strongly con-
tinuous if both p and q are finite.

Proof. By verifying the isometry, we also verify that zf € L, ,(B),
so that we clearly do obtain an isometric representation of G on L, ,(B).
When p and g are finite, we have

A 1-ple a
Wfiga = [[elor [Sor(-Eos) T e enpasio]”ae)

6(8) \ o(27 as)
- A8 | elz) \'Pe ap
— /
—f@(m) l[Q("lf')pq lf 3(3) (g(z“m)) If(= ‘wS)Il”dﬁ(s)] dA(z)

N A(s) 1-2/g alp .
= [ et [ i 6(8)( =) Wenrae| a6

e/
- [e( 2y nf(ws)n”dﬂ(s)] da(@) = IIfl.q-
H

The quasi-invariance of the measure A came into play in the third of
the equalities above, and this equality follows specifically from [2],
Theorem 2¢, p. 56. When p or ¢ is infinite, we fix a set Z € S and observe,
by equalities which are analogous to those above, that we have ||(zf) xzllp.q
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= [If(%,—15)lp,q- Since 27 'E varies throughout § as E does, we conclude
in this case as well that ||zfll, ; = [Ifllp,q-

We shall now establish that this representation is strongly contin-
uous when p and ¢ are finite. Because of the density of C.(B) in L, ,(B),
it will suffice to verify the strong continuity for an arbitrary function
f € C,(B); moreover, it will suffice to verify this continuity at the identity
element e of G. Let f be supported on the compact set K, let M > 0 be
an upper bound for the continuous function ¢(x)'?~' on K, let U be
an arbitrary compact neighbourhood of ¢, and define N = ||y, .l ¢-
Note that N is finite because the set U~'K is compact, and hence of
totally finite measure. Let ¢ > 0, define h(x) = f(x)o(z)"MP~0, and let
V be a neighbourhood of e such that V < U, and such that we have
fh(x)—h(y)| < e/MN whenever 2y 'eV ([11], Theorem 15.4, p. 185).
{(We are eliminating the trivial case N = 0.) Since, for each ze V, the
function 2f —f is supported on the set U 'K, a simple computation will
show that we have |2f —fl, < (¢/N)| Xy—1gllog = & The strong contin-
uity of the representation at e is thus established. (Cf. [11], Theorem
20.4, p. 285.) m

For the following definition we recall that we have been given
a strongly continuous isometric representation of the closed subgroup
H on the Banach space B.

7.5. DEFINITION. For 1< ¢< oo, we define K,(B) to be the set
of those equivalence classes in L, ,(B) at least one of whose members
h satisfies the equality h(zs) = s~ 'h(z) for all z €@, and for all se H. m

Note, then, that we have [h(x8)|| = ||k (z)|, so that & is constant in
norm on the left cosets of H. Thus we have (||h|,, #;) = ||h(x)| for any
choice of x e y~!({#}), and from this it follows that we may compute
Illoe,g = (flIR(2)dA(£))"/? (and analogously when g = o), even though
h is in general only locally measurable.

It is now clear that these spaces K (B) (essentially) constitute pre-
cisely the “L,(B)-type” spaces which have been considered in the previous
literature, that the corresponding representations of ¢ which were de-
scribed in Theorem 7.4 may be restricted to these spaces (i.e., that K (B)
constitutes a submodule of L, ,(B) for all ¢q), and that these restrictions
(essentially) coincide precisely with the induced representations of &
which have been considered in the previous literature.

In this light, the fact that these induced representations are isometric
follows at once from Theorem 7.4, while the proof that each space K (B)
is complete reduces to a demonstration that it is closed in L, ,(B).
However, we confess that the proofs are not thereby greatly simplified
(cf. [24], Lemma 10.3, p. 483; and [16], Theorem 2, p. 186).
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It is with the proof that the induced representations are continuous
when ¢ is finite that an appreciable clarification can be achieved. The
general proofs to date have all been of a highly technical nature (for
a detailed example, see [16], Theorem 3, p. 189). In the special case ¢ = 1,
Rieffel ([24], Theorem 10.4, p. 484) defined a bounded, surjective linear
map which we shall call I7,: L,(B)—K,(B), and which possesses two key
properties: namely, that it is intertwining (i.e., that we have IT,(zf)
= 2I1,(f) for all z € G, and for all f € L,(B)), and that the quotient norm
which it determines coincides precisely with the L., norm on K,(B).
In the light of these properties, it is entirely trivial to establish that the
strong continuity of the representation of G on L,(B) implies the same
for the induced representation of G on K,(B) ([24], Lemma 10.10, p. 490).
Now this proof generalizes immediately to all (finite) g once we recognize
that the exact same integral equation which was used to define /7, will
also define a map II: L, ,(B)—>K,(B) with analogous properties. The
technical details of the proof need to be altered only trivially by the
occasional insertion of expressions which involve the function ¢ (in the
spirit of Theorem 7.4). Moreover, because the quotient of a complete
space is also complete, the completeness of the K, spaces (for finite q)
follows as an immediate corollary.

(We remark that inessential differences in detail occur between
Rieffel’s definitions and our own. The definition of II, which is appro-
priate for our definitions is:

4
I,(f) () = o()™" f%sﬂm)dﬂ(s) for all z € G,
H

where fe L, ,(B). When q = oo, this integral is well defined for all
f € L' (B) (Definition 4.7), and determines a map I, whose range we
might denote by K7 (B) — it is, namely, the space of those functions in
K (B) which are supported on the p inverse image of a measurable subset
of G/H. The properties of 17, are entirely analogous to those of the other /7,.)

We shall now outline a theory for the dual representation of H on
B* which is parallel (we are tempted to say “dual”) to the present theory
for that of H on B. In order to give a flavor of the methods which are
involved when strong continuity is replaced by weak* continuity, we
shall present in the following result a weak* analogue of Theorem 7.4.
For this result it will be notationally convenient to treat the elements
of the space LY , (B*) (Definition 4.11) as functions which satisfy (4.9.1)-
(4.9.3).

7.6. THEOREM. Let 1< p, q< oo, and let p’ and ¢’ denote the re-
spective conjugale exrponents (Notational Conventions 4.1). Then the re-
presentation of G on L, (B) may be restricled to Ly, (B); likewise, the



7. Application in group representatior theory 63

corresponding dual representation on L™ (B)* may be restricted to L. .(B),
and on this space it is given by

Yp'— g’
@ = (20" g,

where z, © € G, and where g € Ly, .(B*). (As before, we adopt the conven-
tion that 1/oo = 0.) Moreover, this representation of G on LY .(B*) is
weak* continuous when p and g are both finite, and it is also weak* con-
tinuous when p' and q' are both finite.

Proof. The first assertion is obvious. For the second assertion, an
easy computation will establish that we have (Jf,z2g) = {z7'f, g¢> for all
2z €@, and for all f € L} (B), so that, in particular, the function zg de-
termines a linear functional on L7, (B). Thus we need only to verify that
zg € LY. .(B*), and the only non-trivial part of this verification is the
equality llegll,. » = ll2gll (< oc), where |2g|| denotes the linear functional

norm of zg. However, we have |jzg|] = ||g|l < oo because the dual of an
isometric representation is isometric, we have |jg| = |igl,. , because g
satisfies (4.9.2), and we have ||gll,, » = lizgll, , by precisely the arguments

of Theorem 7.4.

When p and ¢ are finite, the weak® continuity of this representation
follows from the strong continuity of the representation of G on L} (B)
= L, ,(B) (Theorem 7.4). We now present a weak* analogue of the
argument of Theorem 7.4 to establish this fact when »’ and ¢’ are finite.
Again it suffices to verify the weak®* continuity at the identity e of G,
and to this end we let fe L™ (B) and g e LY. ,(B*) be fixed. Then it
follows from (3.1.6) that g may be taken to be supported on a set F € 8,
and a straightforward application of the dominated convergence theorem
will show that it suffices to assume that E is compact, and that [jg(-)|
is bounded by a fixed constant M > 0. Let ¢ > 0, and let U be an arbi-
trary compact neighbourhood of e. Then it follows from Lemma 2.2,
from (3.9.1), and then from Lemma 3.10 that therc exists a number 6 > 0
such that we have |y.ll, , < ¢/6 M |fll,, for every measurable set F < E
which satisfies u(F) < 4. (We are eliminating the trivial case ||fl,, = 0.)
Having fixed such a 4, we now employ Lusin’s criterion of measurability
to specify a compact set K = UF such that u(UE— K) < 6, and such
that f|z is continuous. Let N > 0 be an upper bound for the continuous
function o(x)'*~'7 on K, and define h(z) = f(x)o(x)~ """~  Then & is
continuous on K, and so we may find a finite open cover U,,..., U,
of K such that, for each 7, the diameter of the set h (U;NnK)is < ¢[3SM Nu(E).
(We are eliminating the trivial case u(Z) = 0.) Lebesgue’s covering lemma
will generalize to groups (see [14], pp. 164 ff.; and [11], Theorem 4.10,
p. 20), and so we may find a neighbourhood V of e such that V < U,
and such that, for all x € K, the set V& is contained in one of the U;.
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We shall now establish that we have |(f, 2> —<{f, od! < ¢ for all
2e V. We notice first of all that

[<fy 29> — < 1 = 1< f—f, DI

1/p-1/g
N ‘ f<( 5((:2)) f(zz) —f(2), 9(5”)> du(w)|.
E

We shall divide E into three disjoint sets and consider the above integral
on each of these sets separately. First let ¥ = KNE. Then we have £ —F
=(UENE)—(KNE) =(UE—K)nE, so that u(E—F)< u(UE—-K)
< 6. It now follows from Holder’s inequality that the integral on
E—F is bounded by llgxs_ply. (127 filp.q+ Wflp,) < M lig_zly.e (21fllp.q)
<¢/3. Nextlet #;, = F—(2'K) ={reF: zz ¢ K}, and let ¥, = F—F,.
Since ze V < U, it follows easily that we have F, < z7'(UE— K), so
that u(F,) < u(¢"'(UE —K)) = u(UE — K) < 8. We may threfore replace
E —F by F, in the above argument, and we may thereby conclude that
the integral on F, is < ¢/3. Finally, we consider the integral on ¥,. For
zeF,, we have zz € K, so that ||h(zz)—h(z)| < ¢/3MNu(E). Hence the
integral on F, is bounded by

l/p=-1/q
[ gt i(%) flew)—1(a)
Fa

Putting all of this together, we obtain the desired ineguality

({f, 2g> —<{f, | < ¢, and, since z € V was arbitrary, the weak* continuity
is established. m

We remark that we have been unable to obtain a proof for this result
by exploiting the existence of a weak* dense subspace (for example,
L, ,(B*) (Corollary 4.6)) on which the representation is known to be
strongly continuous. The key to the above argument, and to that of
Theorem 7.4, lies in the appropriate application of the dominated con-
vergence theorem, and our techniques appear to fail in precisely those
two cases (namely, p =1,¢g = oo and p = co, ¢ = 1) when the dominated
convergence theorem can be applied neither to the L, , norm nor to the
L, ., norm.

In order to clarify the parallel between the norm and the weak®*
theories, we shall hereafter regard the space LY .(B*) not as a space
of linear functionals (Definition 4.11), but rather as a space of equivalence
classes of functions g such that g satisfies (4.9.1)-(4.9.3), and such that
the equivalence is determined by the relation “having the same action
on L, .(B) (as specified by (4.9.3))” instead of the relation “equal la.e.”.
That these two relations do not coincide in general is illustrated by [18],
Example 6.3, p. 214. In this light, L ,(B"*) may be regarded as isometri-
cally embedded in (i.e., isometrically isomorphic to a subspace of) Lp,q(B)"'

(@) < M (/3 Mp(B)) p(Fy) < ¢/3.
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as well as L™ (B)* (although, of course, Theorem 4.9 does not apply
to the former embedding). We shall maintain the notational convenience
of regarding the elements of L. ,(B*) as functions rather than as equi-
valence classes of functions.

We are now prepared for the definition of the weak* analogue of
the space K, (B).

7.7. DEFINITION. For 1< ¢< oo, we define KY(B*) to be the set
of those equivalence classes in LY (B*) at least one of whose members
h satisfies the equality h(zs) = s~ 'h(x) for all z €@, and for all sc H. m

As before, the corresponding representations of G which were described
in Theorem 7.6 may be restricted to these spaces K (B*), and we thereby
obtain isometric induced representations of G corresponding to the dual
representation on H on B*. As before, when ¢ is finite, the analysis of
these representations is facilitated by the definition of an intertwining
quotient map ITy: LY, (B*)+Ky(B*) which in this case will also be
weak* continuous (i.e., continuous with respect to the weak* topologies
on LY, (B*) and Ky (B*)). The integral formulas by which IT; and II, are
defined are identical, except for the fact that the formula which is associated
with IT; constitutes a weak®* integral instead of a strong (i.e., a Bochner)
integral. The completeness of the space K2 (B*) now follows from the fact
that II} constitutes a quotient map, while the weak* continuity of the
induced representation of G on K2 (B*) follows from Theorem 7.6 together
with the weak* continuity of II}. (When g = oo, a map /I can be defined
which is likewise analogous to the map IT_.)

Although we have discussed the norm and weak* theories separately,
a2 number of intimate links exist between them. The following theorem
provides the principal link.

7.8. THEOREM. Let 1 < g < oo, let g’ be conjugate to q, and let I' e K (B)".
Then there exists a function g: G—>B* such that:

(7.8.1) g i3 locally weak* measurable, and we have g(zs) = s~ 'g(z) for
all €@ and s e H;

(7.8.2)  lig()ll is locally measurable, and we have | I'| = { flig(x)|* dA ()"
(and analogously when q' = oo);
and

(7.8.3) for all fe K (B), we may compute I'(f) = [{f(x), g(x))di(%).

Moreover, if the space B* is separable or reflexive, then g may be chosen to
be locally measurable, and not just locally weak* measurable. m

In a word, we have K, (B)' = KY(B*) when 1<g< oo. When
g = oo, the most we can expect, and can obtain, is an isometric embedding
of the space K¥’(B") in the space K (B)".

8 — Dissertatlones Mathematicae CLXIV
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We have omitted our somewhat gruelling proof of Theorem 7.8.
In outline, the function ¢ is derived by first obtaining from Theorem 4.9
a function which represents IT(I') e LY, ,.(B*), where II; denotes the
adjoint of 71, and by then employing the principal result of [12] to con-
vert this function into the desired function g. It is worth remarking that
if the existence of a measurable cross section from @G/H into G can be
assumed, then it follows readily that K (B) is isometrically isomorphic
to the space L,(G/H, A, B) for all values of ¢ (cf. [15), Lemma 1, p. 168).
Under these circumstances, Theorem 7.8 follows equally readily from
Theorem 4.9 applied to L,(G/H, A, B).

This identification of K2(B*) with (at least) a subspace of K (B)"
gives rise to two natural questions. First, is there any relationship between
the weak* topology which K (B*) inherits from K (B)* and that which
it inherits from LY .(B") < L, (B)'? They are identical, since the
(injective) adjoint map [T, is weak* continuous in both directions. Second,
is there any relationship between the induced representation of G on
K7 (B*) and the dual of the induced representation of G on K (B)?
They are identical, as an easy computation will show. Thus, in particular,
we obtain an easy proof of the weak* continuity of the induced represen-
tation of G on KZ(B') when 1< g’ < oo.

The final link between the norm and the weak* theories is that which
exists between the maps /7, and II} (where ¢ and ¢’ remain conjugate).
Let us now regard II, as having codomain L ,(B) (instead of its range,
as we did above). Then the domain of the adjoint II; becomes L., ,(B)",
and this space contains the domain LY, (B*) of IT¥. A computation which
is only slightly tedious will now establish that, upon restriction to the
subspace Ly, (B"), the map JI; coincides precisely with IT7. (In fact,
this identification provides possibly the easiest method for establishing
the weak* continuity of II7.)

We remark that when the space B* is separable or reflexive, then it
follows from Corollary 4.12 that we have LY (B*) = L,.(B*) for all
values of p and ¢. Hence we also have Ky (B*) = K, (B*) for all values
of ¢, so that the induced representation of @ will be strongly continuous
when ¢ is finite, even though the dual representation of H on B* need
not be strongly continuous. (However, when B (and hence B*) are reflexive,
then the strong continuity of the original representation of H on B will
imply the same for the dual representation ([24], Corollary 8.8, p. 473).)

The details of the proofs which were omitted from this section may
be found in the author’s dissertation [17).
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