MATHEMATICAL PROBLEMS IN COMPUTATION THEORY
BANACH CENTER PUBLICATIONS, VOLUME 21
PWN - POLISH SCIENTIFIC PUBLISHERS
WARSAW 1988

FUNCTIONAL COMPILER DESCRIPTION

K. INDERMARK
Lehrstubl filr Informatik I, RWTH Aachen, Bundesrepublik Deutschland

Introduction

We shall give a complete definition of a compiler {ront-end using structural-
recursive functions with parameters. For that purpose we choose the sample
language PL/O of Wirth’s book on compiler construction as source language
and an appropriate stack machine code as target language, slightly modified
from [9]. This example is non-trivial in so far as PL/O allows nested
recursive procedure declarations. Therefore, the corresponding runtime stor-
age management has to deal with static link chains or similar techniques.

Defining the translation by structural-recursive functions with parame-
ters has several advantages: it yields a succint, modular, and easily readable
front-end description; inductive correctness proofs are possible, though not
yet carried out; a rapid compiler prototype can be obtained using PROLOG
or LISP because these languages permit recursive function definitions as
programs.

Of course, our case study suggests more, namely taking structural-
recursive functions with parameters as a functional compiler description
language. Since we do not allow arbitrary recursion but only a sort of
primitive recursion, a more efficient implementation than the usual stack
mechanism should be possible. We hope to develop these ideas in further
research.

The paper is organized as follows. In Section 1 we define our source
language PL/O by giving its abstract syntax and denotational semantics. We
assume that parsing has been done and we can therefore proceed by
structural induction on the abstract syntax tree. This technique is not only
used for defining the semantics but also for the translation.

The target language is presented in Section 2. It consists of code for a
suitable stack machine. Again, we formally define syntax and semantics of its
instruction set and machine programs. In particular, this includes a formal

17 — Banach Center 21

258 K. INDERMARK

treatment of activation records and their handling on the procedure stack by
static link chains.

The final Section 3 contains the translation mapping defined by structur-
al recursion, ie, by much the same technique as already used in the
denotational definition of PL/O. However, the translation mapping turns out
to be more complex because the mathematical comfort of infinite objects, e.g.
procedure meanings in environments, is no longer possible : symbol tables
store only a finite amount of information for procedure identifiers.

We have tried to develop a complete formal definition of a non-trivial
compiler front-end. A clear separation of the translation phase from lexical
and syntactic analysis motivates the use of abstract syntax and thereby
permits inductive techniques. Despite our claim of formal completeness we
made an effort to keep the formalism as simple as possible. For our purpose,
it suffices to use partial functions over sets instead of continuous functions
over complete partial orders. In particular, no domain theory is required.
For the same reason, we decided not to enlarge the translation by a formal
error handling. This simplification when compared with the treatment in
Milne’s and Strachey's book [6] is of course due to the structure of our
source language PL/O. Nevertheless, we believe that translating PL/O-
programs into stack code is an essential task of compiling high-level
programming languages.

1. THE SOURCE LANGUAGE PL/O

To illustrate our technique for defining a language translation by means of
structural-recursive functions with parameters we choose Wirth’s model
language PL/O [9]. One reason for this choice is that Wirth gives already in
his book a complete definition of the translation into stack code using
PASCAL. We hope to demonstrate that our functional definition has the
above mentioned advantages. However, what remains to be shown is that
our class of recursive function definitions permits an efficient implementation.

PL/O is an imperative PASCAL-like language which abstracts from
data types and data structures. On the other hand, it is block-structured and
contains nested recursive procedure declarations. Hence, for static scope
semantics the corresponding stack code has to deal with static link chains.

1.1. Abstract syntax of PL/O. Using abstract syntax means that syntactic
objects are regarded as elements of a free many-sorted algebra, not as symbol
strings. This allows the use of structural induction (or recursion) for
defining semantics and translation. For simplicity we do not distinguish
between an object and its denotation whenever possible.

FUNCTIONAL COMPILER DESCRIPTION 259

Int: z (» z denotes an integer %)
Ide: I (» I denotes an identifier »)
IExp: IE: ;=2z| I| IE,+IE))| ...
BExp: BE: :=(lE, <IE,) ...

Decl: 4 : :=4.4,4,
4.: :=¢| const I, =2z,,..., I, =2z,
4,: =¢| varl, ..., I,;

4,. :=¢| procl,; By;...;1,; B,;

Cmd: I': :=1:=1E) begin I';;...;T, end| if BE then I'| while BE do I'|
call 1

Block: B: := 4rI

Prog: P: :=injout I,,...,1,; B.
where n always is a positive integer: n > 1.

We could easily extend the language without affecting the translation
technique as demonstrated during a compiler construction course.

Example program PF

in/out X;
var E;]
proc F;
if (1 < X) then 4

begin E .= (E * X), 4,
X:=(X-1); call F } By
end; =TI¢ J

begin E:=1; call F;)
X:=E T

end.)

Note that we used subtraction and multiplication without explicit
syntactic specification.

1.2. Denotational semantics of PL/O. The formal definition will satisfy
the following conditions for identifiers:

— ldentifiers defined by a declaration A are pairwise distinct.

— An identifier occurring in the command part I" of a block AI" has to
be declared in 4 or in the declaration part of an outer block.

In particular, one may declare mutually recursive procedures.

— It is possible to redeclare identifiers where the innermost level will be
the defining one.

— Static scope: The semantics of a procedure call is defined with respect
to the environment of the corresponding procedure declaration, not of the
procedure call.

260 K. INDERMARK

Semantic domains

Z:=z| z is an integer}.

B := [true, false},

Loc:= o i > 1) is an infinite set of locations.

S:= 0] o: Lec — — Z} is the set of states.

C:=1{0] 6: S — -8} is the set of state transformations. They will be
used as procedure values.

U:=lg| o: Ide — =(Z uLocu C)) is the set of environments.

We have chosen sets and partial functions instead of c¢po’s and conti-
nuous functions since this suffices for our purposes. So we may have e.g. the
empty state o, and the empty environment g,.

Auxiliary functions

To update a function f: A — — B for different arguments a,, ..., a,€ A with
new values b,, ..., b,e B we write:
f[ay/by, ..., a,/b]: A— =B
al- —if a = a; then b, else f(a)
dis: Decl — B tests distinctness of identifiers:
dis (4) = true iff all identifiers declared in A are pairwise different.
last: S — — N determines the last location used in a given state g:
last (o) =n iff 6(a,)e Z
and o(a,,,) is undefined for all k >0
and last (gp):= 0.
Note that in this. paper a state ¢ will always be of finite support. Hence,
last (o) will always be defined.

Semantic functions

Integer expressions denote integers provided that appropriate environments
and states are given.

E:IExpxUxS— -2

E [z]oo:=2
E/[I]go:=if ¢(I) = zthenz
if o(I) = athena(a).

For economy of notation we assume that a missing else-clause means
that the function is undefined in that remaining case.

E; [(IE, +IE;)]¢o:=E,[IE,] 06 +E, [IE,] oo.

Similarly, we get the semantics of boolean expressions.

E,: BExprxU xS — - B

FUNCTIONAL COMPILER DESCRIPTION 261

E,[(IE, <IE,;)]oc:=if E;[IE,] oo <E,[IE,]¢o then true
if E;[IE,]ec 2 E,[IE;]¢o then false

A declaration may change its environment and in case of a variable
declaration also the state.

D: Decl xU xS — = U xS

D[4.4,4,]ec:=if dis (4,4, 4,) = true
then D [4,](D [4,](D [4.] ¢0))
D [e] o6 :=ga
Dconst], =z,, ..., I,sy =244y; Joo:=
if Dfconst], =z2,,...,1,=2,; Joo =¢'o
then o'{1,,,/z,4,1]0
Dvari,, ..., I,]eo:=ifDvariy, ..., 1,] o0 =¢'d’
and last (¢') =1
then ¢'[1,+ /24 ,]0" [2)4,/0]
D{proci,; By;...; 1,; B,; Jeo:=¢[1,/6;, ..., 1/6,)0
where 6, =B{B,]o[1,/6,,....,1,/6,) 1 <i<n)
with least fixed-point semantics.
For the semantics of a procedure declaration we assume static scope, i.c.,
the declaration environment determines the procedure meaning.
A command denotes a state transformation that depends on an environ-
ment.

CCmdxUxS-—-S§

Cclr:= IE] go :=if ¢(I) = a then o [o/E; [[IE{QG]
C(begin I'y;...;I, emd]go:=C[I,]Je(..(C[I]eo)..)
C[if BE then I'|go:=if E,[BE]¢o = true then C[I]¢o
if E, [BE] ¢o = false then ¢
C [[whlle BE do I'|go:=if E,[BE] s = true then C[I"]¢ (C[I'] o)
— if E,[BE] oo = false then ¢
with least fixed-point semantics

Ccall I]go:=if o(I) =0 then 6(o).

Here, one realizes the advantage of mathematical semantics: the mean-
ing of a procedure call is fully determined.by a symbo! table look-up
because in the symbol table the procedure identifier I was bound to the
corresponding state transformation during declaration as required by our
static scope assumption.

A block also denotes a state transformation. However, the correspond-
ing environment will be updated by the local declaration part.

,..

B=Block xU xS —-—S§

262 K. INDERMARK

Bl4r]eo:= C{r|(D{4]¢o)

Finally, the meaning of a program is understood as a transformaion of
integer sequences mapping input values onto output values.

M: Prog x Z* — — Z*

M{infoutl,, ..., I; B](zy, ..., z) :=
if m=n then (0(a,), ..., d(x,)
where 0 = B[B] oo [11/2y, -.., I/ad og [ay/24, ..., 2/2,].

It should be noted that in fact these semantic functions are defined by
structural induction (or recursion) since function calls on right-hand sides of
equations have arguments which are syntactic parts of the left-hand side
argument. In case of the while-command this property could be obtained by
explicitly using the fixed-point operator.

2. The target language SC

Since we describe a compiler front-end for a block-structured language we
choose a stack machine code SC as target language.

Stacks had been invented by Bauer and Samelson [7] for proper
expression evaluation. Dijkstra [3] generalized this technique for compiling
blocks and procedures, including recursive procedures. This problem arose
during the implementation of ALGOL 60. For its solution Dijkstra proposed
a stack where global variables could be handled by pointers (static links)
which allow to read inner stack elements.

Here, we shall use a stack code SC which is only a slight modification
from [9].

The store of the underlying stack machine has three components:
a program counter C, a data stack DS, and a procedure stack PS.

stack machine

C DS PS

program data procedure

counter stack stack

FUNCTIONAL COMPILER DESCRIPTION 263

We prefer to keep data and procedure stack separate leaving their
efficient organization on a real machine as a back-end task.

2.1. Syntax of SC. The set Instr of SC-instructions contains control
instructions, data stack instructions, and procedure stack instructions.

a) control instructions:

JMP(a) (* jump to a %)
JMC(a) (* jump on condition to a *)

for each a = n,-...-n.c N*. The use of tree-structured jump addresses simpli-
fies their inductive computation during translation;

b) data stack instructions:

ADD (» add *)
LIT(z) (* load immediately z #)
LT (* less than =)

for each ze Z;

¢) procedure stack instructions:

CREATE (I, a,t) (% create %)

RET (* return x)
LOD(!, o) (+ load «)
STO(!, o) (* store *)

for each I, 0, te N and ae N*.

The set Code of SC-programs consists of instruction sequences where in
addition each instruction may be labelled by several jump addresses. This
more general labelling supports again our inductive translation technique:

M:=w,: instr,;...; w,: instr,€Code

if n>1, instry, ..., instr, are SC-instructions and w,, ..., w,€(N*)* are ad-
dress sequences where an address must not occur twice, ie.: from
Wy Wy W, =ayl d;0 ... a4, with ;e N* and j # k 1t follows that g; # a,.

In order to facilitate the formal semantics of SC we assume that the
stack machine on loading the machine program replaces all jump addresses
by linear standard addresses. Thereby, an SC-program M
=w,: instr,;...; w,: instr, will be transformed into standard address form:

M = 1: instry; ...; n: instr,

where instr; results from instr; by proper replacement of jump addresses.
More precisely, if an address occurs in the left-hand address sequence w,, it is
replaced by i, otherwise, it becomes 0, the standard stop address.

264

K. INDERMARK

ExampLe. The following SC-program will turn out as the translation of
our example program PF eProg. Here, we assume to have two additional

data stack instructions:

SUB
MULT

and

for subtraction,

for multiplication.

For better readability we put addresses into brackets.

an SC-program

CREATE (0, 0, 1); [1]:
JMP (1); [2]:
[1.1.13: LIT (1); [31:
LOD (2, 1); [4]:
LT; [51:
JMC (1.1.1.2); [6]:
LOD (1, 1); N
LOD (2, 1); (8]:
MULT; [9]):
STO (1, 1); [10]:
LOD (2, 1) [11]:
LIT (1); [12]:
SUB; [13]:
STO (2, 1); _ [14]:
CREATE (1, 1.1.1.2.1.3, 0); [15]:
JMP (1.1.1); [16]:
[1.1.1.213,1.1.1.2]:

RET; [17]:
[1]: LIT (1); [18]:
STO (0, 1); [19]:
CREATE (0, 1.2, 0); [20]:
JMP (1.1.1); [21]:
[1.2]: LOD (0, 1); [22]
STO (1, 1); [23]
RET [24]

and its standard address form

CREATE (0, 0, 1);
JMP (18);

LIT (1);

LOD (2, 1);

LT

IMC (17);

LOD (1, 1);

LOD (2, 1);
MULT;

STO (1, 1);

LOD (2, 1);

LIT (1);

SUB;

STO (2, 1);
CREATE (1, 17, 0);
JMP (3);

RET;

LIT (1);

STO (0, 1);
CREATE (0, 22, 0);
JMP (3);

LOD (0, 1);

STO (1, 1);

RET

2.2. Semantics of SC. The semantics of an SC-program M e Code will be
defined with respect to its standard address form M’. Therefore, it suffices to
consider natural numbers as jump addresses, and we define the set STORE
of stack machine states as follows:

STORE :=C xDS xPS
where C:=N
DS:=2*
PS:= Z*

FUNCTIONAL COMPILER DESCRIPTION 265

A state se STORE will be denoted by
~ s=(c,d,p)
with d=d-1:d-2:....dr
p=pl:p2:...;:pt
This notation indicates that for data and procedure stacks the top is
handled on the left.

Before we turn to the formal semantics of instructions and programs, we
introduce an auxiliary function base for indirect address calculation on the
procedure stack by means of static links.

base: PS xN — — N,

base (p, 0):=1,

base (p, [+ 1) := base (p,)+ p-base (p,)).

ExaMmpLE. For p=2:1:3:10:4:5:1:2 we have

base (P, 0) = 11

base (p, 1) = base (p, 0)+p-base (p,0)=1+p-1 =3,

base (p, 2) = base (p, 1)+p-base (p,1)=3+p-3 =6.

This means that certain procedure stack entries are interpreted as
relative addresses (static links), e.g., p-3 =3 points to p-6.

Instruction semantics
Each instruction instre Instr denotes a state transformation

I instr]: STORE — — STORE;

a) control instructions:
1[IMP(n)](c, d, p) := (n, d, p),

I[IMC(m](c,d, p):=if d =0: d' then (n, &', p),
if d=1: d then (c+1,d, p).

266 K. INDERMARK

Note that the conditional jump instruction requires for execuion a
boolean value on the data stack where 0 means false and 1 true:

b) data stack instructions:

I[ADD](c,d, p):=if d=2z: z,: d'
then (c+1, z, +z,: d', p),
HLIT(2)](c, d, p:=(c+1, z: d, p),
I[LT](c,d, py:=if d=2z;: z,: d'
then (c+1, b: d', p)

0if z, =2 z,,
whereb:=% . ! 2
1if z, <z,;

¢) procedure stack instructions:

I |CREATE (I, a, 1)](c, d, p): =

r——— e,

Here, a new activation record is created on top of the procedure stack. base
(p,)+t+2 is the so-called static link which points to the beginning of the
environment of that record, i.e., to the next active record. The dynamic link
t+ 2 points to the next record. a is the return address, and ¢ is the number
of local storage locations. They are initialized by 0.

I[RET](c,d, p):=if p=sl: dl: a: zy: .0 zgy_3: P
then (q, 4, p).

Execution of a return instruction requires an appropriate activation
record on the procedure stack. The dynamic link di determines the length of
that record which is d/+ 1. The counter is set to the return address a and the
record is popped.

Load and store instructions cause data transfer between data and
procedure stack. Level ! and offset 0 are parameters describing a location on
the procedure stack.

L[LOD(!, 0)](c, d, p):=(c+1, z: d, p)
where z = p-(base (p,)+0+2),
IHSTO(I, o)]](c, d,p):=if d=2z: d then (c+1,d, p)
where p'-(base(p,)+0+2)=:
and p'-i = p-i otherwise.

We illustrate the effect of these procedure stack: instructions by the
following example:

FUNCTIONAL COMPILER DESCRIPTION

c[=] c[E] ps [®
2
2)
3
0s| 6 PSA 3 DS Lo 2
4 2 4 4
7 T‘) 7 7
7 3
3 CREATE (1.2.0) I
static " amic| ————— ™ { .
link 1% link
chain 3 chain
2
12
S
4
8
9
LOD (2.1) RET
c[&] c[Z]
DS| O
os[a] P2 Z psA 3
0 2 7 2
4 4 L
7 7 _
3 _hdynamic static 3 ?ynkqmlc
: 11 link link 11 in
s“t:l:lc 13 chain chain 1; chain
ho
chain 2 2
12 12
15 15
4 4
B \
9

Semantics of SC-programs

Let MeCode be an SC-program in standard address form,

M = 1: instr, ;... ;n; instr,

and all jump labels are in {0, 1, 2, ..., n}.
First, we associate with M 1its transition semantics:

T [[M]]: STORE — — STORE,

T [M](c,d,p):=if 1<c<n

then I [instr.[(c, d, p).

ie.,

267

268 K. INDERMARK

Next, we generate its continuation semantics by iteration:

C |IM]] STORE — — STORE,
C[M](c, d, p):=if ¢ =0 then (c, d, p)
else C[M|(T [M](c. d, p))-

Finally, the meaning M [M] will be a transformation of integer sequen-
ces:

M[M]: Z* — — Z*,
M [M] : = output o C [M] cinput,
where input: Z* — STORE,
input (z,, ...,z,):=(1,¢,0: 0: 0: z;: ...: z,)

sets control to 1 calling for the first instruction and generates an adivason
record for given input values,

and output: STORE — — Z*,
output (0,¢,0: 0: 0: zy: ...: z,):=(2y, ..., Zy)

reads output values from the last activation record.

Note that the data stack will only be used for intermediate computa-
tions and further that computations may only stop with address 0.

It remains to generalize this meaning to arbitrary SC-programs. So, if
M e Code, we simply define

M[M]:= M[M]
where M’ is the standard address form of M.

3. The translation of PL/O-programs into SC-programs

We are now well prepared for defining the translation of source programs
into target programs. As with the semantics of PL/O-programs we shall
proceed by structural induction. However, in denotational semantics we are
allowed to translate our programs into a comfortable mathematical world of
meanings where in particular we may use infinite objects. For instance, a
procedure identifier is bound to its full state transformation in the environ-
ment.

Now, we have to translate into intermediate stack code. Instead of
infinite environments we are forced to use symbol tables where only a finite
amount of information may be stored for a procedure identifier. Here, a
central task will be the proper organization of global storage for a procedure
call by means of static links.

FUNCTIONAL COMPILER DESCRIPTION 269

By structural recursion on the first argument we simultaneously define
the following translation mappings:

trans: Prog — — Code
blocktrans: Block x Tab xAdr xLev— — Code
decltrans: Decl x Tab xAdr xLev— — Code
cmdtrans: Cmd x Tab xAdr xLev— — Code
iexptrans: IExpr x Tab xLev — > Code
bexptrans: BExpr x Tab xLev — —Code

These functions are partial since the syntactic argument may not fulfil
semantic constraints, e.g. identifier requirements.
As parameters we use

leLev:= N for the level of nested blocks,
acAdr:= N* for an unused jump label, and
st cTab for a symbol table
where
st: Ide — —({const} x Z)
U ({var} x Lev x Offset)
v ({proc} x Lev x Adr xSize)

where Offset .= N and Size:= N.

A symbol table will always have a finite number of entries only, i.e.,
|def (sr)] < oco. With a constant identifier we associate the corresponding
integer, with a variable identifier its declaration level d/cLev and its relative
declaration position o e Offset, and with a procedure identifier its declaration
level dieLev, an address aeAdr indicating the first instruction of the
procedure code, and the number seSize of local variables.

Auxiliary functions

The function
size: Block -+ N
defined by
size (4,4,T):=0,
size (A, varl,, ..., I,;4,N:=n

will be used to compute the local storage need of a procedure.
The function

update: Decl x Tab x Adr x Lev — — Tab

performs symbol table entries for a declaration 4 with respect to an unused
jump label aeAdr and the block nesting level [eLev of A.

270 K. INDERMARK

update (4.4,4,, st, a,) :=if dis (4,4,4,) = true then
update (4,, update (4,, update (4,, st, a, §, a, /), a,),
update (¢, st. a,) := st,

update (const [, =z,,..., I, =2z, ,st,a,):=
st [I,/(const, z,), ..., I f/(const, z,)],

update (var I, ..., 1I,;, st,a,l):=

st[1,/(var, |, 1), ..., I./(var, |, n)],
update (proc I,; By;...;I,; B,;, st,a,]):=

st[1,/(proc, I, a-1, size (B,)).

.I,,/(proc, l, a-n, size (B))].

Here we see that a constant identifier is bound to its value, a variable
identifier to its declaration level and offset (relative position in the variable
declaration list), and a procedure identifier to its declaration level, to a new
address and the number of local variables. We shall see in a moment that
this new address will in fact be the start address for the corresponding block
code.

Initial symbol table
As we defined the input mapping for our stack machine by
input; Z* - STORE
with input (z;, ..., z,):=(1,€,0: 0: 0: z;: ...: z,)

we shall use for the variables I, ..., I, of the input/output-declaration in/out
I, ..., 1,; the following initial symbol table

stlly, ..., I,>eTab
with st {1y, ..., (1) 1= (var, 0, j).

This is because the input/output-declaration is assumed to have level 0.
Now, we can construct the translation mappings by structural recursion
on the syntactic parts of source programs.

trans (infout I,, ..., I,; B):= CREATE (0, 0, size(B));
JMP(1);
blocktrans (B, st {I,,...,I,), 1, 1)

The first instruction creates a new activation record for execution of block B.
This activation record is linked statically and dynamically to the input/out-
put-activation record. The standard stop address O will be used when the last

FUNCTIONAL COMPILER DESCRIPTION 271

instruction of the block translation, namely a return instruction, is executed:
control will be set to 0 and the activation record will be removed from the
stack.

The jump instruction sets control to 1 which is the address of the first
instruction of the command translation. This is guaranteed by calling the
function blocktrans with address parameter 1. What follows is the translation
of block B with respect to the initial symbol table, address parameter 1, and
block level I.

blocktrans (AI", st,a, l):=
decltrans (4, update (4, st, a1, 1), a1,),
[a]: cmdtrans (I, update (4, st,a"1,10),a-2, 1)
RET.

Al the beginning, control enters the command translation. Here, a procedure
call vields a jump to some procedure code produced by the declaration
translation. Note that tree structured addresses allow a simple generation of
new addresses a-1 and a-2 from a,

decltrans (4.4, 4,,st,a,l):=
decltrans (4,, st, a,),

decltrans (¢, st,a,)):=¢,

decltrans (proc I,; B,;...; 1, B,; , st,a,l):=
blocktrans (B,, st,a-1, [+1);

blocktrans (B,, st, a-n, [+1).

So, a procedure declaration causes the generation of code. Note that now the
block level increases by one. Moreover, since decltrans and update were called
with the same address parameter (see the definition of blocktrans), it is
guaranteed that the symbol table generated by update contains correct
procedure code addresses:;

cmdtrans ([;= IE, st, a, l):=if st(I) = (var, dl, 0) then
iexptrans (/E, st, |)
STO (I—dl, o).

Integer expression evaluation produces an expression value on top of the
data stack. This value is stored in the procedure stack. The correct activation
record is determined by the block level difference between occurrence and
declaration of variable I,

cmdtrans (beginl",;...; ', end ,st,a,]):=
cmdtrans (I',, st, a1, 1))

cmdtrans (I,,st, a'n, [) '

272 K. INDERMARK

cmdtrans (if BE then I', st, a,):=
bexptrans (BE, st, |)
JIMC(a);
cmdtrans (I, st,a-1,])
[a]:

After evaluating BE on the data stack, a conditional jump instructiondecides
whether the code for I' will be executed or not.

cmdtrans (while BE do I', st,a,):=
[a]: bexptrans (BE, st, |}
IMC (a-1);
cmdtrans (I, st, a2,)
JMP(a);
[a-1]:

Note that because of inductive address generation an instruction nay get
various addresses.

cmdtrans (call 1, st, a, l):=if st(I) = (proc, dl, ca, n) then
CREATE (I—dl, a, n);
JIMP({ca);
[a]:

A procedure call is translated as follows: first, a new activation record is
created. The level difference !—d! explains where its environment on the
procedure stack begins, i.e, where global variable locations are found. The
label a works as return address, and the jump instruction sets control to the
initial procedure code address ca found in the symbol table.

The remaining translation of expressions is straightforward.

iexptrans (z, st,) := LIT(z);

iexptrans (I, st,]):=if st(I) =(const, z) then
LIT (z);
if st(I) = (var, dl, o) then
LOD(I—-dl, o0);

iexptrans ((IE, +IE,), st, l): = iexptrans (IE,, st, I)
iexptrans (IE,, st,])
ADD;
bexptrans ((IE, < IE,),st,l): = iexptrans (IE,, st,)
‘ iexptrans (IE,, st,)
LT.

This completes our functional compiler description. Of course, it remains to
prove that this translation is correct in the following sense:

FUNCTIONAL COMPILER DESCRIPTION 273

THEOREM. For all P =infout I,,...,1,; B.eProg and for all
z=(zy,...,2,)€ Z" we have

M P](z) = M [trans(P)](z).

ExampLE. Instead of giving a formal proof here we apply the translation
mapping to our example program PF:
trans (infout X; AI') = CREATE (0, 0, 1);
JMP (1);
blocktrans (Al°, st <X >, 1, 1)
where st (X >(X) = (var, 0, 1)
blocktrans (4TI, st (X), 1, 1) = decltrans (4, update(4, st (X >, 1.1, 1), 1.1, 1)
[1]: cmdtrans (I, update(4, st <X>, 1.1, 1). 1.2, 1)
RET

update (4, st (X), 1.1, 1) = st (X Y[E/(var, 1, 1), F/(proc, 1, 1.1.1, 0)]
=:stl
decltrans (4, st1, 1.1, 1) = blocktrans (Bg, st1, 1.1.1, 2):
=[1.1.1]: cmdtrans (I'p, st1, 1.1.1.2, 2)
RET:
cmdtrans (I'p, st1, 1.1.1.2, 2) = bexptrans ((1 < X), st1. 2)

JMC (1.1.1.2);
cmdtrans (begin...end, st1, 1.1.1.2.1, 2)
[1.1.1.2]:

bexptrans ((1 < X), st1, 2) = LIT(1);
LOD(2, 1);
LT;

cmdtrans (begin...end, st1, 1.1.1.2.1, 2) = cmdtrans (E:=(E x X), stl,
111211, 2)
cmdtrans (X :=(X-1), st1,
111212, 2)
cmdtrans (call F, st1, 1.1.1.2.1.3, 2)
— LoD, 1):
LOD(2, 1);
MULT;
STO(1, 1);
LOD(, I);
LIT(1);
SUB;
STO(2, 1);
CREATE(1, 1.1.1.2.1.3, 0);
JIMP(1.1.1);
[1.1.1.2.1.3]:

18 — Banach Center 21

274 K. INDERMARK

cmdtrans (I, st1,1.2, 1) = LIT(1);
STO(0, 1);
CREATE (0, 1.2, 0);
JMP(1.1.1);
[1.2]: LOD(O0, 1);
STO(1, 1).

From this evaluation of function calls one sees that the resulting SC-rrogram
is in fact the example program of Section 2.1.

Conclusion

Our case study shows that for defining the translation mapping of a compiler
front-end structural-recursive functions with parameters offer greater flexibil-
ity than just homomorphisms. In [8] Thatcher, Wagner and Wright demon-
strate that for a source language with statements and expressions the homo-
morphic technique in fact suffices for defining semantics and translation.
Moreover, they obtain an algebraic compiler correctness prool based on
initiality. We believe that for block-structured languages with recursive proce-
dure declarations this goal cannot be achieved by homomorphisms since the
meaning of a statement now depends on the environment given by a
declaration. For the same reason a descniption by attribute grammars would
require inherited attributes. Now, Chirica and Martin show in [1] that
inherited attributes can be eliminated, but at the price of enlarging the
semantic algebra by means of function domains. The idea is certainly
applicable to denotational semantics yielding algebraic semantics. However,
the translation mapping has a fixed target domain. We therefore believe that
structural-recursive functions with parameters form an appropriate and natu-
ral class of functions for describing more complex language translations.

The same type of functions has already been used for giving denotation-
al semantics. However, finiteness constraints of compiling demand for a
more subtle treatment. Despite this increase of technical complexity 1t should
be clear that our method supports an inductive compiler correctness proof.
We hope to develop such a proof in a forthcoming paper and compare it
with the different approach of Jones and Lucas [4].

Succinctness and modularity are further advantages, especially for teach-
ing compiler construction. Generation of intermediate code can be treated
with the same formal rigor as lexical and syntactic analysis. In a course on
compiler construction we have demonstrated that other language constructs
such as procedures with parameters or data structures can be handled in the
same way.

Finally, it should be noted that at least a rapid compiler prototype is

FUNCTIONAL COMPILER DESCRIPTION 275

obtainable using any programming language which accepts recursive function
definitions over tree-structured domains as programs. E.g., LISP, PROLOG
and ML are appropriate candidates for this task. However, since their
compilers will not exploit the particular recursion structure of these transla-
tion functions, the resulting implementation might be less efficient than a
more direct, iterative comptler description.

This observation suggests to develop a functional language based on
structural recursion. A first step in this direction is Klaeren's language SRDL
[5]. The close relationship between this class of recursive functions and
attribute grammars as observed by Courcelles and Franchi-Zannettacci [2]
indicates a possible approach to more efficient implementations by carrying
over suitable attribute evaluation techniques. We hope to develop these ideas
in further research.

Acknowledgements. 1 would like to thank Professor H. Rasiowa for her
kind invitation to present these lectures in Warsaw. Thanks are also due to
the Stefan Banach International Mathematical Center and the Deutsche
Forschungsgemeinschaft for their support.

I gratefully acknowledge Herbert Kuchen's help during the development
of this work. He carefully read various drafts and made improving suggestions.

References

[1J L. M. Chirica and D. F. Martin, An order-algebraic definition of Knuthian semantics,
Math. Systems Theory 13 (1979), 1--27.

[2] B. Courcelles and P. Franchi-Zannettacci, Attribute grammars and recursive program
schemes, Theor. Comp. Sci. 17 (1982), 163-191 and 235-257.

[3] E. W. Dijkstra, Recursive Programming, Num. Math. 2 (1960), 312-318.

{4] C.B.Jones and P. Lucas, Proving correctness of implemeniation techniques, in: Symposium
on Semantics of Algorithmic Languuges (E. Engeler, ed.), Springer Lect. Notes in Math. 188
(1971), 178-211.

[5] H. A. Klacren. A constructive method for abstruct algebraic software specification, Theor.
Comp. Sci. 30 (1984), 139-204.

[6] R. Milne and Ch. Strachey, A theory of programming language semantics, Chapman and
Hall, London 1976.

[7] K.Samelson and F. L. Bauer, Sequentielle Formeliibersetzung, Elektron. Rechenanlagen 1
(1959). 176-182; english translation: Comm. ACM 3 (1960)), 76--83.

[8] J. W. Thatcher, E. G. Wagner and J. B. Wright, More on advice on structuring
compilers and proving them correct, Theor. Comp. Sci. 15 (1981), 223-249.

[9] N. Wirth, Compilerbau, Teubner Studienbicher Informatik, 3. Auflage, Stutigart 1984.

Presented to the semester
Mathematical Problems in Computation Theory
September 16—December 14, 1985

