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0. Motivation, results to be used in the sequel

As concerns motivations which led us to studying the object which we
pursue in this paper, the spectrum of L, i.e. the class of lengths of maximal
pairwise elementarily equivalent < -increasing chais of constructible levels,
they come from different sources.

First of all, such sequences coincide with sequences of (standard) models
into which first element of the sequence can be elementarily embedded.

Secondly, the investigations of Mostowski [6] and Wilmers [7] have
shown a number of elements of the spectrum but didnt say too much about
the whole entity. '

Finally, from the Hanf-number properties of its supremum (one studied
here and another from [2]).

We obtained most results of this paper independently. Rasmussen in his
thesis submitted to the University of Leeds in 1973, Marek, later, in
manuscripts circulated starting from 1975. Rasmussen circulated in 1974 a
paper containing a portion of the thesis. Due to M. Srebrny and J. Derrick,
we put the work together. Some of the results were obtained after the work
of each was known to the other.

We are grateful to our collegues: F. Drake, J. Derrick (thesis advisors of
the second author), A. Krawczyk and M. Srebrny for valuable discussions.

The work of the first author was supported by the University of Geneva,
Instituto Venezolano de Investigaciones Cientificas and CONICIT (Venezue-
la) and the project M-37, Mathematics (Poland).

We assume throughout the paper, as our metatheory, the Kelley—Morse
theory of classes. This has several — perhaps not so grave — consequences:
Existence of arbitrarily large « such that L, is a model for the Zermelo—
Fraenkel set theory, existence of satisfaction class for V, finally freedom in
dealing (as we do) with classes not being concerned with their definition.
Most of the results of the paper can be proved in weaker theory, namely
ZF +(2)(Eg)(B > a & Ly = ZF).The spectrum itself being independent from
the (true) theory of V could be successfuly investigated in ZF only.

One thing which may seem slightly odd is that we assume V= L
throughout the paper. For those who do not like it (quite a number of people
in the age when elephantine cardinals run freely) we suggest that they add a
number of superscripts L in appropriate places.
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We study here mostly model theory of constructible levels L,’s. These
are defined as follows:

Lo = 0;

L,y = DefL, (the family of parametrically definable subsets of L,);

L,= U L, (A limit);

v<ia
L= U L,.
veOn
Not only L possesses X, -definable well-ordering but also for each «, L,
possesses a definable well-ordering. This results in that, for each «, there is a
B < a such that Ly = L, and L; is pointwise definable. From .this we
immediately derive the following version of Tarski’s theorem.
ProrosiTION 0.0. For every a, Th(L,) is not definable over L,.

Our assumption, ¥ = L, has the following consequence: Define H,
= {x: |[TC(x)| < ] ; thus H, is the set of those sets which are hereditarily of
cardinality less than » (in the case ¥ = w, we use symbol HC to denote H,).
Then, by Godel’s fundamental result, in L, x © L, = xel,., .

Therefore we have the following

ProrosiTion 0.1. (%)(Card(x) = H, = L,)}.

Thus, in particular, HC is simply L, . Proposition 0.1 is provable in
ZF +V = L and so holds in its models.

In this paper we are going to consider various set theories: These are:
ZF, Zermelo—Fraenkel set theory, ZF + V = L, Zermelo—Fraenkel set theory
with the axiom of constructibility, ZF~, Zermelo-Fraenkel set theory
without powerset axiom, ZF~ + V = HC, where V = HC means “everything
is denumerable”. (Notice that HC satisfies ZF~ +V = HC.)) Another
important theory is KP, the Kripke—Platek set theory. In all these theories
the class L is an inner model of it and the standard models for T+ V =L
(T one of the above) are always of the form L,.

Throughout the paper, with one important exception when we explicitly
state it (Section 7), the word “model” means “standard model” (i.e. transitive
model) or at least “well-founded model”.

We are going to use in the paper the following (only a small part of it
but anyway):

Prorosition 03. If § > w,(new), X 3L, |X|>w,, then L, S X.

Proof. By induction. For n = 0 the result is obvious. Assume it is valid
for n. To show it for n+1, notice that L, < X by inductive assumption, and
so L, €X too (as w, is definable in L, for every { > w,). Prove first that
XnL,,, is transitive which is fairly obvious as xeL, ,, = |x| < w, and
w,eX. Now if XnL,,, #L,,, , then there is a transitive y¢ L, , such
that the contraction function, !, brings y down to L, , . Thus:
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"Xyl =w,” so XED =1'o,

but 2 ' w, = 0, so X |y| = w, and so L, = |yl = w, which means (as y is
transitive) ye L, ., which is a contradiction. =

One of the most important tools of this paper are results concerning the
so-called stable sets.

They are transitive sets X such that X 3, L, ie. whenever yed,,
(Ex)¥ (x, ¥) (where ye X) then there is ze X such that y(z, y).

Now — with the definition we accepted — stable sets are always of the
form L, for some «. Extremely important property of stable sets is their
definability property. Since they are all constructible levels, they are well-
ordered by inclusion. Let ¢, be their enumeration function (which is con-
tinuous).

The result on o, (proved in [1], [3]) is: Elements of L,  , are exactly
those which are Z,-definable in L using parameters from L, U {L,} (or if
you wish just ordinals from o¢,+1). In particular, L, consists exactly of
elements X,-definable in L(and in fact in V). g, is equal to §,, first non-41-
definable ordinal (due to Kripke and Platek ; for the proof of that result see
[1] or [3]). Important fact is that the equality o, = J, is obtained in ZF and
thus holds in its models. Another interesting fact is that L, is the largest Z,-
pointwise definable level (actually the largest X2, pointwise definable p.r.
closed set). This follows from the persistence of X, formulas upwards. There
are X,-pointwise definable sets smaller than L, , for instance L,, where L,

is the least model of ZF. We will meet them in large numbers in Section 6.
The following fact is useful:

Tueorem 04. If a > 8,, L, k= ZF, then 83 = §,.

Proof. By the basis property of Aj-sets of natural numbers we have
8, < 83°. But Ly is Z,-pointwise definable. Thus 63 < §,. m

For §,, the first non-A}-ordinal, n > 3, the situation is more complica-
ted; If « <&,, then = < &, anyway. If a > w,, then simply because
P(w) = P(w) we have:

ProrpositioN 0.5. If o > w,, L, = ZF, then
=,
But what about 6;‘" for 6; < a < w,.Is it 6,7 It is not the case. Here we
have rather unexpected phenomenon:
ProPosITION 0.6. (1) Given a < w,, there is o < fi < wy; such.that
LsE ZF, and Ly “a is ad3 ordinal.

(2) Thus, given X < w, there is f < w, such that Lyf=ZF and Lgk “x is
adj set of natural numbers”.
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Proof. (1) Let ()™ mean here “next admissible ordinal”. We firstly pick
y > a such that y is denumerable in L,+. It is well known that there is a
cofinal-in-w, set of such v’s. (It follows from the following: If y is a non-gap,
ie. (L4, —L)n#(w) # 0, then y is denumerable in L,.; see for instance
[4]1)

Now consider f = 0, ,, the height of the (y+ 1)st model of ZF. Clearly,
0,>yand 6,,, > y" since 6, is never a next admissible ordinal. Thus y is
denumerable in L, and, by construction, L, = “There is only denumerably
many transitive models of ZF + V' = L”. Now the type of those models in L,
is y+ 1. If we show that L, satisfies “y+1 is a 43 ordinal”, then we are done
as a < y and 4} ordinals form a segment. Now the sequence (L, :v < ) is
an element of L; and is denumerable in L; (as y is denumerable there). Also
all 6, (v < y) must be denumerable in L; — otherwise Ly} “There is non-
denumerably many transitive models of ZF+V = L” (by Skolem-Lowen-
heim’s argument within Lj).

Therefore, if 1 is wf” , then:

1) y<n

(2) For all v<y 6, <1

It is not difficult to see that the predicate “o is a type of all transitive
models of ZF+V = L” — if non-empty — is X,. But in our case — as all
transitive models of ZF+V = L (in L;) are in L, — it is X, over L,. This is
translated to X} predicate and by the basis property there is a 43 ordinal
satisfying this predicate. Thus y+1 is a 43 ordinal in L; and so « is 43
ordinal in L,.

(2) follows immediately from (1) and the following fact due to Shoen-
field: If V = L, then the 4] sets of natural numbers are exactly elements of
Ly (n>2). =

We gave only the sketch of the proof of the strange result [6], still it
should be clear that using the same method and somewhat more sophisti-

L
cated theory T, = ZF+(ThL,,»)ﬁ (Ls, being a defined term) and the

following theory T, = T, +“T5y.., has only denumerably many models” we
can keep 4, fixed while making a given denumerable ordinal analytical.
(Not 4}, , though)

Interesting feature of §, is that L, 3,_, L, . (In the case n = 2 it is
stability of L;, plus Levy’s absoluteness lemma.)

In particular, , = | d,, first non-analytical ordinal has the following

property:
Ly, 3L, .

It is also the least such.
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Stability has as its consequence the following important fact (notice that
via Godelization theories are always sets of natural numbers).

ProrosiTiON 0.7. Assume that L, is stable, T a theory in Lgy, TeL,. If
there is B > o such that Lyl= T, then {vea: L,|= T} is cofinal in a and 4,
definable in L, and therefore it has order type a.

Proof. Given gea, the statement
(E§)(0el& L= T)

is true and X, . Thus there is ¢ in « with this property (notice that ¢ and T
are parameters from L).
This gives cofinality. Since stable sets are admissible, we get the rest. m

Finally we come to the questions of definability. There are numerous
possible notions of definability (in an unpublished memoir Mostowski com-
pared several of those). We shall use some of them. The first (of which all
others will be derived) is the notion of the so-called “strong definability in
the theory 7.

Assume that T has arbitrarily large transitive models. An ordinal ¢ is
strongly definable in T iff there is parameter-free formula () such that:

Whenever v > ¢, L, T, then L, = (E! x)y and L, ¥ [£].

Whenever v < &, L, T, then L, 1 (Ex)¥y.

The following will be used:

THeEOREM 0.8. If & is strongly definable in T, L, is stable, Te L, then &
< a.

Proof. Since TeL,, TU{TExy}eL,, because L, is admissible. By
stability, if there is a model L, of T U [TExy™}, then there is one in L,. But
then ¢ <a. ®

In particular, an ordinal strongly definable in any theory is denumerable
and ordinals strongly definable in 43 theories are all in L;, (the same holds
for n > 2 as well and for analytical theories and L;_).

It is an old result of Suzuki that ordinals strongly definable in, say, ZF
are cofinal in 8, but do not fill it up. We will come back to that question in
Section 6.

If one was wondering how much depends is this paper on the choice of
particular hierarchy L, and not, say, on F, of Godel or J, of Jensen, then we
must disappoint him; in our case (of models of KP) L, = J, = F,.

One more convention: If Tis a theory, then 6] is the height of the ath
model of T of the form L,.
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1. Slicing L,’s

If « is an ordinal, then L., ath level of constructible hierarchy, may be
but not necessarily is pointwise definable. Clearly, each pointwise definable ,
level must be denumerable. Since for every aeOn, L, posesses a definable
well-ordering, thus definable Skolem functions, thérefore Def L, 3 L,. Now
Def L, ~ L, for some £. Unique ¢ with this property is nothing else but f(a)
or g(a) of Mostowski [6] and Wilmers [7] (they were discussing the models
of ZF only but there is no reason to restrict ourselves to that case). Let n(x)
be unique ¢ as above. The contraction function n~! contracts Def L, onto
L., and so the inverse function n imbeds elementarily L,,, into L,.
Depending on the theory of L,, = may be the identity map or not. Suppose
that a is limit or even stronger that L, models KP theory (cf. [1]).

ProposiTioN 1.0 (Devlin). If L, = KP+V = HC, then = is the identity.
Proof of it is quite simple, see [5].

ProrosiTioN 1.1. If L, KP+"w, exists” and L, is not pointwise
definable, then n is not an identity.

Proof. Assume that n: L, — L, is an identity map (and elementary
imbedding). Thus #n(a) # a since L,,, is pointwise definable but L, is not.
Thus L, €L,.

Now we have the following fact which we leave to the reader:

If ¢ is limit, e, then:

L, is pointwise definable iff L, = “L, is pointwise definable”.

. . . . L L . o L :
Now, if n is an identity, then w,* = w," and since L, | “w," is

denumerable”, therefore L, = “w, is denumerable” which is an absurd. =
- Note that KP+V =L} V= HC v “o, exists” so Propositions 0 and
1 completely characterize the situation. _

We note that there is"a unique n elementarily imbedding L, into L,
since the element with the definition ¥ () in L,,, (note Def L,,, = L,,)) must
be mapped on the element with the definition () in L,. In general, by
simple cardinality argument, elementary imbedding of L, into L, is not
unique. One easily produces pairs (L,, L;> with as many imbeddings as one
wants.

Prorosition 1.2. If L, ZF~, n: Ly, — L, a canonical elementary
embedding, { = ) mn(g), then L; 3 L,. '

e <ma)
Proof. Assume L, F (Ex)¢(x, j), yelL;. Pick ¢ definable such that

yeL,. Let u be a least such that L, reflects both Exe(x, -) and ¢(:, *) for all
parameters from L,. This can be converted to a definition of x in L,. Thus
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the existential quantifier can be bounded by L, and since u <{,
L, = (Ex),, ¢(x, y) which by Tarski’s test completes the proof. m

To see that the assumption L, ZF~ was necessary note that
L, 3 L; (@ < f) implies that both L, and L, satisfy ZF~ (just for the’
completeness note that if in addition «a* < B, then L, and L, are models of
ZF).

ProrosiTioN 1.3. If { from Proposition 1.2 is less than a, T is a recursive
theory, L= T, then a = 67 .

Proof. All recursive sets are in L,, because L, -3 L,, { < a, and thus
w+1 < a and all recursive sets are in L,,,. Now, given u definable in L_,
L, = “There is transitive model of T+ V = L containing y”. (Because L, is
that model)) The same is true in L, and so L; = “There are arbitrarily large
transitive models of T+ V = L”. Since L, satisfies KP, we have { = 0{ and
thus a = 67 . =

Though we know that the imbedding of L,,, into L, is unique we want
to know something more about it; we assume now that L, ZF ™ +“w,
exists”. The imbedding = maps the ordinals of L,,,, i.c. 7(a), into ordinals of
L,, i.€. a. Since 7 is elementary and so m(a+1) = m(a)+1, n(a) is “sliced” by
n into segments (pieces), namely counterimages of maximal segments includ-
ed in = L,. Since © preserves rank, actually the whole L, is “sliced” by =.

LemMMma 1.4. Imbedding n: L

— L, slices L, into equal pieces of length
L
w,".

n(a)

Proof. Since the ordinal sum and difference of definable ordinals is
again definable, the length of every piece is the same and actually equal to
the least ordinal moved by =.

Thus we need to show that w" is the first ordinal by =, i.. for each
v < w',‘w') n(») =v but m(w ™) # w'™. The second fact was shown in
Proposition 1.1. To show the first one we employ the reasoning of Prop-
osition 1.0. Since it was not given, we show the following:

SusLemMa 1.5. If X 3L,, L, ZF™ +“w, exists”, then X r\(HC)"c is
transitive.

Proof. If ae X ~(HC)™, then TC(a)eXm(HC)L¢ and L, |= “There is a
mapping of w onto TC(a)". One such map fis in X. Since w € X, therefore
Rf= X. Thus TC(a) S X. =

Coming back to our Lemma 14, (DefL,)(HC)" = (Def L,,)r\Lf,'l is
trgnsitivc. Thus n~! is identity on it and so = is identity on each element of
wln(rl)_ ™

Once we know that the first element which is moved is w'{"‘" we can
depict the situation as follows:
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Fig. 1

One easily shows that the segment of <, on which L, is sliced also
have the length w; ol

L
LEMMA 1.6. Lw","" 3 L.
Proof. n is monotone and n(wf’"“’) = w'{“.

L,,
If L& (E)y(x, ), jeLy®, then L, (Ex)r, ¢—(x, ), thus

Lo (Exhr, (%, 07 (x, 77 ().

Picking the appropriate x in L " and using 7 (it is identity on L":,"l‘“), we
get the required x. m

For completeness sake note that in that case L " is not pointwise
definable (though L, is), in particular, o is a crmcal point in the
enumeration of all {’s such that L -3 L"

Coming back to the study of =. We know that = slices n(a) into equal
pieces of length cul"‘“’ and that at the begmnmg they appear (at L,) at equal
distances wi*. This happens until wl"‘“’ piece when there is a jump of the
length (w'*)2. We have in fact

TheoreM 1.7, If { = (0, -{y+ ... +(wi")™-{, is the Cantor's de-
composition of { < n(z) into the powers of w'{""’, then n({) =(w'[')"")'C1+
TR 0 R T o

Proof. First note that Cantor’s decomposition of ordinals is absolute
with respect to transitive models of ZF (since ordmal d1v1snon is). Now,

havmg in mind that n(y%) = n(»)™® and that n(w™) = o™ and that for {
< w,"‘", n({) = {, we are done. =

CorovrLary 1.8. If u < a has in its Cantor’s decomposition in powers of
L .
w,* at least one coefficient greater than w'{"‘", then p¢ Rm.
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Actually we could define a notion of hereditary coefficient of u as
coefficient of u or coefficient of any exponent of the decomposition of y, etc.
Clearly. if ue Rm, all the hereditary coefficients must be less than mf’“". Note
that the result of 1.7 though quite trivial allows to calculate n({) from the
values of n on its exponents. Thus for non-epsilon w.r.t. a)f"“" numbers o,
value = (o) is determined by = | 0. Every cardinal greater than w, is clearly an
epsilon number w.r.t. ;. Thus in this place the jump cannot be estimated
from below. One can develop a whole theory of how n works but this does
not shed new light on its properties.

We consider now the continuity properties of =.

ProrosiTioN 1.9. (a) If Ly, F “cf(@) = w”, then m is continuous in g.
(b) If L= “cf (@) > w”, then n is discontinuous at .

Proof. (a) Let o= U fp, f€Lyy. Then n(e)= U ()

n<aw n(n) < m(w)
= U (=(f)), which gives desired continuity.

n<m

(b) If L, Fcf(e) =% x>w,, then Ly, ko= ) f for some
{<x
fELn(a)‘

Thus L,Eng= U (nf)e- But n(x) > » and f is monotone thus
w({) < =(x)

U (mfey < U (nf), which shows discontinuity. =

{<m(x)

We say that « is sliceable iff there is { > a such that there is elementary
imbedding of L, into L;. We close this section with the following observa-
tion:

ProposITION 1.10. If o is strongly definable (in ZF say) L, = ZF, then L,
is not sliceable.

Proof. Assume n: L, » L,. Thus a < { and for the formula y ()
strongly defining a in ZF+V =L, L | (Ex)¥(x) but L, 71 (Ex)y(x). =

The question: Into how many models can a given pointwise definable
model be “sliced-in” or more precisely: what is their order type under
inclusion, is the principal question we deal with in this paper.

2. Hereditarily éountable, definable elements

LeMMa 2.1. Ly, = Ly, iff the ordinals definable and denumerable in L, and
in Ly, coincide.
Proof. If Ly, = L,,, then, since by the results of Section 1 the ordinals

denumerable and definable in L, are just the elements of a),"“'.' and since
17(6,) = n(65), we have =.
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Now assume that Ly, & L, . Then n(6,) is less than #n(6;) or conversely.
By symmetry consider the case 1(6,) < 1(65). Then Th(Lg,)€ Lyg,)+2S Luyg,) -
Also, being a set of integers Th(Lg) has denumerable constructible order in
Ly, Call it {. But then if { < wy*», then we find that Th(Ly)
= Th(Lyq,)€ Lys,, clearly contradicting Tarski’s truth undefinability
theorem. =

The fact that we were showing the lemma for the case of models of ZF
is not important; ZF~ would do as well. Also let us note the following
proposition with the same (as above) proof:

ProposITION 2.2. If Ly = L, a is hereditarily countable in both models
and is definable in both of them, then there is a formula ® which defines a in
both models Ly, and Ly,.

(Actually 2.2 is again an equivalence) m

We now look at the hereditarily countable ¢lements in L, » being a
cardinal.

Since w, is uniformly definable in L,, for every a > @, we have the
following result about (DefL, )N L, :

LemMMa 23. DefL,, F (DefL,)n L, for all « > w,.

Proof. Inclusion is obvious in view of our previous remark. By defin-
ability of L, in L, (as the set HC of hereditarily countable elements) we find
that the inclusion is proper. m

Similarly we find that (DefL,,,)n L, E (DefL,,)n L,,, etc. and finally
we have:

ProrosiTioN 2.4. If x is definable cardinal, then
(DefL,)N L, F DefLNL, .=

Now, is it true that if », 1 are definable » < 4, then (DefL,)n
N L, E (Def L;) n L, ? Momentary reflection shows that it is not the case;
indeed we have pairs {x;, 4,>, i =0, 1, 2, for which all three possibilities:
E, =P hold.

PrOPOSITION '2.5. For each ordinal £ there is a cardinal n such that
¢eDeflL,.

Proof. Pick least { > ¢ such that w; = {. Then ¢ is definable in L,,, .,
as the difference between the index of the largest cardinal and the index of
the largest fixed point of the aleph function. =

ProposiTioN 2.6. If L, 3 L, then Def L, = Def L.

Note now the following:

ProrosiTiON 2.7. For every {ew, there is a cardinal n such that {+
+1 < DefL,.

Proof. If {e(DefL,)n L,,, then there is a function enumerating {
which is also definable in L, . But since w < DefL,, {+1 = (DefL,)n L, . =
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Tueorem 2.8. There are pairs of definable cardinals (x;, A, i=0, 1, 2,
®; < A; such that,

(1) (DefL,,)n L, E (DefL, )N L,,,
(2) (DefL,)n L, = (DefL,)nL,,,
3) (DefL;,)n L, Z (DefL,,)n L, .

Proof. (1) Take %o = w;, 4¢ = @;.

(2) To see this it is enough to construct one pair of cardinals % < A such
that (DefL,)n L, = (DefL,)n L, , because the lexicographically least is
definable.

Thus pick x as the least { such that L; 3 Land 4 as the least { > x such
that L, 3 L.

(3) Let { = DefLn w,. By Lemma 2.7, { (being denumerable) is defin-
able, together with all its elements, in some L,. Thus picking L,, » > n such
that L, 3L we have (DefL)n L, 2 (DefL)n L, ~and (DefL)n L,
= (DefL,)nL,,. Thus a pair {x,A) such that x < i but (DefL,)n
N L, 2 (DefL)n L, exists; again we pick a lexicographically first such
(which will be not the pair we constructed!). »

The following is the obvious interconnection between Lemma 2.1 and
others:

ProrosiTiON 29. For every a 2 w,, (DefL,)n L, 3L, .=

Since the latter model satisfies V' = HC, so does the former and so it is
transitive and of the form L, and thus we have

ProposiTioN 2.10. (a) Elementary submodels of L, are well-ordered by
inclusion. _

(b) Structures of form (DefL,)n L, , « > w, are well-ordered by inclusion
and are all among those considered in (a). m

The classes considered in (a) and (b) do not coincide; in particular, the
second elementary substructure L, -3 L, is not of the form (DefL,)n L, .

3. Spectrum of L

We start with the following motivation; given L, and L,;, we have L,
= Ly iff n(a) = n(f), and so there is an elementary imbedding of L, into
Lg. Now we ask for a pointwise definable constructible level L,, how many
elementary imbeddings there are of L, into constructible levels. Given such
L,, we can order in natural way (accdrding to inclusion) those levels in
which L, can be imbedded. This coincides with taking a complete theory T
(in our case the Th(L,)) and considering all constructible levels modelling it.
In this way, for complete T, I(T) = tp{a: L, = T}, I, = I(Th(L,)) and SpL
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= {a: (EF)(ZF < T& I(T) = a)}. Thus the spectrum of L, Sp L, is the class
of types of transitive models for complete extensions of ZF+V = L.

An useful tool to investigate types is the notion of strongly definable
ordinal (see Section 0).

We say that a theory T satisfies Wilmers conditions (W) ifl the following
Wi, W2, W3 are true.

WIl:ZF c T

W2: There are arbitrarily large models of T of the form L,.

W3: There is a formula () of Lgr such that T Exy (x) and whenever

Lii=Tand L= y[S], then S =T
~ Note that T having property W3 is not complete. Otherwise the least

transitive model of Tis of form L, and Th(L;)e L, which is absurd since L,
is pointwise definable.

THeoREM 3.1 (Wilmers [7]). If T satisfies W and « is strongly definable in
T, then acSpL.

Proof. [As this is a slight strengthening of the original result of
Wilmers (he proved only case (1)) we give the proof.]

Let 7, be the least ordinal with the following property: There is pairwise
elementary equivalent sequence {L,: B < a) such that: y, = | @ and,
B<a
moreover, (B),(L,, = T). Since a is strongly definable in T, so is y,. (This is
an unpleasant callygraphical exercise.)
Now consider two cases:

(i) a < OF.

Let S be any sequence {(L,: f < a) such that

1° B, <B, < e=L, =L,,

2 Lok T,

¥ Ue =%

B<a

We show that this sequence cannot be extended.

Subcase (1) « = n+1.

Then y, = ¢, and so g, is strongly definable i1, T The strong definition
of g, is void in L,  but non-void in any L; = Tfor { > ¢,. Thus S cannot be
extended.

Subcase (2). a is limit.

If L, # T, then the reasoning of case (1) is good; The strong definition
of y, is void in L, but non-void in any L= T, & > y,.

So assume L, = T. We derive a contradiction assuming S can be

extended. As before we cannot extend S beyond L, . So we show that
L,, # L, . We derive an even “better” contradiction showing that L, is not
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a model of replacement. (Contradicting W1.) Indeed, a < 8, < y,. Thus «
< 7, - Then the class of all models of the theory Th(L,,) below y, which has
the type « is not bounded below 7y, contradicting replacement in 7,. (Note
that we may assume that S consists of all models of Th(L,) below 7,
— otherwise such complete sequence would be of length bigger than « and it
would have an initial segment of length a contradicting the definition of 7, .)

(i) « = 6.

Consider y,. Then 67 < 7, (just by the definition of 7,).

Subcase (1). 67 < y,, ie. a < 7,.

Then the same trick as used in (i) subcase (2) works. Any sequence of
length o with limit y, cannot be extended neither beyond y, nor to 7,.

Subcase (2). « =07 = v,.

Consider the following theory T;; T, is the L-first complete theory such
that L, = “There are arbitrarily large {’s such that L= T\" and T< T,.
Then T, is definable in L, so T; # Th(L,). Since replacement holds in L,, so
tpié: E<a& L= T} =a. .

Take as S, the sequence of models of T; below a. Then as before S,
cannot be extended beyond a and « is also excluded. Thus again aeSpL. =

Definitely SpL is of the cardinality < w, (remember that V= L is
assumed thus continuum hypothesis). In order to proceed with showing that
SpLis quite large we have the following:

LemMa 3.2. If aew,, then

aeSpL< L, | “aeSpL”.

Proof. =. If f > w,, then by the stability of w, the type of the set
(yew,: L, = Ly} is w,. Thus if ae(SpL)n w,, then any sequence witnes-
sing this must consist only of denumerable models and is itself denumerable,
ie. it is hereditarily denumerable and as L, = HC -we find that
L, E “aeSpL”.

<=. Conversely, let L, | “aeSpL”. Let S be a sequence of type «
making a to be in SpL, Se L, . If we were able to extend S beyond w,, then
by previous remark there are arbitrarily large ¢ < w, such that L, = L, (S
= (L, : nea)). But then § may be extended within w, since = is absolute
wrt. L, , a contradiction. m

CoroLLArY 33. w; € SpL<+ L, | (o) (xeSpL).

Now look: L; -3 L, (see Section 0) and so we have:

CoRroLLARY 34. w; € SpL<4, < SpL.

We remind now the following:

THeoreM 3.5 (Mostowski). If T satisfies W3 and T2 KP, then all
elements of the least transitive model of T+ V = L are strongly definable in T.

Proof. The least transitive model of T+ V = L is pointwise definable
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and of form L,. Let z be an element of that model, and let ¥, be its
definition on L,. We write the following strong definition of z in T: (There is

no transitive model of T+ V = L&y, (")) v (There is least transitive model x
of T+V=L&Y(). =

We produce now the theory T satisfying the Wilmers condition (W) and
such that its least transitive model contains whole L;_.
Treat L, as defined term in set theory and consider the following

theory T;.. (being a fragment of true set theory):

L(ﬂ
e = ZFU{V =L} U{®—: ®eTh(L,)}.
Lemma 3.6. If Ly k= Tgpe, then Lk = L,,.
Proof. It is enough to note that Th(L,) is complete and

L.,
®—eTh(L)= L,z &. =
Lemma 3.7. T, satisfies (W).

Proof. W1 is obvious. W2 holds, because T, is true in L. To see W3
notice that the definition of T;,. over L, gives ZFu{V=L}u
u’d?— ®eL,k}, but L,k =L, so it is good old T,.. =

THeoREM 3.8. (a);, (xeSpL).

Proof. By Theorem 1 it is enough to find a theory T such that all
analytic ordinals are strongly definable in T and such that T satisfies
condition (W). T, is a good candidate. We already know that T, satisfies
condition (W), so it is enough to show that 6, < BOSF'“ which by Mostowski
result implies the rest. To show this let us note that L;f Tg. = L,k
= L,,. But L, is the least model elementarily equivalent to L,, and so the
least model of Ty, contains L, . =

Just for completeness of argument note that if f = BTS"“, then
wlﬂ > é,, moreover, in the enumeration of models of Th(L,,), B is a critical
point.

Thus we get:

CorovrLary 3.9. (a),, (xeSpL).

Proof. By Theorem 3.8 and Corollary 34. =

Let us note that the use of Sp L is slightly informal, because the way we
formulated it, One Sp L. But it is just one object and since we show that Sp L
is uncountable, we can digest this informality.

CoroLrary 3.10. [SpLl = w,. =

One asks immediately: is Sp L a segment? We show it is not by a trivial
argument namely seeing that the theory of L has type On. But leaving alone

On we proceed as follows: Let Tbe <, first complete theory having at least
w, models of the form L,. Then T is definable in every L, with 6, > w,.
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Thus T has exactly @, models (actually this type of reasoning is -used
“ad nauseam” in this-paper). The reader may easily prove that w,, w,, ...
..., w,€SpL. Some closure conditions for Sp L will be given below.

To extend our initial segment of SpL beyond w, we introduce the
following convention (for a moment). A class X < Mod: is good iff (1) X 1s
definable in ZF, say by ¥ (-). (2) For each L;e X, ¥ defines in L, the segment
XnL,.

An example of the good class is X' = {Ly: « > w,}; also X*?
= {Lq,: a > w,} is a good class etc.

For a good class X define I*(6;) as follows:

Ix(0c) = tp{eﬂ: Lo’h T&LopEX}, IX(T) = lp{eﬂ: LoﬂGX&Lopk T}.

Finally, set X* = {L,,: 6; > a}.

The notion of strongly definable in X is trivially generalized. The
following are “relativized” versions of the Wilmers and Mostowski
theorems. ]

THeEOREM 3.11. (a) If X is good, a strongly definable in X, then there is an
ordinal 6,€ X such that 1¥(6,) = a.

(b) The least element of X is strongly definable in X.

We leave the proof to the reader. m

Yet, however, the class X“' is good, and, what is more important,
anything strongly definable is strongly definable in X. Thus we get the
following

ProrosiTioN 3.12. If ‘« is strongly definable, then w,+aeSplL.

Proof. Given a theory T with exactly a models above w,, we note that
it has exactly w, models below w,. »

So even without more information on closure properties of Sp L we are
now able to conclude that o, + w,, ®, "®,, least solution of the equation &
= w,, etc. are in Sp L.

All this is easily obtained using appropriate good classes.

4. The width of elements of spectrum

As defined in Section 3, the spectrum of L, denoted by Sp L, is the class
of ordinals which are values of the function I(6;") and thus SpL
= {I(T): T complete, extending ZF & (Ev)(T = Th(Lv))}. (Remember this is
slightly informal as OneSpL)

Given aeSp L, we ask how many theories T are there such that I(7)
= o. Fortunately or not the answer is always the same; the width of any
ordinal v in the spectrum of L, namely the power of the set of those T which
generate the ordinal v is always w, . For the case v < w, and v = On we give
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very simple proof. General case is more complicated. Yet the proof of the
main result of this section allows to understand better what SpL is.

LemMa 4.1. If Ly, . L, are models of the theory “ZF + there exists
denumerably many transitive models of ZF+V = L", then 6, =86, or
Lo, # La,.

Proof. Assume 6, # 0,,. We can choose a formula ¥() which defines
ay in L, and a, in Ly, . (For instance, “The type of transitive models of
ZF+V = L") By the assumption both models satisfy: “The unique ¢
such that ¥ is denumerable”. Consider the following ®(-): “The L-first well-
ordering of w, X, such that X is isomorphic to the unique a such that ¥(a)”.
As a; # a, then objects defined by @ in L,, and in Ly, must be different.
Thus for some new, ne*Unique X such that L, E ®[X] < n¢“Unique
X such that L, = @[X]". Thus Ly, # L, . m

Since ZF+V = L+ “There is denumerably many transitive ,models of
ZF+V=L" has w, models (consider L, , for those a’s which are de-
numerable in L+ — next admissible set), their theories witness to the fact
that the width of 1 is @, . The above proof can be “squeezed” a bit to give
way to all denumerable ordinals. Indeed, assume that there is v < w,; such
that |{T: I(T) = v}| < w (but not 0, this case must be treated separately).
Then the least such v is definable in L, , hence analytical and so, for some n,
v and the upper bound of all complete non-extendable sequences of length v
are smaller than §,. Take the following theory T, in ZF language: ZF +V

L
= L+(Th,_.,")j (where L, is a defined term, denoting L, ). Then again the

theory Tg,., satisfies condition (W) — a variant of the proof for T, works.
So all the ordinals strongly definable in T5,. are in the spectrum of Land,
moreover, given o strongly definable in Tg, . we can choose a complete
extension T’ 2 Tg,, such that I(T') = a. Now, our v is strongly definable in
T,.., (being Aj-ordinal, all of them are strongly definable in T5pe., being
elements of the least-transitive model of T,). So there is T' = T, such
that I(T') = v. But the sequence of models of T” starts after all the sequences
for v are finished! A contradiction! Thus we get

THEOREM 4.2. For every 1 < a < w, the width of a is w,. m

The case of a = On we treat as follows:

Let Qa'¥ denote: “There are arbitrarily big o such that ¥’. We have the
following:

LemMMA 4.3. For every «, Qf (xeDef Ly).

Proof. Given y greater than a, pick first v > 7 such that 8, = v. Then a
is definable in L,, ,, as the difference between the type of well-founded
models of ZF +V = Land larger fixed point for the enumeration of such. m

LeMMA 4.4. For every acw,, QB (a+1 < Def Ly)).
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Proof. Once a is denumerable in Ly, and definable, then there is an
enumerating function for « which is definable in Ly, . But then all elements of
a are also in DefLg, . m

Now we are able to prove:

THEOREM 4.5. The width of On is w,.

Proof. Assume the width of On < w. Then there must be a bound v
below w, on n(8,) such that I(f,) = On. In particular, each w{‘""’«’ < v for
those 6,’s.

Now take those Ly, in which v is denumerable and definable. Once v is
denumerable and definable in one transitive model of a complete theory, it
must be such in all of them. Since there are w, theories and On models, there
must be On of them satisfying same theory and in all of them v is
denumerable and definable so less than w; of some pointwise definable
model Ly such that 1(6,) = On. Thus v < v, a contradiction. »

By a refinement of this reasoning we will prove that every veSpL has
width w,. The case of v = 0 we treat separately.

LEMMA 4.6. If T2 ZF +V = Lhas in L, only non-standard models, then:
T has no standard model.

Proof. By the stability of L, . =
Actually we could take instead of w, any stable ¢ such that TelL,.

LemMa 4.7. Assume that there is acw, such that (T) (“T is complete
extension of ZF+V = L with only non-standard models” = Te L,).
Then there is an analytic a (i.e. x < 6,) with this property.

Proof. Because L,, 3L, . ®

THEOREM 4.8. The width of 0 is w;.

Proof. Otherwise the width of 0 is < w and so by Lemmas 4.6 and 4.7
there must be new such that all the complete extensions with only non-
standard models are in L, (and so they are 4,)). Now consider our theory
Tspec, - The theory Tg,. + “There exists a derivation of 0 = 1 from T,” has no
standard model and cannot be in L;, being a complete X, set. By standard
reasoning this theory is consistent. ®

Now we start the general attack on arbitrary # in Sp L. What we need
to construct is a — cofinal in w; — sequence of theories each realizing f§ as
its type. The sequence of such theories will be constructed by induction. The
basis of induction being that at least one such theory exists is given by the
fact that feSpL.

The theories we are going to produce will be ordered by < in type w, .
Thus speaking of the order type of theories we mean their ordering under
<. Our inductive assumption looks like this:

There is a sequence {Q,: n < a) of theories such that I1(Q,) = f for all
n < a.
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Now, a is denumerable and the sequence (Q,: n < «) is hereditarily
countable. Consider the following class X of models of ZF+V = L:
Lge X <>a is denumerable and definable in Lo &(n),(Q, is definable in
Ly )&<Q,: n < a) is definable in Ly, . (Actually the clauses | and 3 imply 2.
Remember that Q, =< w and so we have:

LEMMA 49. The class X is closed with respect to elementary equivalence
of constructible levels.

Proof. By 2.1 since X consists of those models in which all elements
under consideration are both definable and (hereditarily) countable. u

For each Q,, §, is the full sequence of transitive models of Q,. Let {, be
the supremum of heights of terms of S, and finally A = (J {{,: n < a}.

We are going to produce Q, as the <,-first complete theory with the
following properties (A), (B) and (C).

(A) Mod(Q,) X (meaning transitive models of Q),

(B) 1(Q.) = B,

(C) Q, has no more than B models in L,,,.

For a moment our main task is to show that a theory satisfying (A), (B)
and (C) exists at all. Afterwards we show that its type is f.

The first step is to show that for each L, € X, X n Ly, is definable in
L,,. Indeed, once the elements under consideration are definable in L, we
can easily write that they are definable and denumerable somewhere. The
details are easy to fill up and so we have:

LemMA 4.10. For each xe X, x ~ X is definable in x. This definition may
be chosen uniformly for each “elementary” class included in X. =

Note that by 4.9 an elementary class is disjoint from X or all its
transitive elements are in X.

It is clear that we cannot hope to have one uniform definition for X
itself.

Now define X' = X {Ly,: 1(Qy) > B}. X' is definitely non-empty as
for given ze HC (in our case {a, (Q,: n < a)}) there is a theory T such that
I(T) = On and z is definable and denumerable in all models of T. This
follows by reasoning used to prove that width of On is w,.

Once we know that, consider 8, the least ordinal number such that:
0, > 4 and L, e X'. ’

Let T= Th(L,); we show that Tsatisfies conditions (A), (B) and (C). (A)
and (B) are obvious by construction. Consider L,. The fol-
lowing — for a moment informal — statement @ is true in Lg,: (n),(/(Q,)
= I(Qo)& “Above A there is no element of X'™).

Now, f being definable in L, (as 1(Qo) — remember Q, is definable in
Lq, by construction) we see that X ! (or more precisely X' n L) is definable
in Ly . Using the definition of (Q,: n < a) in L, , we are able to produce a
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definition of 4 in L, . (Let ¥() be this definition) Thus we see that the
statement ¢ can be formallzed Thus we have Ly |= @ and so any model of
Th(Le,) also satisfies &.

We know that the theory T has at least # models and let us remind that
by our standard convention 6] is the height of £{th model of T.

Let A¢ be supremum of helghts of first £ models of Q,.

A picture could (?) help:

Qo 2, Q... n<a
0 Lggo Lg Lg2r
1
2
14 L,?o L,,gl L,,g.
€ <A

Thus we have matrix fxa. In the nth column stand the consecutive
models for Q,, ie. §,.

The ¢th row consists of ¢th models of @y, Qy, ..., Q" (n < a).

Set A, = \J A21. A is the supremum of heights of all models which
appear in our"matrlx before the &th row. In this way, A is nothing else but
Ag .

’ In order to show that T satisfies (C) it is enought to prove that A+ 1
. < 8 (since bétween A+ 1 and 6] there is no model of a theory having at
least § models).

At this point we show by induction on ¢ (£ < B) the following

LemMma 4.11. A, < 6.

Prool. ¢ = 0. Since every Q, is definable in T, Q, is in every model of T.
But then the least transitive model of Q, (which is a contraction of a relation
which is arithmetic in Q,) belongs to the least transitive model of T. Thus
Ao < 07 but, as {Q,: n < a) is definable in T, A, must be strictly less than
T (we use replacement here).

¢ is limit and our inductive assumption is: for all y < ¢, 4, < 0,7 . Then
clearly 1, < 6f. But Ly = T and L, | Ex¥. (Remember that ¥ was a
definition of 4 in Ly .) Thus Lyt T|=(Ex)¥.

But the object defined by ¥ in Lgy is nothing else but 4. Thus 4, < 67 .

Finally we consider the case where ¢ = y+1 for some y. It is enough
just as in the case of & limit to show that

b T
Apry S Oy
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So by way of contradiction assume that 67,, < A,,;. Then we have
A, < 0T <07, <4,,,.But Lyr,, = 1(Q,) = 1(Qo) for all n < a and since
4,4 is the supremum of the heights of models of Q, of length y+1 (all < ),
therefore there must be n < a such that the sequence of models of 9, below
67, has length at most y. Thus all the sequences of models for consecutive Q,
have length y. Thus in Lyr, the formula ¥ again defines 4,. Now the
contradiction is immediate since in Lgr there is a theory with y+ 1 models
which has a model above .. (it is T itself). Thus L‘,:-+l E 1®. A con-
tradiction. =

Thus we get a candidate for Q,, the <, -first complete extension of ZF
making (A), (B), (C) true. Call it Q, which is reasonable in view of the
following:

Lemma 4.12. 1(Q,) = B.

Proof. By choice of f, 1(Q,) = . Remember that a is definable and
countable in every model of Q, and same for (Q,: n < a). So let us consider
the sequence (L,gu: ¢ < B) and show it cannot be extended. Otherwise 9,‘,2'
exists. First consider () 0?‘. There are two cases: f non-limit and B limit.

g<p

If B is limit, set v= | 0?“. We show that L, K Q,. Indeed, if so then
&<p

B is definable in L, (as 1(Q,)) and the replacement would be violated in L,.

Thus v < 0,?". In particular, 1 < 93“ and so Hf,?’ > A+1. Now we simply

show that Q, is definable in L,gu. Indeed, the following defines Q, in Lgg-:

“< first theory satisfying (A), (B) and (C)”. This is a clear contradiction.
If B is not limit we proceed similarly ; we leave this case to the reader. m
All our work until now is summed up in the following:

THeoreM 4.13. Given feSpL, the width of B is w,.

Proof. We have shown that in the process of construction any de-
numerable sequence of theories with the type f can be prolonged. Thus the
sequence of theories having f models is cofinal in ¢, and so has the type
;.

The rest of this section will be devoted to the analysis of the above
proof. First let us note the following

THeoreM 4.14. If B+1eSp L, then feSp L.

Proof. Let T be such that I(T) = f+1.

Let ‘X be the class of those L, in which T is definable. Clearly, X is
closed under elementary equivalence and “xe X™ is definable in every element
of X. Now as in the proof of Theorem 4.13 pick < ,-first T' such that:

I(TY) = B+1, Mod(TYH c X
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(meaning transitive models of T'). Consider ', ie. (f+1)st model of
T!. T! is definable in every model L,, whenever Ly e X, 6, > 9;1. Thus S,
being definable from g+1 = I(T"), is also definable there.

Thus the following can be written in Lg; and is satisfied in L,,;l:

I(T") = p&“all models of T' are in X”. In particular, Lor
E(ET?) (I(T? = p&“all the models of T? are in X”).
But look: T' is not definable in Lyt and so the <,-first object T

making the above existential formula true is not T'. Ty has f models within
Lyyt. We show that it cannot be prolonged. Otherwise there is 8; > ;' such

that Lg = To. (Note that 6, = 7' is automatically excluded as T, # T')
Now since some models of T, are in X, all of them are in X and so, in
Le: T is definable, f+1 is definable, B is definable, T! is definable and
finally 67, is definable so T, is definable.
So T, is definable in Ly, so Lg b* To. A contradiction. m

In view of the fact that SpL is not a segment Theorem 4.14 says that
every gap must finish in a limit place. Actually by the same method stronger
results could be obtained, as we will see later. Also a gap is Sp Lcannot be
finite.

The reasoning of our Theorem 4.13 gives another result:

Namely, define iSp L (incomplete spectrum of L) as follows: We extend
I(T) to, possibly incomplete, T2 ZF and put iSpL = {I(T); TeL}. One
would suspect that iSp L is larger than Sp L but it is not the case;

THEOREM 4.15. iSpL = Sp L.

Proof. Clearly, SpL < iSpL. Let a€iSp L. ‘We want complete T such
that I(T) = a. So let Ty be < -first theory with & models of form L,. Let ¢
be supremum of the heights of models of T,. The reader is right in his
suspicion that we take X as {L,,: T, is definable in Ly }. As before X is
closed under = (for transitive models).

Moreover, “xe X" is definable in all elements of X. Now take as T the
< -first complete extension of ZF+V = L such that

(a) Transitive models of T belong to X,

(b) I(T) > B,

(c) T has no more than f models in L,,,.

Actually by choice of g, if (a), (b) are satisfied, then (c) is satisfied.
Routine proof shows that T with properties (a), (b), (c) exists and that it has
exactly f models. This completes the argument. m

Slight variation of she proof shows that we really do not use the fact
that we deal with models of ZF. And in fact if T is a recursive theory,
KP < T, then we may deal as easily with Spy L (thus SpL is Sp, L).

If one works a bit the proof of the following may be obtained.
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THEOREM 4.16. If Tis a recursive extension of KP which is true (what we
use really is that they are arbitrarily large levels modelling T), then Spr L
=SpL. =

But then once we realize this, a different thing comes to consideration:
In the proof of the main result of this section we never used the fact that the
function 0?" is generated by ZF set theory. We just used it to produce the
sequence of ordinals (4,: £ < B). Once those ordinals were produced we
produced a theory T containing ZF such that:

Ae < 6]

this was in turn used to show that I(T) = §.

So let f,(®) =6 be a 4, function defined on an initial segment of
ordinals with hereditarily countable parameter a. (Think about f as, say, 67,
where T is our parameter.)

Then by following the argument in the proof of Theorem 4.13 we can
show that if § is domain of such function, then feSpL. Actually we can
prove that there is a theory T such that its enumeration function majorizes
f.(&) for £epB. Thus we sketched the proof of the half of the following:

THEOREM 4.17. Sp L is the class of ordinals being domains of A,-functions
Jrom initial segments of On into On with real parameters.

The proof of the other half is trivial as 6], is a 4,-function defined on
initial segment of On into On in the parameter T. This result generalizes both
Theorems 4.15 and 4.16. »

5. Non-uniform strong definability

In this section we discuss properties of the uncountable members of
Sp L. The methods used are an extension of those of Wilmers (see Section 3)
and some reasonings of Section 4.

First we introduce a weaker form of the notion of a “good” class
(introduced in Section 3). Let X be a class included in Mod,, P()
a property. We will say that P is non-uniformly definable for X iff for each
age X there is a formula ¥ (-) such that for any model L,e X, if L, = L,, then
Y defines PN L, in L,. We shall say that a class X is usable iff the property *
“xe X” is non-uniformly definable for X. Note that we encountered usable
classes in Section 4.

Also we feel obliged to warn the reader that in the definition of P in
elements of X the same formula, ¢, defines P in elementarily equivalent
models in X but different formulae may work in pairs of models which are
not elementarily equivalent.
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These concepts will be very useful, because we know (Section 2) that in
elementarily equivalent models the same sets are definable and hereditarily
countable (in the sense of the models); moreover, the same sets (heriditarily
countable in the sense of the models) are defined by the same formulae.

Now suppose ae HC (i.e. ae L,,,). Let X, be the class of models of ZF in
which a is both definable and hereditarily countable. Then using the above
remarks the following is obvious:

LemMma 5.1. (1) If ae HC, then the class X, is a usable class.
(2) X, is closed under elementary equivalence. m

The notation X, will be used extensively in what follows, usually with a
as a theory (i.. set of natural numbers) or a sequence of theories.

The following will be useful:

If X is a class of models of ZF and acOn, X (a) denotes {L,eX:
v 2 al.

In particular, X,(2) = {L,: v 2 a and a is definable and hereditarily
countable in L,}.

Similarly as the strong definability was a variant of definability we
introduce now the concept of a non-uniform strongly definable element for a
class. (Before we dealt with strongly definable ordinals but as V = L both
notions boil down to the same thing.) We say that a set a is non-uniformly
strongly definable for a class X (n.us.d. for X, for short) if for each L,e X
there is a formula ¢(-) such that for any model L,e X whenever L, = L,
then if aeL,, then ¢ defines a in L,, otherwise L, T1Exo(x).

This is the non-uniform analogue of the concept of strongly definable
element. It is equivalent to say that a set a is n.us.d. for a class X iff a is
strongly definable in every Y X, where Y is an elementary class defined by a
complete theory.

The following is again straight-forward: :

LemMa 5.2. (1) If a set a is nu.sd. for X (o) and B > «a, then a is nu.sd.
for X(p).

(2) If « is nusd. for X and X is usable, then X (a) is usable.

(3) If acHC, then a is nusd. for X,. =

At this moment we wish to obtain results for these new concepts similar
to those of ‘Wilmers (see Section 3). Suppose that X is a usable class and that
we want to show that for an ordinal f there is a complete theory T
(extending ZF) such that

1IX(T) = 8.
Such a theory, if it exists, must clearly have at least § models in X. The

following lemma shows that classes of the form X,, where aec HC, always
contain models of such a theory.
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LemMMA 5.3. Given X, (ae HC), then there is a complete extension T of ZF
such that:

(A) All models of T are in X,;

(B) I**(T) > B (and hence 1(T) = B by Lemma 5.1(2)).

Proof. It was shown (in Section 4) that there are w, distinct theories
for which I(T) = On. The heights of the minimal models of these theories are
cofinal in w,. It is therefore possible to find a theory in whose minimal
model a is both definable and hereditarily countable. (Simply by choosing
a theory whose minimal model contains both a and an injection of a into w.)
Such a theory satisfies both (A) and (B). =

‘Now we can prove a result analogous to the theorem of Wilmers (see
Section 3).

THEOREM 5.4. Suppose the ordinals a and B are nu.sd. for a class X,(a)
and suppose there is a complete extension T of ZF whose models are in X, and
which satisfies:

(A) All models of T are in X,.

(B) I(T) = B.

(C) There are no more than B models of Tin L,.

Then BeSpL.

Proof. For each complete extension T of ZF satisfying (A), (B) and (C),
let ¢j be the supremum of the ordinals of the first § models of T.

Let g5 denote the least of such ordinals, i.e.

(*) @¢p =N {ef: models of T are in X, and
I(T) > f and T has no more than § models in L,}.

Now let 4 = max(a, gz) and consider the class X,(4). Since A > « and a
is nusd. for X, (2), « is nus.d. for X,(4) (by Lemma 5.2). Similarly, since
B < ¢4 (obviously) and g < 4, f is nus.d. for X, (4). Further, a is n.us.d. for
X,(4) (again by Lemma 5.2) and so X,(4) is usable class.

Thus, given definitions of a, B and a, it is clear that (x) can be formalized
and since the same definition for a, f, a work in pairs of elementarily
equivalent models from X, (), therefore the same formula defines g, is every
such pair of models. That means that gz is n.us.d. for X,(4) and therefore A
is also n.us.d. for X, (4).

Now let Q denote the < ,-first complete theory satisfying (A), (B), (C)
and the following:

(D) The supremum of heights of the first p models of Q is g,.

The conditions of the theorem and the definition of g, ensure that Q
exists. Just as in the case of our proof of 3.1 we claim that

Q) =§.
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We already know that I(Q) = B and that Q has no more than  models
in L,, and hence it must have exactly f models in L,. (By the definition of
L;,.) Now consider X,(4).

Q has no model in this class for as we have seen a, B, g5, and finally A
are n.us.d. for X (A). In particular, therefore, if L;e X,(4), then a, a, B, 04, 4
are definable in L; and thus so is the theory Q. Thus Q # Th(L;) (see
Section 0).

So Q0 has no models in X,(4) and exactly f models in L,. As
Mod(Q) € X,, this means that I(Q)=5. =

The above result will be used constantly below. We have already shown
that Sp L does not consists of an initial segment of the ordinals but that it
contains all the countable ordinals. Let 4 denote the first ordinal not in Sp L.
Since |SpL| = w,, é also has cardinality w,. The following gives further
information about this ordinal §.

THEOREM 5.5. & is stable ordinal.

Proof. Assume ¢ is not stable. Then, since the enumeration function of
stable ordinals is continuous, therefore there is the largest stable ordinal, 6~
say, below §. As é is not stable it must be X, definable (in L) from 6~ and
parameters in 6~ (see [3], Theorem 4.4). That is, for some 4, formula ¢:

(*) x=0<=(Ey)Q(x,y, 05, .0, Ay, 07 ),

where «;,, ..., a, are in 6. By the definition of , 7, «,, ..., 2,€Sp L and so
there are theories Ty, ..., T, such that:

M=o ((=1,...,n, I(T)=05".
Let S = (T;, ..., T,) and consider the class X¢(37).

The sequence, S, and hence the theories T, ..., T, are all definable in
each model in this class. Moreover, by Proposition 0.7 all the models of
Ty, --., T, are in L,- . If follows that 67, «,, ..., 2, are all n.us.d. for X5(67)

(the definition of «; is I(T;), the definition of §~ is slightly more complicated).

Now pick the < -first y making (%) true, call it y,. Thus
@08, yo, %y, ..., 0y, 07).

Consider the class X! = {L,e Xg(67): 8, yoeL,}. As the formula ¢ is
4, it is easy to see that X! is a usable class. Now let T be the < -first
complete theory satisfying:

(A) Some models of T are in X!.

(B) I(T) = 6.

(C) T has no more than & models in L,, where a is Mod, (yo).

We need to show that T exists. By Theorem 5.4 there is a theory satisfying

(A) and (B). Any theory which satisfies (A) and (B) must also satisfy (C). For
suppose a theory T satisfies (A) and (B); then T has a model L, containing
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Yo. Also, by (A), L,eXs(6") and a, ..., a,, 6~ are definable in L,, by
formulas ¢,, ..., ¢,, @o say. Then L, (Exo, ..., x) (/X\ @:(x;) & (Ey, y,)
©(y1y2, X)), where ¢ is the formula from (x).

This sentence must be true in all models of T; suppose that L, is a
model of T with n > 6. Then ¢, ... ¢, define 67, «;, ..., a, in L, so

L, (Ey,y2) o1 y2, d,67).

Thus yoeL, and so n > a.

Using Proposition 0.7, we see that T has no more than 6~ models in L,
and (C) is satisfied (as 4~ < d). As in the preceding theorem we can easily
show that I(T) = é contradicting the definition of §. Thus é must be
stable. =

Similar reasoning gives stronger result:

THEOREM 5.6. & is a critical point in the enumeration of stable ordinals.

Proof. Assume not. Then ¢ is the ath stable ordinal for some a < J.
But then aeSp L and so let Tbe a theory such that I(T) = a. Then, since all
models of T are in L; (by Proposition 0.7), « is n.us.d. for the class X (9)
(the definition is “I(T)"). Moreover, the set [&: & is stable& ¢ < 8) is
absolute for this class (see'Lemma 4.11 of [3] and the fact that if L, 3, L,
then for all > «, L, -3, Lg).

But then ¢ is n.us.d. for X (d) (the definition is “ath stable ordinal”) So,
by Theorem 4, 5eSp L contradicting the definition of 4. (Note that condi-
tions (A), (B), (C) are satisfied by virtue of Proposition 0.7 and Lemma 5.2
Thus J is Oth stable ordinal. =

The length of the first gap in SpL may be now estimated: Let 6* the
first stable ordinal above é.

THEOREM 5.7. 6*eSp L.

Proof. We note that the class of stable ordinals below given stable
ordinal 7 is absolute for models of ZF containing 7. Thus the formula “x is
the least ordinal not in SpL” strongly defines é for the class Mod,q(6*).
Thus 6* is also strongly definable (and hence n.u.s.d.) for this class — it is
defined as the first stable ordinal after 5. Hence, by Theorem 54, *eSpL. =

Note that L, ¥ ZF.

The methods above can also be used to investigate some closure
properties of Sp L. Although Theorem 4.17 implies most of them we will still
prove them directly using Theorem 4.13.

Suppose that P() is a II,-property of ordinals such that:

(i) {x: P(»)} is unbounded,

(ii) (2)(P(x) = x is stable).

Examples of such P can be given now; for instance, the weakest such
property is “x is stable” which is I1, (see footnote (%), p. 187 of [3]). But, for
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o

instance: “» is cardinal”, “x is solution of the equation w, = a”, “x is
inaccessible cardinal” (under appropriate assumptions) may serve as exam-
ples of such properties.

For each ordinal a, let P*(x) be the least ordinal above a with the
property P. We have the following:

THeoreM 58. If P is II, and has properties (i) and (ii) above, then
whenever BeSpL, P*(B)eSpL.

Proof. If — by chance — P* (B) is denumerable, then there is nothing
to prove (by Corollary 3.9). So assume P* (f) = w,. Let T be such that

I(T) = 8.

Then f is n.us.d. for the class X, (P*(p)) (as usual is defined by “I(T)").
Further, since P(f) is I, and P*(f) is stable, the class:

: P(x) A x < PT(B)]

is absolute for X; (P*(B)). Hence P*(f) is n.usd. for X, (P* (B)) (again as
in the proof of Theorem® 7.7 we have the following definition: “The first
ordinal with the property P(:) above B”). So once again we apply Theorem
5.3 to show P*(B)eSpL (again we use Proposition 0.7 and Lemma 5.2 to
check (A), (B) and (C)). m

Looking now at the I, properties exhibited above, we see immediately
the following:

CoroLLARY 5.9. SpL is closed under:

(a) Successor stable ordinal,;

(b) Successor cardinal;

(c) Successor solution of the equation w; = &;

(d) Successor inaccessible cardinal (provided it exists).

In fact, if P is IT, property satisfving (i) and (ii) and P*® is the enumeration
of the ordinals with the property P(-), then whenever acSp L, P*eSp L. Thus if
aeSp L, a-th stable ordinal, a-th cardinal, etc. are in Sp L.

Now we could use Theorem 4.17 to prove “ordinary” closure properties
of SpL. The proofl of the theorem below shows this directly.

We say that n-ary function f: On" — On is non-decreasing iff for all
- TR

max (o, ..., a,) < f(a, ..., a,).
Also f is non-uniformly definable for a class X iff the predicate
f(ay, ..., a,) = B is non-uniformly definable for X.
THEOREM 5.10. Suppose a,, ..., a,eSpL and T,, ..., T, are such that o,

=IT)(=1,...,n). If f is non-decreasing, non-uniformly definable for
X1, and f(ay, ..., a,) = B, then feSpL.
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Proof. Again we will reduce it to Theorem 5.3.

Let o, = U{¢: L 7:}, e = .Ql Qi-

Consider X1, .r,(0). 2y, ..., a, are nusd. for X, 7. (e) and thus
o are g, ..., 0, and finally so is g. Take y = max(f, ¢). Then both § and ¢
are n.usd. for X ¢, . r,5 (7). (Since f is non-uniformly definable for this class.)
So y is nusd. for X7 r5(y). We now wish to appeal to Theorem 5.3 to
show BeSpL but we need to show that there is a theory satisfying
conditions (A), (B) and (C). This can be done: Lemma 5.2 takes care of (A)
and (B) and the proof that there is a theory satisfying (C) also follows the
lines of a similar proof given in Theorem 4.8. We leave the details to the
reader. Thus BeSpL. n

CoroLLARY 5.11. SpL is closed under ordinal addition, multiplication,
exponentiation, etc. m

6. Solution to a problem of Wilmers

In [7], G. Wilmers, while considering the ordinal u, the first non-
strongly-definable ordinal (in ZF) asks whether L, = ZF. He shows simul-
tancously that

u= U 014'
§<u
We settle the problem in negative showing that
U= 6'2“‘, where ¢ = 0,.
We have first the following:
Lemma 6.1. If n is strongly definable in ZF, then n is denumerable in
Lon+2.

Proof. Let y, (") strongly define n in ZF. Since n < 6,,,, therefore L, _,
satisfies “There is a denumerable model of ZF+V = L+(Ex)y,” (as
L,,, €L, , and Skolem-Lowenheim holds in L, , ). By strong definability
of n, n is denumerable in L, ,,. =

The ordinal u is limit since 4 = () 0, and all ordinals on the R.H.S. are

E<p
limit. Also if n < p, then 6, < p and 0,,, < u. Thus we have:

Lemma 6.2. L, V = HC.
Proof. Given n < g, then 0,,, < u and since 5 is denumerable in
,L,,q”, it is denumerable in L, as well. »

This settles the original question of Wilmers since no model of ZF can
satisfy V= HC.
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In order to prove the promised equality we discuss the properties of
strongly definable ordinals.

LEMMA 6.3. If { < p, then Ly |= “¢ is strongly definable in ZF +V = L”
and 50 Ly [= “¢ < 6,".

Proof. If y(-) strongly defines ¢ in ZF, then the same formula serves as
strong definition for those transitive models of ZF + V = L which are inside
of Ly,. Thus in L, , ¢ is strongly definable in recursive theory so by Theorem
0.8 (which was proved in ZF and so holds in L,), Lg  “¢ < 6,". m

The following is an important property ol d,:

Lemma 64. If a < &,, then there is B < &, such that for all y > 8,
L #L,.

Proof. Since « < d,, there is A, formula ¥ such that (Ex)y (x, )
defines «. Since (Ex) (x, «), there must be x in L;, such that y(x, a). Let §’
be least such that there is xe Ly ., — L, for which y(x, «) and finally let 8
= max(f’, a). For any y > B, L, = (Ey)(Ex)y (x, y). So it is enough to show
that L, = 1 (Ey)(Ex){(x, y). Indeed, if L, satisfies (Ey)(Ex)y (x, y), then for
some y in L, (Ex)y (x, y) contradicting the fact that (Ex)y(x, ‘) defines a. =

CoroLLARY 6.5. If Tis complete, Te L;,, then I(T) < &, and the complete
sequence for T, Sy also belongs to L,,.

Proof. If TeL;,, then if T has a transitive model, then it has one in
L;,. By Lemma 6.4 all the models of Tmust be in L;, and they are bounded
below 3,:. By 4,-separation SrelL;,. u

The fact that TelL,, is equivalent to: Ted;. Thus we proved in
Corollary 6.5 that complete 4} theories have their complete sequences in L;, .
One could suspect that a similar phenomenon occurs for n > 2 as well. This
is not true. '

THEOREM 6.6. There is a complete A} theory T extending ZF +V = L such
that \a: L= T} is unbounded in L, .

Proof. Indeed, there is a complete theory T such that models of T are
unbounded in L,, . Thus for some complete T,

L, F@ERHPB>a&lyE=T).

The formula after the satisfaction sign is IT, and can be easily written down
as I1} formula. Thus there is 4} T making it true. m

The theory constructed in Theorem 6.6 does not satisfy us completely,
because we do not know if a 4} theory T(which is unbounded in L, ) can be
found. Again. let us notice that the complete sequence for T, Sy, has the
length w, (just another prool that w,eSpL), because we have:

THeoreM 6.7. If a > w,, then Th(L,) is not analytical (i.e. it does not
belong to L; ).

3 — Dissertationes Mathematicae CCXI
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Proof. Th(L, )¢ L, since Ls 3L, and L; is pointwise definable.
Assume now o > w,. Then w, is definable in L, (in fact uniformly; namely
as the least non-denumerable ordinal). Thus Th(L, ) is recursive in Th(L,).
As L;_ is closed under relative recursivity we are done. =

Interesting (?) fact is that by the reasoning as above, for the A4} theory T
constructed in the proof of Theorem 6, §, is not definable in the models
of T

We come back to the problem of the least non-strongly-definable
ordinal (in ZF).

We know now that if £ < pu, then & < 6';"».

Thus u < 83%. (Note that u is anyway X, definable in L — since it is in
Ls;, — but the X, definition need not work in a given model of ZF.) If u
< 62 , then, in Ly, p itself is X,-definable. Let (Ex)y(x,") be a X,
definition of y in Lg . Then the least transitive model of (Ey)(Ex) ¥ (x, y)+V
= Lis L for some £ > p but £ < 6,. But y is the supremum of the heights
of transitive models of ZF in Ly, (by the definition of 0, and the fact that u
= {J 0,). Therefore yu is also the supremum of heights of models of ZF in

v<py

L,. Now we simply produce the following strong definition = of u (we give it
in English but it can be formalized).

“z is the supremum of heights of transitive models of ZF+V = L in the
least transitive model of KP+V = L+(Ey)(Ex)y¥ (x, y).”

Since below u there is no model of (Ey)(Ex)y (x, y) and above u in any
model of ZF (E! z)Z(z) and =(u), we produced a strong definition of u in
ZF, contradiction. Thus we proved the following:

THEOREM 68. y = 5’2"’». .

Even though 4 is not strongly definable, 0, is in fact strongly definable.
We show this using the following:

Lemma 6.9. If o is strongly definable in ZF, a < pu, then 0, is A}-ordinal in
Ly ., and so &, of Ly, is less than 6, of L, .

Proof. We consider two cases.

(a) a < 0,. Let y,(°) strongly define a in ZF. Thus L, = Exy,(x). Thus
in L, , there must be a mode! of ZF+“Exy,(x)” below its 4,. But é, of
Lg,,, is stable in Ly, (ie. it is its 1-elementary submodel) so « is less than d,
of Ly ,, and by stability, 6, is less than that ordinal. Thus 6, < 6, of L, ,
and thus 6, of L, <6, of L, _,

(b) « =6,. Let £ < a be given. As. it is strongly definable, we may
proceed as in case (a) and find a model of ZF+ V= L+ Exy, below 6, of
Ly, , . This shows that { <, of L, , andso a < d,0f Ly, . Butif a = 6,
of L, , then we get the contradiction as L, = ZF (x = 0,) and, on the
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other hand, ZF |- “L;, satisfies V= HC". Thus 6, < 6, of L, ,, and as
above 6, of Ly, <6, of Ly, . =

z+ 1

THeoreM 6.10. 8, is strongly definable (in ZF).

Proof. There are two cases possible:

(@) 6, of Ly, = 6, of L, . Then, by Lemma 6.9, u is least such! Writing
a strong definition of 0, is tedious calygraphical exercise:

“There is ¢ such that &, of L, is equal to J, of L, and our x is 6 of
least such or there is no such ¢ and there is L, = ZF such that §, of L, is §,
and x is this a”.

(b) 62 of Ly <38, of Ly, . Then 6, is 2, definable in Ly, but,
obviously, not in Lg,. Pick a Z, definition  of 6, in Ly, and write:

“x is the height of largest transitive model of ZF+ V= L+ 1 (Ey)y¥(y)”.
Since y is X,, that will do. =

Note that the obvious trial: “5, of what we defined above” will not
produce strong definition of u. It will not work in Lo, (where u belongs).

Since u is not strongly definable but 6, is, we have justified our claim
that not all A}-ordinals are strongly definable. The fact is that strongly
definable ordinals (in ZF, but any other recursive, true theory works as well)
are cofinal in ,. To see this one has to look at X, definitions of ordinals
and see that if (Ex)y(x, ) is a definition of &, then &(v):

“(Ex). (Ey), ¥ (x, y) and v is least such”

strongly defines an ordinal greater than a in ZF.

We finally look at the first model L, such that I(Th(L,)) > 1. Then
I(Th(L,)) = 2 and it just means that for some a > v, there is an elementary
imbedding n~': L, » L,. The image of n~' cannot be bounded in L,.
(Since it would imply I(Th(L,) > 2.

Now by results of Section 1, #~! is constant on elements of Lt Thus
L, satisfies “There is a model of ZF containing & (for each ¢ < w'{") so the
same holds in L,. However, if there would be, in L,, more than @w; models of
ZF +V = L, then at least two of them would be elementarily equivalent (use
cardinality argument inside of L,) and so this would contradict the definition
of L,. Chus in L, it is true that there is exactly w, transitive models of
Z¥ +V = L. This shows that, contrary to a claim of Mostowski, v # 0,.

However, we have proved:

Tieorem 6.11. v = 6,5 =

Using Theorem 6.11, one can estimate the size of the least # such that 0,
is not strongly definable; it is smaller that v.
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7. Supremum of spectrum of L

Infermally we say that On belongs to the spectrum but obviously, as
long as we are speaking about complete sequences which are sets, then the
elements of spectrum are ordinals and their supremum is an ordinal. We
have shown that aeSpL = w,eSpL and so ¢ = |J(SpLn V) is a cardinal.
(We hope the reader forgives us the horrible formula Sp L~ V) It was shown
in {2] that its cofinality character is w, . For completeness sake we give here
a (different) proof:

THEOREM 7.1. ¢f (0) = w,.

Proof. We just show that any map f: w — ¢ is bounded in g. Since
aeSpL=>9,6Sp L, we can assume that:

(a) for each new, f(n)eSpL;

(b) for each new, f(n) is stable.

Pick for each n, T, a theory such that I(T,) = f(n). The sequence U
=<{(T,: new) is in HC and so we consider the class X = X. Set ¢

= {J f(n) and consider X (8). ¢ is stable (as limit of stables) and n.us.d. for

X (9). Reasoning as many times before, we find eSpL. »

Actually if we are slightly more efficient in writing suitable definitions
we show that:

ProrosiTioN 7.2. SpLis closed under denumerable limits.

It was shown in [2] that g is the supremum of I1,- (and X,-) definable
cardinals. Here we give another model-theoretic characterization of o.

In what follows the word “model” exceptionally means “relational
structure”.

A model (A, <) is partly well-ordered if < is a well-ordering of its
field. For instance, (L,, €, e [a) is partly well-ordered. Languages under
consideration are denumerable thus every theory is a real.

We say that x is Hanf number for well-orderings if for every theory Tif T
‘has partly well-ordered model of cardinality x, then it has partly well-ordered
model in every cardinality.

Note that an elementary submodel of partly well-ordered model is again
partly well-ordered.

THEOREM 7.3. If T does not have partly well-ordered models in every
cardinality, then there must be A such that T has no partly well-ordered models
of cardinality above A.

Proof. By the above remark and downward Skolem-Lowenheim. =

THeEOREM 7.4. Suppose that T a theory in a denumerable language does
not have partly well-ordered models in every cardinality and that » is the
supremum of cardinalities of partly well-ordered models of T. Then »x < g.
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Proof. Consider X, and note that the predicale Mod; is definable for
Xr. Since in ZF the notion of well-ordering is absolute w. r. t. transitive
models, the predicate mody (') meaning “(-) is partly well-ordered model of
T” is definable for X .

But every partly well-ordered model of T has cardinality < x thus is
isomorphic to a structure belonging to I, (ie. H,+).

Thus x* is non-uniformly strongly definable in X, () as follows:

(Ey) (y is supremum of powers of partly well-ordered models of T& x = y*)
and so the class X1 (x") is usable. Using the argument of Section 5 we show
that x* belongs to SpL. Thus x < ¢. =

We show now the following:

THEOREM 7.5. g is a Hanf number for well-orderings.

Proof. Clearly, in view of Theorem 7.4, the Hanf number for well-
orderings is < ¢. Conversely, let 1 < g. We can assume 1eSp L, A cardinal.
Take L = Lg; {<} and a theory T such that I(Ty) = A+1 (this is possible
by closure properties of SpL). Set T= Ty “< is € [ On”; then well founded
models uniquely expand to partly well-ordered models of T. But T has all
well founded models (up to isomorphism) in L;+, one of them in L;+ —L;.
Thus we pointed a theory without partly well-ordered models in every
cardinality but with partly well-ordered models above 2. m
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