University of Saskatchewan, Saskatoon, Saskatchewan, S7N OWO, Canada
Bibliografia
[A1] R. D. Anderson, A characterization of the universal curve and a proof of its homogeneity, Ann. of Math. 67 (1958), 313-324.
[A2] R. D. Anderson, One-dimensional continuous curves and a homogeneity theorem, Ann. of Math. 68 (1958), 1-16.
[I1] S. D. Iliadis, On rim-type of spaces, in: Topology, Proceedings of the International Topological Conference held in Leningrad, August, 1982, Lecture Notes in Math. 1060, Springer-Verlag, Berlin 1984, 45-64.
[I2] S. D. Iliadis, Rim-finite spaces and the property of universality, Houston J. Math. 12 (1986), 55-78.
[I3] S. D. Iliadis, The rim-type of spaces and the property of universality, preprint.
[I4] S. D. Iliadis, Rational spaces and the property of universality, preprint.
[IT] S. D. Iliadis and E. D. Tymchatyn, Compactifications with minimum rim-type of rational spaces, preprint.
[K] K. Kuratowski, Topology, Volumes I and II, Academic Press, New York 1968.
[MT] J. C. Mayer and E. D. Tymchatyn, Universal rational spaces, Dissertationes Math. 293 (1990).
[MS] S. Mazurkiewicz and W. Sierpiński, Contribution à la topologie des ensembles dénombrables. Fund. Math. 1 (1920), 17-27.
[W] G. T. Whyburn, Topological characterization of the Sierpiński curve, ibid. 45 (1958), 320-324.