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1. Introduction

Throughout all rings have identity and all modules are unital. There are
a number of well known theorems which characterize a ring in terms of its
modules, or some of them at least, for example, the following result:

THEOREM 1.1. The following statements are equivalent for a ring R.

(1) R is semiprime Artinian.

(1) Every right R-module is projective.

(11i) Every cyclic right R-module is projective.

(iv) Every right R-module is injective.

(v) Every right ideal of R is an injective right R-module.
(vi) Every cyclic right R-module is injective.

The equivalence of (i)«v) can be found in [1, Corollaries 17.4 and 18.8],
and (i)<>(vi) is a theorem of Osofsky [16], [17].

It is not true that if the analogue of (v) in the above theorem holds for
projective modules then R is semiprime Artinian. Rings with the property that
every right ideal is projective are precisely right hereditary rings and this class
of rings contains. for example. all commutative Dedekind domains. The
following characterization of right hereditary rings is due to Cartan and
Eilenberg [2, Theorem 5.4].

This paper is in final form and no version of it will be submitted for publication clsewhere.

[109]
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THEOREM 1.2. The following statements are equivalent for a ring R.

(i) R is right hereditary.
(1) Every submodule of a projective right R-module is projective.
(1) Every homomorphic image of an injective right R-module is injective.

Theorem 1.2 is one of many examples of theorems which characterize
a ring in terms of its injective modules. The following composite theorem, due
to Bass and Papp (see [1, Proposition 18.13 and Exercise 25.5]), Faith and
Walker (see [1, Theorem 25.8]), and Matlis (see [1, Theorem 25.6]), gives
several characterizations of right Noetherian rings.

THEOREM 1.3. The following statements are equivalent for a ring R.

(i) R is right Noetherian.
(1) The direct sum of any (countable) collection of injective right R-modules
is injective.
(1)) There exists a cardinal ¢ such that every injective right R-module is
a direct sum of c-generated modules.
(iv) Every injective right R-module is a direct sum of indecomposable
injective R-modules.

Right Noetherian rings can be characterized in other ways, for example
a ring R is right Noetherian if and only if it does not contain a nonzero right
ideal E which is the union of a chain of proper submodules of E. The analogue
for right Artinian rings is the next result due to Vamos (see [1, Proposition
10.107]).

THEOREM 1.4. A ring R is right Artinian if and only if every cyclic right
R-module is finitely cogenerated.

Finally, we mention two more recent theorems, the first due to Chatters
+[3] generalizing work of Smith [19], and the second due to van Huynh and
Dung [9].

THEOREM 1.5. A ring R is right Noetherian if and only if every cyclic right
R-module is a direct sum of a projective module and a Noetherian module.

THEOREM 1.6. A ring R is right Artinian if and only if every cyclic right
R-module is a direct sum of an injective module and a finitely cogenerated module.

In the sequel we shall review a number of recent results similar in spirit to
the above theorems.

2. Right Noetherian rings

Let R be a ring. By a class X of right R-modules we mean any collection of
right R-modules which contains a zero module and is closed under isomor-
phisms, 1.e. an R-module M’ belongs to X whenever M’ =~ M € X. Given a class
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X of R-modules, any module in X will be called an X-module. Furthermore. an
R-module M is called a locally X-module provided every finitely generated
submodule of M is an X-module. Let ¢ be any cardinal. An R-module M will
be called c-limited provided every direct sum of nonzero submodules of
M contains at most ¢ direct summands, The cardinality of any set X will be
denoted |X|. Given an R-module M then E(M) will denote the injective hull
of M.

The following theorem is taken from [3, Theorem 3.1], [12, Theorems
4 and 12} and [9, Corollary 1.3].

THEOREM 2.1. The following statements are equivalent for a ring R.

(1) R is right Noetherian.

(i) Every cyclic right R-module is a direct sum of a projective module and
a Noetherian module.

(iii) Every finitely generated right R-module is a direct sum of a projective
module and a Noetherian module.

(iv) Every right R-module is a direct sum of an injective module and a locally
Noetherian module.

(v) There exists a cardinal ¢ such that every direct sum of injective right
R-modules is a direct sum of an injective module and a c-limited module.

(vi) Every essential maximal right ideal is a direct sum of an injective right
ideal and a Noetherian right ideal.

Proof. (i) <> (ii) <= (iii)). See Theorem 1.5.

(1) = (iv), (1) = (vi). Clear.

(1)=>(v). See Theorem 1.4,

(vi)=(1). Suppose that R satisfies (vi). Let N denote the sum of all
Noetherian right ideals of R. Suppose N # R. Then there exists a maximal
right ideal M such that N = M. Clearly M is essential in R, so that, by
hypothesis, M = I @ K for some injective right ideal I and Noetherian right
ideal K. Now M/K =~ I so that M/K is an injective submodule of R/K, and
hence there exists a right ideal L containing K such that R/K = (M/K)@® (L/K).
Note that L/K =~ R/M, thus L/K is simple and L is Noetherian. But this implies
L= N< Mand R=M+Lc M, a contradiction. Thus N = R and hence R is
right Noetherian.

(v) = (i). Suppose that R satisfies (v). Let {S,: &€ Q} denote a collection of
representatives of the isomorphism classes of simple right R-modules and let
X = @ue0S, Let 4 be an index set with |4]| > ¢, and for each 4 in A let
X, =X. Define Y= @,.,X, and k = |E(Y)}. Let U, (i > 1) be simple right
R-modules and E; = E(U,)foreachi > 1. Let E = @;,, E,. Let [T be any index
set with |[1] > k. For each n in IT let F, = E, and consider F = @, F,. By
hypothesis, F = J@® A for some injective module J and c-limited module A.

Now soc A4 = Ansoc F, soc A4 is an essential submodule of 4 and is the
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direct sum of at most ¢ simple submodules. Thus there exists 2 monomorphism
(): soc A — Y which can be Ilifted to a monomorphism @: A - E(Y). Thus
|A] < |E(Y)] == k. It follows that there exist disjoint subseis IT', IT" of Il such
that M= oll”, |I<k and A< @,y F, Let G= @B, F, and
H=®,.yF, Thus AcG and F=G®H. Now G ={(/nG)® A implies

F=J@A=(UNnG)ADH.

It follows that J = F/A = (JnGY@ H, and hence H i injective. But 77 is
nonempty because |I[T'| < k < |[1]. Thus E is injective [t {vilows that every
countable direct sum of injective hulls of simple right R-moduics 1s injective. By
Theorem 1.3, R is right Noetherian.

(iv) = (1). Suppose that R satisfies (1v). In particular. every cyclic right
R-module is a direct sum of an injective module and a Noetherian module, and
in the next section we shall prove that this implies that 8 has finite right
uniform dimension. There exist a positive integer n# and indecomnosable right
ideals C; (1 €i<n)such that R=C,®... @C,.

Let | €£i<nand C = C,. Note that C 1s a principa! nght idcal of R.
Suppose C is not Noetherian. Let D be a maximal submoduic ol €. i d € D then
dR = I ® N for some mjective right ideal I and Noetherian rizi! 1desl N. Since
C is indecomposable it follows that [ =0 and hence dR is Noctherian., Thus
every cyclic submodule of D 1s Noetherian and D 1s & suin of Noetherian
submodules. If D’ 1s a distinct maximal submodule of C then D15 also a sum of
Noetherian submodules and C = D+ D', so that C, being finitely generated, is
Noetherian, a contradiction. Thus D is the only maximal submodule of C.

Since every cyclic submodule of D is Noetherian it [ollows that every
finitely generated submodule of D is also Noetherian. Il H is a proper
submodule of C then H < D, C/H is cyclic and D/H is the only maximal
submodule of C/H. By hypothesis C/H is Noectherian or indecomposable
injective. In particular, if H is finitely generated then C/H is uniform. Because
C i1s not Noethenan, there exists a chain of right ideals

(1) 0=D,cD cD,c...c | /D, sDcC,

iz0

such that D, is finitely generated for each i > 0. By (iv).

®(CD)=XDY,

i>0
for some injective R-module X and locally Noetherian R-module Y. Suppose
Y# 0. Then X n(C/D;) = O for some j > 1, and this implies C/D; is isomorphic
to a cyclic submodule of Y But this means that C/D; is Noetherian,
a contradiction to (1). Thus Y= 0. It follows that @;,,(C/D)) is injective and
by a standard argument (sec the proof of [1, Proposition 18.13]).
D,=D,,=D,.,=..., for some m = 0, again contradicting (1). Thus C is
Noetherian. It follows that R is right Noetherian. This completes the proof of
Theorem 2.1.
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Theorem 2.1 raises several questions. For example, if R is a ring such that
every cyclic (or finitely generated) right R-module is a direct sum of an injective
module and a Noetherian module, is R right Noetherian? First of all, note that
some properties that hold for cyclic modules hold for fimtely generated
modules also. Let R be a ring and

O-M-M->-M -0
a short exact sequence of R-modules. A class X of R-modules is called

S-closed provided M'e X whenever MeX,
Q-closed provided M"e€X whenever Me X, and
P-closed provided M e X whenever M'e X, M"e X.

Moreover, X is called {P, Q}-closed provided it is both P-closed and Q-closed,
and so on. With this notation we prove:

LEMMA 22, Let R be a ring and X any {P, Q}-closed class of right
R-modules. Then the following statements are equivalent.

(1) Every cyclic right R-module is a direct sum of an injective module and an
X-module.

(i) Every finitely generated right R-module is a direct sum of an injective
module and an X-module.

Proof. Since (ii) = (i) is obvious, it remains to prove (1} = (ii). Suppose that
R satisfies (i). Let M be any finitely generated R-module. Then there exist
a positive integer n  and elements meM (1<i<n) such that
M=mR+...+m,R. Il n =1 then there is nothing to prove. Suppose n > 1
and let K = m;R+...+m,_; R. By induction on n, K = K, ® K,, where K, 1s
an injective module and K,eX. Now K/K, is an injective submodule of
M/K,, so M/K, = (K/K,)®(L/K,) for some submodule L of M. Note that
M =K,®Land L/K, = M/K, so that L/K, is cyclic. There exists xe L such
that L= xR+ K,. By (i), xR = A®B for some injective module A and
X-module B. As before, there exists a submodule C of L, containing B, such
that L/B = (xR/B)®(C/B). Then L= A®C and C/B = L/(xR) = K,/(xR n K,).
Thus C/Be X and hence C e X. It follows that M = K, ® A® C, the direct sum
of an injective module K, ® 4 and an X-module C.

In particular, Lemma 2.2 applies to the class X of Noetherian R-modules.
An example of a ring R such that every cyclic (or finitely generated) module is
a direct sum of an injective module and a Noetherian module, yet R is not right
Noetherian, can be found in [12, Example 11]. The ring in question is defined
as follows. Let F be any field, S = F[[X]] the ring of formal power series in an
indeterminate X over F, and K the field of fractions of S. Then R is the subring
of the ring of 2x2 matrices with entries in K, consisting of all matrices

o]
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where x, ye K and se§. It is rather easy to see that R is not right Noetherian,
but checking that every cyclic R-module is a direct sum of an injective module
and a Noetherian module requires a little work (see [12] for details). Note that
if R is a ring, with prime radical N, such that every cyclic right R-module is
a direct sum of an injective module and a Noetherian module then R ts right
Noetherian provided R is semiprime [ 10, Proposition 8] or commutative [12,
Corollary 10] or R/N has zero socle or R contains only one minimal prime
ideal [12, Proposition 8].

Another question raised by Theorem 2.1 is the following one: if R is a ring
such that every right R-module is a direct sum of a projective (or injective)
module and a Noetherian module then what can be said about R? It is clear
that Noetherian modules are ¥X,-limited, so that the answers to both versions
of this question are contained in the next result.

THEOREM 2.3. The following statements are equivalent for a ring R.

(1) R is semiprime Artinian.
(i1) There exists a cardinal ¢ such that every right R-module is a direct sum
of a projective module and a c-limited module.
(itt) There exists a cardinal ¢ such that every right R-module is a direct sum
of an injective module and a c-limited module.

Proof. Theorem 1.1 shows that (i) = (ii) and (i) = (iii). Conversely, suppose
that R satisfies (i1). Let S denote the socle of the right R-module R and suppose
that S # R. There exists a maximal right ideal M such that S € M. Let A be
any index set with |4] >c. For each 4 in A let U,=R/M and let
U= @, U,. By (ii) there exist a projective module P and a c-limited module
X such that U = P@® X. Since U is not c-limited it follows that P # 0. Thus
P = @ .4 U, for some nonempty subset A’ of A, by [1, Proposition 9.4]. It
follows that R/M is projective and hence R = M @ V for some minimal right
ideal V of R. But this cannot be the case because V= § € M. Thus S = R and
R is semiprime Artinian. This proves (1).

Now suppose that R satisfies (iii). By Theorem 2.1 the ring R is right
Noetherian. The argument used to prove (ii) = (i) can easily be modified to
prove that every stmple right R-module is injective, i.e. R is a right V-ring. By
[15, Corollary 2.2 and Lemma 3.1], the ring R is a finite direct sum of simple
rings. Thus, without loss of generality we can suppose that R is a simple ring.

Again, let A4 be an index set with |4] >c¢. Let M, =Ry (AeA) and
M= @, M, By (i), M = I@Y for some injective module I and c-limited
module Y. Note that I # 0. By Goldie’s Theorem (see [20, p. 56, Proposition
2.6, and p. 58, Proposition 3.8]) R has a simple Artinian classical right quotient
ring Q which is the R-injective hull of R;. Let Q, = Q (i€ A) and note that
Q, = E(M,) for each Ae A. By Theorem 1.3, the module @ ;.,Q; is injective
and hence @, ,0Q, = I®E(Y).

Let C be any nonzero indecomposable injective direct summand of I. By
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Azumaya’s Theorem (see [1, Theorems 12.6 and 25.6]), C = K for some
indecomposable injective direct summand K of Q. Now K is a right ideal of
Q by [21, p. 58, Proposition 3.8], and Q = K™ for some positive integer n. But
I is a projective right R-module and hence so too are C, K and Q. By [22,
Lemma 6.1 and Proposition 6.3] it follows that R is right Artinian. This
completes the proof of (1).

3. A theorem

Let R be 4 ring and M a right R-module. If M has Krull dimension then
K dim A will denote the Krull dimension of M. See [13] for the basic
definitions and properties concerning Krull dimension. Note in particular that
if M has Krull dimension then M has finite uniform dimension [13,
Proposition 1.4]. The ring R has right Krull dimension a, for some ordinal o,
provided the right R-module R has Krull dimension a«. Furthermore, the right
R-module M has essential Krull dimension at most a provided M contains an
essential submodule N such that Kdim N < «, and in this case we shall write
EK dim M < x. We shall say that a module M has essential Krull dimension
provided it contains an essential submodule which has Krull dimension. Note
that EK dim M, if it exists, is the least ordinal o such that M contains an
essential submodule with Krull dimension x. Note further that if K dim M < «
then EK dim < a [13, Lemma 1.1]. In the proof of Theorem 2.1(iv) = (i), we
did not prove that R has finite right uniform dimension. This is an immediate
consequence of the following result, because Noetherian modules have Krull
dimension [13, Proposition 1.3].

THEOREM 3.1. The following statements are equivalent for a ring R and an
ordinal a.

(i) R has right Krull dimension at most a.

(1) Every cyclic right R-module is a direct sum of an injective module and
a module with essential Krull dimension at most o.

(iii) Every finitely generated right R-module is a direct sum of an injective
module and a module with essential Krull dimension at most a.

In contrast, Theorem 2.3 shows that a ring R is semiprime Artinian if and
only if every right R-module is a direct sum of an injective module and
a module with essential Krull dimension. In Theorem 3.1, the implication
(1) = (1i11) 1s a consequence of [13, Lemma 1.17] and (iii) = (1) is clear. It remains
to prove (ii) = (i). The proof is split into two cases. Firstly we prove the result
when R is semiprime and then prove the general case. The rest of this section
will be devoted to the proof of Theorem 3.1(ii) = (i). For convenience, for any
ordinal « > 0 we shall say that R satisfies P(a) provided every cyclic right
R-module is a direct sum of an injective module and a module with essential
Krull dimension at most «.
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Case 1. R semiprime. The following simple fact concerning uniform
modules will be needed. It does not require R to be semiprime.

LEMMA 3.2. Let ¢: U — V be an R-homomorphism of a uniform R-module
U to a nonsingular R-module V. Then @ =0 or ¢ is a monomorphism.

Proof. Let K = ker ¢. If K # 0 then im ¢ = U/K implies im ¢ is singular,
so that ¢ =0.

LEMMA 3.3. Let R be a semiprime ring, I a nonsingular injective right ideal of
R and U an R-module with finite uniform dimension such that Homg(U, I) # 0.
Then U contains a nonzero injective submodule.

Proof. Let 0 # @eHomg(U, I). There exist a positive integer n and
uniform submodules U1 <i<n)of U suchthat U, ® ... ®U, is an essential
submodule of U. If ¢(U,) = 0 (1 <i < n) then im ¢ is singular, so that ¢ = 0.
Without loss of generality we can suppose ¢@(U,)# 0. Let V= ¢o(U,). By
Lemma 3.2, V= U, and in particular V is uniform. Since I ts injective it follows
that E = E(V) < I. Note that E is uniform. Let 0 # ec E. Then (eR)* # 0, so
that erE # 0 for some re R. Define 8: E — eR by 8(x) = erx (xeE). By Lemma
32, 0 1s a monomorphism, and hence erE is injective. This implies
E = erE < eR. 1t {ollows that E is simple and hence E = V. Therefore U, is
a nonzero injective submodule of U.

Lemma 3.3 allows us to prove the following first step in the proof of
Theorem 3.1. For any element ae R, the right annihilator of a will be denoted
r(a). The right singular ideal of R will be denoted Z(R).

LEMMA 3.4. Let R be a semiprime ring which satisfies P(a). Then R=S®T
where S is a right nonsingular right self-injective ring which satisfies P(x) and T is
a ring with right Krull dimension at most a. '

Proof. We prove first that R is right nonsingular. Let ae Z(R). By
hypothesis aR = I @ A where I is an injective right ideal of R and A4 a right
ideal with EK dim 4 < «. Since Z(R) contains no nonzero injective right ideals
it follows that I = 0. Suppose A # 0. Let C be a critical right ideal contained in
A. Let ceC. Then ce Z(R) implies r(c)n C # 0. Thus Kdim {C/[r(c)n C]}
< Kdim C. But ¢C = C/[r(c) n C] and hence ¢C = 0. It follows that C?> =0
and hence C =0, a contradiction. Thus 4 =0 and hence Z(R)=0.

There exist an injective right ideal J and a right ideal T with EKdim T< a
such tha. R = J@ T Because T has finite uniform dimension, we can suppose,
without loss of generality, that T contains no nonzero injective submodule. By
Lemma 3.3, Homg(T, J) = 0. But for any re R, there exists a homomorphism
0: T— J defined by 6(t) = n(rt) (teT), where n: R —J is the canonical
projection. It follows that 8 = 0 and hence T is a two-sided ideal of R. But R is
semiprime and hence T= eR for some central idempotent e. Moreover, T is
a semiprime right Goldie ring by [4, Lemma 1.14] and EK dim T< «a, so that
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Kdim T< a by [4, Theorem 1.10]. Let S =(1—e)R. Then R = S® T where
S, T are rings with the desired properties.

To complete Case 1 we shall show that (in the notation of Lemma 3.4) S is
semiprime Artinian. To do so, we require the following result.

LEMMA 3.5. Let M be a finitely generated injective right R-module and
N a submodule of M such that N is an infinite direct sum of nonzero submodules.
Then M/N does not have finite uniform dimension.

Proof. Suppose M/N has finite uniform dimension k. There exist
non-finitely generated submodules N,;(I1 <i<k+1) of N such that
N=N@...®N,+,. Let E,=E(N) (1 <i<k+1). Note that for each
1 <i<k+1,E; s adirect summand of M, thus is finitely generated and hence
E.- 7= J,Vl-. Now

(E,@... ®E+)/N =(E\/N)®... ®(Eps1/Ni+1),
so that M/N has uniform dimension greater than k, a contradiction.
We are now in a position to prove the following statement.

LEMMA 3.6. Let R be a semiprime ring which satisfies P(x). Then R has right
Krull dimension at most o.

Proof. By Lemma 3.4 it is certainly sufficient to prove that if R is right
nonsingular and right self-injective then R is semiprime Artinian. Suppose that
R is right nonsingular right seif-injective. By the proofl of Lemma 3.3 every
uniform right ideal of R is a simple injective R-module. Thus aR is injective for
each aeR, ie. R is von Neumann regular. Let {e;: i = 1} be an infinite
collection of nonzero orthogonal idempotents of R and let A = @;»,¢,R.
There exist right ideals B, C containing 4 such that R/4 = (B/A)®(C/A), B/A
is injective and EK dim(C/A4) < . In particular R/C = B/A implies R/C is
injective. Now C = cR+ A4 for some ce C and cR = f,R for some idempotent
foeR. From the properties of von Neumann regular rings we can produce
a family {f;: i > 0} of orthogonal idempotents of R such that

cR+e,R+...+e, R=f,R+...+f, R (n=1).

Thus C = @;5f;R and, by [16, Lemma 5], R/C injective implies that there
exists k = 1 such that f; = 0 (i > k). Thus C is injective and, by Lemma 3.5, C/A
does not have finite uniform dimension, a contradiction. Thus R does not

contain an infinite collection of nonzero orthogonal idempotents. 1t follows
that R is semiprime Artinian.

Case 2. R any ring. We begin the general case with the following
consequence of Lemma 3.6.

LEMMA 3.7. Let R be any ring satisfying P(®). Then the prime radical N of
R is nilpotent.
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Proof. Let N denote the prime radical of R. By Lemma 3.6 the ring R/N
has right Krull dimension at most x. Let n be a positive integer and ¢, = ¢,+ N
(I < i< n)acomplete set of nonzero orthogonal idempotents of R/N. Because
N is a nil ideal of R, we can suppose without loss of generality that
R=¢,R®...®e,R and ¢,R is indecomposable for 1 <i < n (see [1, Proposi-
tion 27.4]).

Let 1 <i<nand e=e¢. f EKdimeR < « then eR has finite uniform
dimension. Otherwise eR is injective. If eRA N =0 then KdimeR < a. If
eRn N # 0 and 0 # aeeR n N then aR = [ @ A for some injective right ideal
I and right ideal 4 with EK dim A < «. Since [ is nilpotent it follows that I = 0
and hence aR = A. Thus ¢R is uniform. In any case eR has finite uniform
dimension. It follows that R has finite right uniform dimension. Thus every
nonzero ring homomorphic image of R contains an essential right ideal with
Krull dimension at most «. Combining this fact with [13, Corollary 5.10] it
follows that N is nilpotent.

The next result is implicit in [13] (see pages 16 and 33), and a proof is
given in [10, Lemma 6].

LEMMA 3.8. 4 right R-module M has Krull dimension at most o if and only if
EK dim (M/N) < a for every submodule N of M.

With these preliminaries out of the way we now complete the proof of
Theorem 3.1.

Proof of Theorem 3.1(i1) = (i). Let R be a ring which satisfies P(x). Let
N denote the prime radical of R. By Lemma 3.6, Kdim(R/N) < « and by
Lemma 3.7, N* = 0 for some k > 1. By induction on k we can suppose k > 1
and Kdim(R/N*"!')< a. To prove KdimR < « it is sufficient, in view of
Lemma 3.8, to prove that EKdimM < « for every cyclic injective right
R-module M.

Let M be a cyclic injective right R-module. Let L= {me M: mN = 0}.
Since N* = 0 it follows that L is an essential submodule of M. Moreover, M/L is
a cyclic right (R/N*~")-module, so that Kdim(M/L) < «. In particular, this
implies that M/L has finite uniform dimension n (say) by [ 13, Proposition 1.4].

We claim that L has finite uniform dimension. Suppose not. (We modify
the proof of Lemma 3.5.) There exists an essential submodule K of L which is
an infinite direct sum of nonzero submodules. Thus K =K, ®..® K, ,,
where, for each 1 < i< n+1, K, is a submodule of K and K, does not have
finite uniform dimension. Since M is an injective R-module it follows that L is
an injective (R/N)-module. For each 1<j<n+1 let E; denote the
(R/N)-injective hull of K; in L. Note that L=E, ®...®E,, . Suppose E, is
finitely generated for some 1 <j < n+ 1. Since K dim (R/N) < a it follows that
KdimE; <« and hence Kdim K; < «. But this contradicts the fact that K,
does not have finite uniform dimension. Thus E; is not finitely generated for
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each 1 <j<n+1. For each | <j<n+1, let F; denote the R-injective hull
of E; in M. Note that M being cyclic implies F; is cyclic and hence
F;#E; (1<j<n+1). Then we have M=F ®...0F,,; and
M/L~(F,/E)®...®(F,.,/E,+y), so that M/L has uniform dimension
greater than n, a contradiction.

Thus L has finite uniform dimension. In particular, this means that
L contains a finitely generated essential submodule X. Since XN = 0 it follows
that Kdim X < « by [13, Lemma 1.1]. But X is an essential submodule of M.
Hence EK dim M < o, as required. This completes the proof of Theorem 3.1.

4. Rings with Krull dimension

Chatters [3, Theorem 4.1] proved that if R is a ring and « an ordinal such that
every cyclic right R-module is a direct sum of a projective module and
a module with Krull dimension at most a then R has right Krull dimension at
most a+ 1. In fact, Chatters’ theorem can be expressed in a slightly different
way because of the following result.

LEMMA 4.1. The following statements are equivalent for a ring R and an
ordinal .

(1) Every cyclic right R-module is a direct sum of a projective module and
a module with Krull dimension at most a.

(i) Every cyclic right R-module is a direct sum of a projective module and
a module with essential Krull dimension at most o.

Proof. (i)=(ii). Clear.

(1)) = (i). Suppose R satisfies (ii) and let M be any cyclic right R-module.
Then M 1s a direct sum P@® N of a projective module P and a module N with
EK dim N < «. Thus there exists an essential submodule L of N such that
KdimL< a Let K be any submodule of N containing L. Then K is an
essential submodule of N, so that N/K does not contain any nonzero projective
direct summands. Since N/K is cyclic it follows that EK dim (N/K) < a. Thus
every homomorphic image of N/L has essential Krull dimension at most a. By
Lemma 3.8, Kdim(N/L) < «, and, by [13, Lemma 1.1], Kdim N < a. This
proves (i).

Combining [3, Theorem 4.1], [13, Lemma 1.1], Theorem 3.1 and Lemma
4.1 we have at once:

CoroLLARY 4.2. The following statements are equivalent for a ring R.

(1) R has right Krull dimension.

(it) Every cyclic right R-module is a direct sum of a projective module and
a module with essential Krull dimension.

(iii) Every finitely generated right R-module is a direct sum of a projective
module and a module with essential Krull dimension.
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(iv) Every cyclic right R-module is a direct sum of an injective module and
a module with essential Krull dimension.

(v) Every finitely generated right R-module is a direct sum of an injective
module and a module with essential Krull dimension.

There is an analogue of Lemma 4.1 for finitely generated modules. Now
consider the following three conditions for a ring R and an ordinal « > O:

S,(a): every right R-module is a direct sum of a projective module and
a module with Krull dimension at most «;

S,(a): every finitely generated right R-module is a direct sum of a projec-
tive module and a module with Krull dimension at most «;

S,(x): every cyclic right R-module is a direct sum of a projective module
and a module with Krull dimension at most ¢.

Clearly S, (2)= S,(x)=S,(a). Moreover, by [13, Proposition 1.4] and
Theorem 2.3,

R satisfies S,(@) <= R is semiprime Artinian.

Next, any nonsemiprime ring with right Krull dimension at most a satisfies
S, (o) but not §, (). On the other hand, let R be a principal right ideal domain
with Krull dimension o+ 1 which is not a left Ore domain (see [13, Example
10.3]). By [13, Proposition 6.1], R satisfies S,(«). Now suppose that R satisfies
S,(x). Let M be any finitely generated nonsingular right R-module. Then
M =P®K for some projective R-module P and R-module K with
K dim K < a. Suppose K # 0 and let 0 # xe€ K. Then there exists a nonessen-
tial right ideal B of R such that xR =~ R/B. There exists a nonzero right ideal
C such that B~ C = 0. In this case, C embeds in R/B and hence Kdim C € «.
But this implies K dim R; < a, a contradiction. Thus K = 0. It follows that
every finitely generated nonsingular right R-module is projective. By [14,
Theorem 5.3], R is a left Ore domain, another contradiction. Thus R satisfies
S4(a) but does not satisfy S,(a).

THEOREM 4.3. Let o be an ordinal. Then the following statements are
equivalent for a ring R.

(1) R has right Krull dimension at most «.

(it) Every right R-module is a direct sum of a projective module and a module
with local essential Krull dimension at most a.

Proof. ()= (i1). Clear by [13, Lemma 1.1].
(11) = (i). Suppose that R satisfies (i1). By Corollary 4.2, R has right Krull
dimension. Let 4 denote the sum of all right ideals B of R with Kdim B < a.

Then A 1s a two-sided ideal of R and, as a right R-module, K dim 4 < « by [13,
Corollary 4.2].
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It remains to prove that the ring R/A4 has Krull dimensiop at most a. Note
first that the right R-module R/A does not contain any nonzero submodule
with Krull dimension at most «, so that R/4 is R-projective by (i1). Thus
A = eR for some idempotent ¢ in R. Because A = ¢R, it is not difficult to prove
that every cyclic right (R/A)-module is a direct sum of a projective
(R/A)-module and an (R/A)-module with local essential Krull dimension at
most «. Thus without loss of generality we can suppose that 4 =0.

If C is a right ideal of R then C is projective by (i1). Thus the ring R is right
hereditary. By [13, Proposition 1.4], R has finite right uniform dimension and
by [18, Theorem 2.1, Corollary 2], R is right Noetherian. Furthermore, the
injective hull E of Ry is a projective R-module by (i1). By [21, Lemma 6.1 and
Proposition 6.3] it foilows that R is right Artinian. This completes the proof of
Theorem 4.3.

Note that the ring Z has the property that every f{initely generated
Z-module is a direct sum of a projective module and a module of Krull
dimension at most 0, but KdimZ = 1. Thus in Theorem 4.3 the condition (ii)
cannot be replaced by “every finitely generated right R-module is a direct sum
of a projective module and a module with Krull dimension at most «”. The case
o = 0 in Theorems 3.1 and 4.3 gives most of the following result (see [9] and
(11, Corollary 1.3]).

COROLLARY 4.4. The jollowing statements are equivalent for a ring R.

(i) R is right Artinian.

(i) Every right R-module is a direct sum of a projective module and a locally
finitely cogenerated module.

(1)) Every cyclic right R-module is a direct sum of an injective module and
a finitely cogenerated module.

(iv) Every finitely generated right R-module is a direct sum of an injective
module and a finitely cogenerated module.

(v) Every essential maximal right ideal of R is a direct sum of an injective
right ideal and an Artinian right ideal.

Note that in this corollary, (i) < (iii) < (iv) follows by Theorem 3.1, (i) <> (i1)
by Theorem 4.3, and (i)<>(v) by the proof of Theorem 2.1(i) <> (vi). The next
result is taken [rom [11, Theorem 2.6] and [8, Theorem 6].

THEOREM 4.5. The following statements are equivalent for a ring R with
Jacobson radical J.

(i) R is a (right and left) Artinian (right and left) serial ring with J> = Q.
() R is a direct sum of minimal right ideals and injective right ideals
of (composition) length 2.

(ii1) Every right R-module is a direct sum of a projective module and
a semisimple module.
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(iv) Every right R-module is a direct sum of an injective module and
a semisimple module.
(v) Every cyclic right R-module is a direct sum of an injective module and
a semisimple module.
(vi) Every right ideal is a direct sum of an injective right ideal and a finitely
generated semisimple right ideal. '
(vit) Every essential right ideal is a direct sum of an injective right ideal and
a finitely generated semisimple right ideal.
(viil) Any left-handed version of (iii}-(vii).

Proof. (i) = (ii). Suppose (i) holds and R is not semiprime Artinian. Let
A be a nonsimple indecomposable right ideal of R. Let E = E(A). Then E is
indecomposable and, by {6, Theorem 25.4.2], E is uniserial and cyclic, say
E=xR.Now R=A4,®...@ A, for some positive integer k and right ideals A,
of length at most 2 for each ! <i < k. Thus

E=xA + .. +xA, =xA4;

for some 1 < j < k and hence E has length at most 2. It follows that A = E and
(1) 1s proved.

(11) = (111). Suppose R = 4, @...@® A, for some positive integer k and right
ideals A; (1 <i < k), where A, is minimal or injective of length 2 for each
1 < i< k. Then R is right Artinian. Suppose that M is an R-module. By Zorn’s
Lemma, M contains a submodule P maximal among those submodules of the
form @,..M,. where for each 2 in A, M, is isomorphic to A; for some
| < i< ksuch that A, has length 2. By Theorem 1.6, P is injective and hence
M = P®M’ for some submodule M’ of M. Suppose M’ is not semisimple.
Then there exists meM’ such that mR is not semisimple. Now
mR =mA,;+...+mA,, so that A, >~ mA, for some 1 < i < k and 4, has length
2. This contradicts the choice of P. Thus M’ is semisimple. Note that P is
projective. This proves (iii).

(ii1) = (iv). Suppose that (iii) holds. By Corollary 4.4, R is right Artinian
and, by [1, p. 204], (iv) follows.

(tv) = (v). Obvious.

(v) = (vi). Suppose that (v) holds. By Corollary 4.4, R is right Artinian. Let
X be any right R-module. Because R is right Noetherian, X contains
a maximal injective submodule I. Thus X = I @ X’ for some submodule X' of
X. For any ye X’ there exist an injecttive module I’ and a semisimple module
X" such that yR = I' @ X". By the choice of I it follows that I’ = 0 and hence
yR is semisimple. It follows that X’ is semisimple. By Theorem 1.6 there exists
an index set A and indecomposable injective modules I, (A€ A) such that
I = @jeql,. Let A€ A Suppose I, is not simple. Let ze I, such that zR is not
simple. Then, by (v), zR is injective and hence I; = zR. Let U be a maximal
submodule of I,. Then U is semisimple by (v), and, because I, is uniform, U is
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simple. Thus I, has length 2. It follows that X is a direct sum of uniserial right
R-modules. By [5, Theorem 1.3], R is an Artinian serial ring. Moreover, if S is
the right socle of R then R/S is a semisimple right R-module, so that J = S and
J2=0.

(iv) = (vi) = (vii). Obvious.

(vii) = (11). Suppose that (vii) holds. By Corollary 4.4, R is right Artinian.
Any right ideal is a direct summand of an essential right ideal so is a direct sum
of an injective right ideal and a semisimple right ideal by the Krull-Schmidt
Theorem. Let C be a nonsimple indecomposable right ideal of R. Then C is
injective and hence uniform. Let D be a maximal submodule of C. Then D is
semisimple and hence simple. Thus C has length 2. Clearly (ii) follows. This
completes the proof of Theorem 4.5.

A ring R is called a right CS-ring provided for each right ideal A there
exists an idempotent e such that A4 is essential in eR. The final result is taken
from [7, Theorem 4.1 and Corollary 4.4]. The proof can be found in [7].

PROPOSITION 4.6. The following statements are equivalent for a ring R.

(i) Every cyclic right R-module is a direct sum of a projective module and
a semisimple module.
(i1) Every right ideal of R is the intersection of a direct summand of R and
Sfinitely many maximal right ideals.
{ili) R is a right CS-ring such that R/E is semisimple for each essential right
ideal E of R.

Acknowledgement

The authors wish to thank the referee for several helpful suggestions. They
also wish to thank the organizers of the Semester on Algebra 1988 at the
Banach Center, Warsaw, and Dr Jan Krempa in particular.

References

[1] F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Springer, 1974.

[2] H.Cartanand S. Eilenberg, Homological Algebra, Princeton Univ. Press, Princeton 1956.

[3] A. W. Chatters, A4 characterization of right Noetherian rings, Quart. J. Math. Oxford (2) 33
(1982), 65-69.

[4] A, W. Chatters and C. R. Hajarnavis, Rings with Chain Conditions, Pitman, 1980.

[51 D. Eisenbud and P. Griffiths, The structure of serial rings. Pacific 3. Math. 36 (1971),
109 121,

[6] C. Faith, Algebra 11: Ring Theory, Springer, 1976.

[7] D.van Huynh and P. Dan, On rings with restricted minimum condition, Arch. Math. (Basc!)
51 (1988), 313-326.

[8] —, —, Rings characterized by cyclic modules, Glasgow Math. J. 31 (1989), 251-256.

[9] D.van Huynh and N. V. Dung, 4 characterization of artinian rings, ibid. 30 {1988), 67-73.



124 P. F. SMITH AND D. VAN HUYNH

[10] D. van Huynh, N. V. Dung and P. F. Smith, A characterization of rings with Krull
dimension, J. Algebra, to appear.

[11] —, —, —, Rings characterized by their right ideals or cyclic modules, Proc. Edinburgh Math.
Soc. 32 (1989), 355-362.

[12] D.van Huynh and P. F. Smith, Some rings characterized by their modules, Comm. Algebra,
to appear.

[13] R. Gordon and J. C. Robson, Krull dimension, Mem. Amer. Math. Soc. 133 (1973).

[14] L. S. Levy, Torsion-free and divisible modules over non-integral-domains, Canad. J. Math. 15
(1963), 132-151.

[15] G. Michlerand O. Villamayor, On rings whose simple modules are injective, J. Algebra 25
(1973), 185-201.

[16] B. L. Osolsky, Rings all of whose finitely generated modules are injective, Pacific J. Math. 14
(1964), 645-650.

{17] —. Noninjective cyclic modules. Proc. Amer. Math. Soc. 19 (1968), 1383--1384.

(18] F. L. Sandomierski, Nonsingular rings, ibid., 225-230.

[19] P. F. Smith, Soeme rings which are characterised by their finitely generated modules, Quart. J.
Math. Oxford (2} 29 (1978), 101-109.

[20] B. Stenstrém, Rings of Quotients, Springer, 1975

[21] H. Tachik awa, Quasi-I'robenius Rings and Generalizations, Lecture Notes in Math, 351,
Springer, 1973.



