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Let k be an algebraically closed field of characteristic zero and let A be
a finite-dimensional, basic and connected k-algebra. We denote by mod A4 the
category of finitely generated left A-modules. Moreover, we assume that A4 is
representation-finite. Let M, ..., M, be a complete set of representatives of the
isomorphism  classes of indecomposable left  A-modules. Let
A = End(@?¢-, M,) be the associated Auslander algebra. We will concentrate
on computing the Hochschild cohomology of A.

In Section 1 we recall the relevant information on Auslander algebras and
say a few words about Hochschild cohomology. The remaining sections deal
with the comparison of the cohomology of A with the cohomology of A.

1. Preliminaries

1.1. Let A be a finite-dimensional, basic and connected k-algebra. Then it
is well known [A] that A is an Auslander algebra if and only if gl.dimA < 2
and dom.dimA > 2. In this case there exists a representation-finite, finite-
dimensional, basic and connected k-algebra 4 such that A is the Auslander
algebra of 4. Let I'(4) be the Auslander-Reiten quiver of 4 and denote by
m(I"(A)) the mesh ideal of I'(4) [G]. Let k(I'(A)) be the path algebra associated
with I'(A4). Note that this algebra may be infinite-dimensional. Then it follows
from [BGRS] that A = k(F(4))/m([(A)). (Note that our assumptions on
k imply that A is standard.) This can be reformulated as follows. Let grA be the
associated graded algebra of A; then A =~ grA.

Let M, ...,M, be a complete set of representatives of the isomorphism
classes of indecomposable left A-modules. We may assume that M,, ..., M, for
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n<d is a complete set of representatives of the isomorphism classes of
indecomposable projective A-modules. Then A = End(®{-; M)).

This notation will be fixed throughout this article.

If X is an indecomposable A-module occurring in the list above we denote
by e, the primitive idempotent of A corresponding to X. Let P, = Ae, be the
corresponding indecomposable projective A-module and let S, = top(P,) be
the corresponding simple A-module. Clearly Py, , ..., P, is a complete list of
isomorphism classes of indecomposable projective A-modules. It is well known
and easy to see that proj.dimS, <1 if and only if X is indecomposable
projective. In this case let radX = @{-, E; with E,, ..., E, indecomposable
and pairwise nonisomorphic. Then

t
0o @ Py, »Py—S3—0

i=1

1s a minimal projective resolution of Sy in modA.
Otherwise let

01 X->®E->X-0

i=1

be the Auslander-Reiten sequence ending with X, where E,, ..., E, are
indecomposable and pairwise nonisomorphic. Then

0-Pyx— @D Pg—>Py—S,—0

i=1

is a minimal projective resolution of S, in modA.

In particular, we see that Ext}(Sy, Sy) # 0 if and only if there exists an
irreducible map o: X — Y and that Ext3(Sy, Sy) # 0if and only if Y ~ t1X. We
will use these observations in Section’ 3.

The algebra A is called representation-directed if I'(A4) is a directed quiver.
In this case there exists a quiver #(A), called the orbit quiver of I'(A) [R], such
that I'(A4) can be identified with a full subquiver of Z#(4). We say that A4 s
simply connected if G(A) is a tree.

For different characterizations using the topological realization of I'(4) as
a two-dimensional simplicial complex or the separation property of the
radicals of indecomposable projective A-modules we refer to [BLS] and
[BrG].

1.2. Let B be a finite-dimensional k-algebra and let ;X, be a finitely
generated B-bimodule. Following [Ho], [CE] we define the Hochschild
cohomology groups H'(B,X) of B with coefficients in X by
H'(B, X) = Exthe(B. X) where we denote by B°= B®,B* the enveloping
algebra (B* denotes the opposite algebra). Note that a B-bimodule zX, can be
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considered in a natural way as a left B*-module by (e®b’)x = axb, for a, be B
and ae X, where b’ denotes the element in B* corresponding to beB.

Of particular interest to us is the example ;X = pBp. In this case H'(B, B)
-is simply denoted by H'(B). For some results on computations for H'(B) we
refer to [H] and to the articles mentioned there.

We will need the fact that proj.dimgB = gl.dimB.

For later purposes we recall that H°(B) is the center of B. The description
of H'(B) is as follows.

Let Der(B) = {de Hom(B, B)| (b, b,) = b,8(b,)+6(b,)b,} be the space
of derivations and let Der®(B) = {§,: B— B|§,(b') = b'b—bb'} be the space of
inner derivations. Then H'(B) ~ Der(B)/Der’(B).

A different description which is easier to use was obtained in [H]. Let
e,,....e, be a complete set of primitive orthogonal idempotents in B. Let
Der"(B) = {6 e Der(B)|d(¢;) = 0 for 1 < i< n} be the subspace of normalized
derivations. By Der™°(B) we denote the subspace Der"(B)nDer®(B). Then
Der"(B)/Der™°(B) ~ H'(B). Note that a normalized derivation preserves the
two-sided Pierce decomposition of B with respect to the chosen set of
idempotents.

Finally, recall that H(B) = @,z H'(B) is a Z-graded algebra where the
multiplication is given by the Yoneda product. H(B) is called the Hochschild
cohomology algebra.

2. The center of A
We keep the notation from Section 1.

PrROPOSITION. The canonical algebra map A — A induces an isomorphism @:
H°(A)— H°(A).

Proof. Llet feA. Then f=Y,;f,, where f;eHom,M; M) for
1<i,j<d Iffe H%(A), then clearly f;; = O for i # j. Let f; = f;;. Recall that we
have agreed that M,,..., M, are indecomposable projective A-modules. Then
we clearly obtain a linear map ¢: H°(A)— H°(A) by setting #(f) = ) 7-,/;, and
¢ is induced by the canonical map A — A.

Suppose that Y 7, f; = 0. Let n < j < d. Then there exists 1 < i< n and
a nonzero A-linear map n: M,—>M, Since feH%(A) we mfer that
O=fi=frn=mnf=nf. Thus f;=0, hence & is injective.

Conversely, let f = > 7., f,e H°(4). Let n <j < d and let 4° "5 T, AT M;
be a free presentation of M;. Then n} /" = f*nj, where f*: A'> A’ is given by

al, : =(f(a,) f(a )). So we obtain an induced map f;: M;—» M. Let
q_ lf By the computatlon below we infer that feHo(A and clearly
db( = f, thus @ is also surjective.

Let geA with decomposition g=),;g,;, where g€ Hom M, M).
Clearly it is enough to show that g, f; = fig,;.

20 — Banach Center . 26, cz. |
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In fact, gf =9, Y/ = Yii9ify = Xeifigi =19
Let
A‘—'i»A’—"?—»M,- and A% "—§>A"—"1°+Mj

.

be free presentations So we obtain maps gi;: A°=>A* and gJ: A"—> A" such
that n} g3 = ginj and gun =7y g;; We claim thatfgU g;;f;- For this it is
enough to show that n?g; f; = n{ f,g,;. But

T .flgl_;=f 7'[,- gij frg:(_), 7 —gufrn - q'J Of}:n?gijj:f'
This finishes the proof.

3. A minimal projective resolution

Using the information collected in Section 1 and in 1.5 of [H] we immediately
get the following statement.

LEMMA. Let 0— R, » R, = Ry — A =0 be a minimal projective resolution of
A over A°. Then

d
Hom (Ry, A) = @ ey, Ae,,,, Hom (R, A) (—B ep ey,
i=1 ' i %

where o is an irreducible map from M; to M;, and

d
Hom(R,, )= @ e ey,

i=n+1
We want to write down the complex

Hom ,(R,, A) 2% Hom ,.(R,, A) 25 Hom ,(R,, A)

more explicitly. For this we have to introduce some more notation.

Let o X—>Y be an irreducible map between the indecomposable
A-modules X and Y. Then we denote by ¢~ !(a) the irreducible map 1Y - X,
which is uniquely determined up to scalar multiples, and by ¢(«) the irreducible
map Y — 17 X, again uniquely determined up to scalar multiples. Moreover,
for an indecomposable module X we denote by X* the set of isomorphism
classes of indecomposable A-modules such that there exists an irreducible map
from X to Y in X 7. Similarly we define {or an indecomposable module X the
set X~ of isomorphism classes of indecomposable 4-modules such that there
exists an irreducible map from Y in X~ to X.

Since A is standard we can choose [or each pair of indecomposable
A-modules M;, M, such that there exists an arrow «;; from M, to M; in F(A)
a morphism, again denoted by «;;, satisfying the mesh relations. For simplicity
we will assume that dim Hom , (M;, M) < 1 whenever there exists’ an ir-
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reducible map from M, to M;. It is easily seen that this is satisfied in our
applications in Section 5.

Using this and the lemma above it is straighforward to see that ° and 4*
can be described as follows: Let feey Aey, ; then

8°(f) = Z+faij_ Z IR

MjeM; MeMi
And let o eey Aey, be irreducible; then
51(“.‘,‘) = aija(aij)_a_l(aij)aij'

We will show in Section 5 that this is very useful for direct computations.

4. Derivations of A

Let A4 be a finite and connected quiver without oriented cycles and let k4 be the
corresponding path algebra. Then k4 is a finite-dimensional hereditary and
connected k-algebra. Note that all finite-dimensional hereditary, basic and
connected k-algebras are of this form. Let e,,...,e, be the complete set of
primitive orthogonal idempotents corresponding to the trivial paths. Let a be
an arrow in A4; then we denote by s(a) the starting point and by e(a) the
endpoint of «. Moreover, by 4, (resp. 4,) we denote the set of vertices (resp. of
arrows) of 4. We define v: 4, =N by v(a) = dim,(eyqk de,q,). Then it is easily
seen (cf. [H]) that H°(k 4) = k, dim H' (k4) = 1—n+3 seq,v(2) and Hi(kd) =0
for i > 2. In particular, H'(kA) =0 if and only if 4 is a tree.

THEOREM. Let A be the Auslander algebra of A. If H'(A) =0, then A is
representation-directed.

Proof. This was already outlined in [H]. For the convenience of the reader
we recall the argument. Our general assumptions on k imply (see Section 1)
that A ~ k(I'(4))/m(I'(A4)). Let w be a path in I'(4). Then we denote by I/(w) the
length of w. It is easily seen that &: k(I'(4))—>k([(4)) defined by
o(w)=I(w)w is a normalized derivation having the property that
5(m(F(A))) < m{I"( A)). Thus § induces a normalized derivation & Der"(A). By
assumption there exists A€ A such that § = §,. Since & € Der*(A4) we infer that

d
A=) pey, +4 for pek and A'e @ ey (rad A)e,,,.
i=1 i

Let o be an arrow from M; to M;in I'(A) and 4 the residue class of « in A. Then
& = 6(&) = 6,(&) = AZ—&A = p,a—ap,+ A, where Jerad’A. Thus p,—yu; = 1.
Now suppose that

M, 2L M, S M, . >M,_, &=L M, =M,

is an oriented cycle in I'(4). Then we infer that y,—u;,, = 1 for 1 <i<rand
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g,—ui, =1. And it is easily seen that in chark =0 this system of linear
equations has no solutions, a contradiction.

THEOREM. Let A be representation-directed and A its Auslander algebra.
Moreover, let ((A) be the orbit quiver of I'(A). Then H'(A) and H'(k€(A)) are
isomorphic.

Proof. Since (/(A4) is A, ,-free [BB], we know that dim(e,Ae,) = 1
whenever there exists an irreducible map «: X — Y for X, Y indecomposable
A-modules.

Let a be an arrow in I'(4) which we may consider as an element of A4 and
let 5 € Der"(A). Then there exists 4, € k such that é(«) = 4,a. By construction of
@(A) we can identify the arrows of ¢(4) with the arrows of I'(A) given by the
inclusions rad P>— P for the indecomposable projective A-modules P. Let ¢:
Der"(A)— Der"(k@(A)) be defined by y(5) = &, where 3(x) = &(a) for an arrow
« in @(A).

We claim that i is surjective.

In fact, let 5eDer"(k@(4)). We construct §eDer"(4) as follows. Set
S(eMI_) =0 for 1<i<d Let 0-M,->@®j-,E;»M,»0 be the Auslan-
der—Reiten sequence starting with M; where E |, ..., E, are indecomposable and
pairwise nonisomorphic. We denote the irreducible maps from M, to E; by «;;
and those from E; to M, by 8, for 1 <j < r. Inductively we may assume that
§ is defined on o, say §(x;;) = A;a;; for A;€k. Then set 0(B,) = (=4} B,
Then & extends to a well-defined normalized derivation, again denoted by 5, of
A such that the restriction y(8) coincides with &.

Next suppose that e Der"(A) is such that (d) i1s inner. We claim that
5 e Der™?(A).

Clearly it 1s enough to show that if

0-M,3 @ E; P4 M -0
j=1
is an Auslander-Reiten sequence such that (x;) = 0 for 1 < j < r, then there
exists uck such that (6—(5,,%‘)(/}_,.,) =0 for 1 <j<r. Let 6(8;) = 4,B, for
1 <j<r. Then 4,,=...= 4, = 4, sincc

0=0() a;Bu)= 2 6B = 2 Au;By
=1 j=1

So choose pu = A. Then (5—5,”%)([3],) = A B —uB,=0for 1 <j<r

Let SeDer™%(A4). Then it is straightforward to see that y(d)e
€ Der"°(k{@(A)). In fact, let § = &,, where 4 = Y'9_, ji;e, € 4. Let j be a vertex
of O(A). Let ay;,...,a,; (resp. B,,..., B;) be the arrows of @(A) starting (resp.
ending) at j. Let M,,,....M,; (resp. M;,...,M;) be the indecomposable
A-modules which are sources (resp. targets) of the irreducible maps corres-
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ponding to these arrows. Let v,=3"_ u,;+) i, ;. Then y(d) =) 9, ¢
Der™(k((A)).
Summarizing our calculations then shows the assertion.

COROLLARY. Let A be representation-finite and A its Auslander algebra.
Then H'(A) =0 if and only if A is simply connected.

5. Computations for H?*(A)

In Section 3 we have constructed a minimal projective resolution of the
Auslander algebra A over its enveloping algebra A°.

THEOREM. Let A be representation-finite and A its Auslander algebra. If A is
representation-directed, then H*(A) = 0.

Proof. We consider the map
d

1.
ol D ey ey > D e, Aey,
IE'_] i=n+1

defined in Section 3. We will show that &' is surjective, hence H*(A) = 0. Let
feey,Aey,. We may assume that [ =« ;f, for some j, where

0-M 4 PE LAM -0
j=1

is the Auslander-Reiten sequence ending with M,. The g-orbit of f; is finite.
Then by construction we infer that 6*(},.o07"(B;) = a;8; = 1.

COROLLARY. Let A be representation-finite and A its Auslander algebra.
Then the Hochschild cohomology algebra of A is trivial if and only if A is simply
connected.

This can be reformulated as follows. Let 4 be representation-finite. We
denote by n(A4) the number of vertices of I'(.4) (thus the number of isomorphism
classes of indecomposable A-modules), by s(4) the number of arrows of I'(A)
and by m(A) the sum Y¢_,.,r, where r;+1 is the number of isomorphism
classes of indecomposable direct summands of the middle term of the
Auslander—Reiten sequence ending with M,.

COROLLARY. Suppose that A is representation-directed. Then A is simply
connected if and only if 1 = n(A4)—s(A)+m(A).

Proof. With the notation above the complex
Hom(R,, 4)%5 Hom(R,, A)5 Hom(R,, A)
constructed in Section 3 reduces to

k() i ks L k™A
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By the theorem above we know that 4! is surjective. Since H%(A) = kerd® = k
we infer that dim H!(A) = s(4)—m(4)—n(A)+ 1. So the assertion follows from
the corollary in Section 4.

We refer to [H] for some different examples for the computation of H2(A).

[A]

{BB]

[BGRS]
[BLS]
[BrG]

[CE]
[G]

(H]
[Ho]

(R}
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