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Suppose 8 is a topological semigroup, X is a Banach space and,
for each z in 8, there is a homeomorphism g, defined from a neighbor-
hood of # in S onto X. In other words, 8, with the set of charts {g,: «
is in 8}, is @ manifold based on the space X. We say that S is differen-
tiable if, for each pair (z,y) in 8 xS, the function

View = {((a’ b), gzy(g;’(a)g;‘(b))):
(a,b) is in X xX and g;'(a)g;(b) is in dom(gw)}

is continuously Fréchet differentiable on a neighborhood of (0, 0).

We show that if S is a differentiable semigroup and S contains an
idempotent ¢, then the maximal subgroup H (e¢) of S containing ¢ is a dif-
ferentiable group and is an open subset of ¢Se. Moreover, there is an open
subsemigroup of Se containing ¢ which is, topologically and algebraically,
the product of a left trivial subsemigroup L of S with H(e¢). Each com-
ponent of L is a submanifold of S, and dual results are given for eS.

Note that, in the definition of a differentiable semigroup, S is not
assumed to be a differentiable manifold. If § contains a left or right
identity, then the compositions g,og," for appropriate  and % in § are
differentiable and 8 is a differentiable manifold.

Definition 1. Suppose 8 is a differentiable semigroup and f is
a continuous function from an open subset of § into 8. Then f is differen-
tiable at an element x of dom(f) if

[gf(z)ofo 9z'19, (f"l(domgz))]
is continuously Fréchet differentiable on a neighborhood of 0 in X.
Here [h|A] means the restriction of the function % to the set A.
Definition 2. If § is a differentiable semigroup and M is a subset
of § we say that M is a submanifold of 8 if there is a linear continuous

idempotent mapping p from X into X so that each point of M has a
neighborhood in M homeomorphic to p(X).
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In the following, 8 denotes a differentiable semigroup based on
the Banach space X with charts {g,: «# is in 8} which contains at least
one idempotent. E(S) denotes the set of all idempotents of S and if e
is in E(8), then H (e¢) denotes the maximal subgroup of S containing e.

The first theorem uses only the manifold structure of S. It is the vehicle
for deducing the topological structure of ¢S, Se and eSe when e is in E (8).

THEOREM 1. Suppose 8 is8 a differentiable semigroup and G is a con-
nected open subset of S. Suppose p is a function from G into G which is
differentiable at each point of G and satisfies p(p(z)) = p(x) for each x
in G. Then p(@) is a submanifold of S.

Proof. Suppose z is in p(@) and define r, by 7. (a) = g,(p(gz‘(a, ))

for each a in X, so that (g;'(a)) is in the domain of p and p(gz a)) is
in the domain of g,. Since p is differentiable and p(x) = =z, r, is differen-
tiable on a neighborhood of 0. Moreover, r,(r,(a)) = r,(a) for each a,

so that r,(a) is in the domain of r,. In particular, r,(0) = 0.

From the proof of Theorem 1 in [3], there are neighborhoods U
and V of 0 in 7,(0)(X) and im(r,), respectively, so that r (0)o [r.1U]is a
homeomorphism onto a neighborhood of 0 in 7, (0)(X), (r,(0)o[r,] U])‘l
is continuously differentiable on its domain, and [rx| U] is a homeo-
morphism onto V.

gz'o[r, | U] is a homeomorphism onto a neighborhood of z in p(G).
Thus, for each x in p (@), there is a homeomorphism %, from a neighborhood
of # in p(@) onto a neighborhood of 0 in #,(0)(X). This implies, since
P (@) is connected, that if each of z and y is in p (@), then r,(0)(X) is homeo-
morphic to 7,(0)(X), and hence that p(G) is a manifold.

~ Note from the chain rule that, for each « in p (@), 7, (0) is an idempotent
linear transformation on X, and hence that p(@) is a submanifold of S.

CoROLLARY 1.1. If 8 is a differentiable semigroup and e is in E(S),
then each component of each of eS, Se and eSe is a submanifold of 8.

Proof. Define f on S by f(z) = ex for each z in 8. If « is in §, then
91 (F (92" (@) = 9.2(957(0) g5 (@) = V2(0, a)

for each a satisfying f(g;'(a)) is in dom (g;,). Thus f is differentiable.
Clearly, f(f(x)) = f(x) for each = in S.

Suppose C is a component of f(8) = eS. Now, C is contained in
some component D of 8, and D is open in 8 since S is locally connected
and f(D) = C. Thus, by Theorem 1, C is a subma.m'fold of S.

Define g on 8 by g(x) = we, and p. on 8 by p (@) = g(f(x)) = exe.
Each of g and p, is differentiable, and an analogous a,rgument to the
one just given yields our conclusion for Se and eSe.

Corollary 1.1 allows us to see that not every semigroup on a mani-
fold is differentiable. Denote by R the Banach space of real numbers and
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define the continuous associative multiplication m on R by m(x,y)
= min{x, y}. Then m(0,0) = 0 and m({0} x8) = (— o0, 0]. This is not
a manifold, so (R, m) is not differentiable.

THEOREM 2. Suppose S is a differentiable semigroup and e is in E(8).
Then H (e) is an open subset of eSe and H (e) is a topological group.

Proof. Let p(a) = ge(pe (9. (a) )) for each a in X such that pe(g (@)
is in dom(g,). Then there is a connected neighborhood G of 0 in X, so
that p(G) is contained in @, p(p(x)) = p(x) for each  in @, and g6 -1 (p(G))
= p(9,'(@)) is a neighborhood of e in p,(8).

As in the proof of Theorem 1, choose U to be a meighborhood of 0
in Y = p'(0)(X), so that [p| U] is a homeomorphism onto a neighborhood
of 0 in the image of p and p’(0)o[p| U] is a reversibly continuously dif-
ferentiable homeomorphism onto a neighborhood of 0 in Y. Define W by

W(a,b) =[p| U (V.(p(a), p(D))

whenever each of a and b is in U and V,(p(a), p(b)) is in the domain of
[pl U]'. We see that W, as in the proof of Theorem 2 in [3], is associative
and continuously differentiable on a neighborhood of (0,0) in Y xY.
Moreover, W(0,z) = W(x,0) = = for each appropriate z in Y.

w0, 0)(x,y) = z+y for each (x,y) in ¥ xY, so, by the implicit
function theorem ([2], p. 270), there is a neighborhood A of 0 in Y con-
tained in U and a continuously differentiable homeomorphism % from
A into A such that Wz, h(z)) = W(h(z), 2) = 0 for each » in 4.

9. ' (p(4)) is a neighborhood of ¢ in p,(8), since p(A4) is a neighborhood
of 0 in the image of p. If x is in g;!(p(4)), then

¢ = ag;* (p (1121 U1 (5.(@)))-

Thus
= g p ({121 U1 g @)))-

Hence H (e) is a neighborhood of ¢ in eSe and the inversion is con-
tinuous on a neighborhood of ¢ in H (¢). The rest of the argument is standard.

Note that this shows H(e) is an analytical group in the sense of
Birkhoff [1].

CorROLLARY 2.1. If S is a compact connected differentiable semigroup,
then E(8) is coniained in the minimal ideal K of 8§.

Proof. Suppose ¢ is in E(8). By Theorem 2, H(e) is open in eSe.
Since S is compact, H (e) is closed in S, and hence.in eSe. Thus H (¢) = eSe,
since eSe is connected.

Suppose x is in K. Since K is an ideal, exe is in K. Similarly, exe (exe)™
= ¢ is in K, so E(S8) is contained in K.

1
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LeMMA. If each of p and U is as in the proof of Theorem 2, then
[pI U 'op is continuously differentiable on a meighborhood of 0 in X.

Proof. Recall from the proof of Theorem 2 that (p’'(0)o[p|U])™" is
continuously differentiable on p’'(0)(p(U)). Now,

(2" (0)o[p|U)™ =[pIUT o [P (0)Ip(U)]7,
and

[(p1 U1 op|p~ (p(0))] |
= [[p1 U1 o [p'(0)Ip(U)] top’(0)op p~ (p(T))].

Hence [p|U] 'op is the composition of continuously differentiable
functions and we are done.

Let p;'(H (¢)) = 8°. By Theorem 2, §° is open in 8. Theorem 3 begins
the study of the structure of Sen S§°

THEOREM 3. If 8 is a differentiable semigroup and e is in E(S), then
L = E(8)n S8en 8° is a left trivial subsemigroup of 8 and each component
of L is a manifold. Moreover, if f is in L, then H (f) 18 topologically isomorphic
to H (e). '

Proof. If x is in 8% then exe is in H (¢) and hence (exe)~" (the inver-
sion relative to H (e¢)) exists. Define K on 8° by K (x) = x(exe)”'. Then
K () is in Se for each z in S% .

eK (r)e = eK (x) = ex[e(exe) '] = (exe)(exe)™ = e
is in H(e), and
K(z)K(x) = z(exe)" 'z (exe)™! = w(ewe)“(éwe)(ewe)“ = w(exe) e = K (x).

Thus K(x) is in L for each « in §8° If f is in L, then

(efe) (efe) = (ef)(ef) = eff = ef = efe,

so K(f) =f. Hence L = K (8°.
If each of x and y is in 8% then

K (x) K (y) = x(exe)~"y(eye)™" = z(ewe)™" (eye)(eye)™" = K (),

so L is left trivial. '

If fis in L and # is in Sf, then x = zf = afe, so x¢ = x and z is
in Se. Similarly, Se is contained in Sf, so Se = 8f.

Suppose f is in L. Define k, on H(f) by h,(x) ———/éw and h, on H (e)
by hy(x) = fx. If each of x and y is in H(f), then

hi(y) = exy = (ewe)y = hi(2) M (y),
80 h; is a homomorphism. If z is in H(f) and y is chosen in H (f) so that
xy = yx = f, then: h,(z)h,(y) = exy = ef = ¢, 80 h,(x) is in H(e¢). Simi-
larly, h, is @ homomorphism from H (e) into H(f).



DIFFERENTIABLE SEMIGROUPS 103

If x is in H(e), then h,(hz(w)) = hy(fr) = ¢fr = ex =2, and if
is in H(f), then hy(h,(x)) = &, so H(f) and H(e) are topologically iso-
morphie.

Define q on 8° by ¢(x) = (exe)™'. From the proof of Theorem 2 there
is a neighborhood B of ¢ in 8 so that, for each z in B,

q(w) = g;* (p (h(l'.pl U1 (g (pe(w)))))),

where p, U and % are as in the proof of Theorem 2.
Now,

g.(a(9-" (@) = p(h([pu U1 (g6 (Pe (95 (w))))))
for each z in g,(B). Thus

[9.0409:'19.(B)] = [poho[p|UI 0g,0p,09;" |9.(B)]
= |poho([p|UT o p)lyg. (B).

For the last equality recall the definition of p. By the Lemma,
[p| Ul 'op is continuously differentiable on a neighborhood of 0. Each
of p and % is continuously differentiable, so g,0qog,' is continuously
differentiable on a neighborhood of 0. _

Thus, since the multiplication of § is differentiable, g,0 Kog," is
continuously differentiable on a neighborhood of 0. Now,

K (K (2)) = x(exe)™ ' [ex(exe)™']™! = x(ewe)™ e = K (z)

for each x in 8°. Thus, by Theorem 1 of [3], the image of g,0 Kog,"' is
locally homeomorphic to (g,0 Kog, ')’ (0)(X). Hence there is a neighbor-
hood of ¢ in L which is homeomorphic to (g,0Kog;') (0)(X).

Suppose f is in L and define » on 8 = {&# in 8: faf is in H(f)} by
u(z) = x(fzf)~' (here the inversion is relative to H(f)). As in the begin-
ning of this proof, L, = E(8)N 8f n §’ is a left trivial subsemigroup of S
which is the image of w.

Suppose x is in L,;. Now L, is contained in Sf and Sf = Se, so = is
in Se. Since ex = (ef)x = e(fr) = ¢f = ¢, we have

K (z) = x(ewe)™ = w(ex)™ =x(e)™ =we =

and « is in L. Similarly, L is contained in L, so L = L.

By the argument just given for ¢, there is a neighborhood of f in
L, = L homeomorphic to (gjouo 97 ')’ (0)(X). Thus each point of L has
a neighborhood homeomorphic to a Banach space, and hence each com-
ponent of L is a manifold.

THEOREM 4. If each of S8 and e is as above, then Se N 8° i3 topologically
tsomorphic to L x H (e).
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Proof. Define ¢ on Sen 8¢ by i(x) = (K(), p.(#)); ¢ is continuous
and into L x H(e). Define j on L xH (e) by j(f, 9) = fg; j is continuous
and into Sen §°.

If (f,¢g) is in L x H (e), then

i(fg) = (fa(efge)™", efge) = (fg97", 9) = ([ 9),
and if x is in Sen 8% then
Ji(x)) = x(ewe)' (exe) = we = «,

so ¢ = j ! is a homeomorphism.

If each of (f,g) and (f’,g¢’) is in L x H(e), then

I 9)) =if, 99) =1f99° =fag' = flaf)g = (f9(f'9)

=J(f,9)i(f's 9,

so j is an isomorphism.

We will now state the dual result for eSn 8°.

THEOREM 4'. Suppose S is a differentiable semigroup with idempo-
tent e. Then

R = {(ewe)'x: z is in 8°} = E(8)neSn §°

i8 a right trivial subsemigroup of S and each component of R is a manifold.
Moreover, eSN 8° is a subsemigroup of S and is topologically isomorphic to
the product semigroup H (e) X R.

Theorems 4 and 4’ are characterizations, on an open subsemigroup
containing e, of differentiable semigroups with right (left) identity e.

COROLLARY 4.1. If S is a differentiable semigroup, e is in E(8S), and e
18 1solated in each of R and L, then there is a meighborhood V of e so that
ex = xe for v in V.

Proof. Choose N to be a neighborhood of ¢ in § which contains no
member of RUL, and let V be a neighborhood of ¢ in 8° so that if « is

in V, then each of x(exe)~' and (exe) 'z is in N.
If z is in V, then x(ere)™' = e = (exe)~'x. Hence

xe = x(ewe)* (exe) = exe = (exe)(exe) 'x = ex.
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