Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Cover of the book
Tytuł książki

Spaces of Lipschitz type, embeddings and entropy numbers

Seria
Rozprawy Matematyczne tom/nr w serii: 380 wydano: 1999
Zawartość
Warianty tytułu
Abstrakty
EN
Abstract
We establish the sharpness of the embedding of certain Besov and Triebel-Lizorkin spaces in spaces of Lipschitz type. In particular, this proves the sharpness of the Brézis-Wainger result concerning the "almost" Lipschitz continuity of elements of the Sobolev space $H^{1+n/p}_p(ℝⁿ)$, where 1 < p < ∞. Upper and lower estimates are obtained for the entropy numbers of related embeddings of Besov spaces on bounded domains.
EN
CONTENTS
Introduction...........................................................5
1. Preliminaries.....................................................6
 Spaces on ℝⁿ......................................................6
 Atomic decompositions........................................8
 Spaces on domains...........................................10
 Embeddings.......................................................11
 Entropy numbers................................................11
2. Sharpness.......................................................13
3. Lipschitz embedding, entropy numbers...........21
4. Comparison with related results......................30
 Embeddings.......................................................30
 Entropy numbers...............................................36
 Estimate from above..........................................37
References.........................................................42
Miejsce publikacji
Warszawa
Copyright
Seria
Rozprawy Matematyczne tom/nr w serii: 380
Liczba stron
43
Liczba rozdzia³ów
Opis fizyczny
Dissertationes Mathematicae, Tom CCCLXXX
Daty
wydano
1999
otrzymano
1998-04-24
poprawiono
1998-08-13
Twórcy
autor
Bibliografia
  • [1] C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, Boston, 1988.
  • [2] J. Bourgain, A. Pajor, S. J. Szarek and N. Tomczak-Jaegermann, On the duality problem for entropy numbers of operators, in: Geometric Aspects of Functional Analysis (1987-88), J. Lindenstrauss and V. D. Milman (eds.), Lecture Notes in Math. 1376, Springer, 1989, 50-63.
  • [3] H. Brézis and S. Wainger, A note on limiting cases of Sobolev embeddings and convolution inequalities, Comm. Partial Differential Equations 5 (1980), 773-789.
  • [4] B. Carl and I. Stephani, Entropy, Compactness and the Approximation of Operators, Cambridge Univ. Press, Cambridge, 1990.
  • [5] R. DeVore and G. G. Lorentz, Constructive Approximation, Grundlehren Math. Wiss. 303, Springer, Berlin, 1993.
  • [6] D. E. Edmunds and W. D. Evans, Spectral Theory and Differential Operators, Clarendon Press, Oxford, 1987.
  • [7] D. E. Edmunds, P. Gurka and B. Opic, On embeddings of logarithmic Bessel potential spaces, J. Funct. Anal. 146 (1997), 116-150.
  • [8] D. E. Edmunds, P. Gurka and B. Opic, Optimality of embeddings of logarithmic Bessel potential spaces, to appear.
  • [9] D. E. Edmunds and M. Krbec, Two limiting cases of Sobolev imbeddings, Houston J. Math. 21 (1995), 119-128.
  • [10] D. E. Edmunds and H. Triebel, Entropy numbers and approximation numbers in function spaces, Proc. London Math. Soc. (3) 58 (1989), 137-152.
  • [11] D. E. Edmunds and H. Triebel, Entropy numbers and approximation numbers in function spaces II, Proc. London Math. Soc. (3) 64 (1992), 153-169.
  • [12] D. E. Edmunds and H. Triebel, Function Spaces, Entropy Numbers, Differential Operators, Cambridge Univ. Press, Cambridge, 1996.
  • [13] M. Frazier and B. Jawerth, A discrete transform and decomposition of distribution spaces, J. Funct. Anal. 93 (1990), 34-170.
  • [14] D. Haroske and H. Triebel, Entropy numbers in weighted function spaces and eigenvalue distribution of some degenerate pseudodifferential operators I, Math. Nachr. 167 (1994), 131-156.
  • [15] H. König, Eigenvalue Distribution of Compact Operators, Birkhäuser, Basel, 1986.
  • [16] H.-G. Leopold, Limiting embeddings and entropy numbers, Forschungsergebnisse Math/Inf/98/05, Universität Jena, Germany, 1998.
  • [17] A. Pietsch, Eigenvalues and s-Numbers, Akad. Verlagsgesellschaft Geest & Portig, Leipzig, 1987.
  • [18] W. Sickel and H. Triebel, Hölder inequalities and sharp embeddings in function spaces of $B^s_{p,q}$ and $F^s_{p,q}$ type, Z. Anal. Anwendungen 14 (1995), 105-140.
  • [19] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam, 1978.
  • [20] H. Triebel, Spaces of Besov-Hardy-Sobolev type, Teubner, Leipzig, 1978.
  • [21] H. Triebel, Theory of Function Spaces, Birkhäuser, Basel, 1983.
  • [22] H. Triebel, Theory of Function Spaces II, Birkhäuser, Basel, 1992.
  • [23] H. Triebel, Approximation numbers and entropy numbers of embeddings of fractional Besov-Sobolev spaces in Orlicz spaces, Proc. London Math. Soc. (3) 66 (1993), 589-618.
  • [24] H. Triebel, Fractals and Spectra, Birkhäuser, Basel, 1997.
Języki publikacji
EN
Uwagi
1991 Mathematics Subject Classification: 26A16, 46E35, 41A46, 46E15.
Identyfikator YADDA
bwmeta1.element.zamlynska-17126c89-a594-4107-82bf-95c4741d8313
Identyfikatory
ISSN
0012-3862
Kolekcja
DML-PL
Zawartość książki

rozwiń roczniki

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.