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0. Introduction

Considered are stochastic decisions with discrete time space and countable
state space. For rather general classes of admissible strategies the cor-

responding optimality equation is formulated. Included are especially pro-
blems of optimal stopping.

1. Description of the dynamic system

(@) Space of time

0,1,. N if N<oo,
TN= \ . _
{0, 1,... j lf N—CI).

We call N the horizon and the elements of Ty points of time or steps.

(b) Space of states &, & is supposed to be countable and & # @,

elements of ¥: s,s,.

() Space of decisions 2, 9 # @, elements of 2: d, d,.
h,:=(So, do, Sy, dy,...,dn_1, S5), n =0 is called a n-history,
Ky =(LXDXI XD ... xTxSF) set of n-histories.

(2n+ 1Tf;clors

(d) Initial distribution pq(-), probability distribution on %

(e) Law of motion p =(p,), n =1, 2,..., p,: probability distribution on
& of the form p,(-|h, d), he #,, de 2.

() Cost structure t=(k,), n=1,2,...,k,, cost function of the form
k|#,— R.
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(g) Decision function for time n: é,|.#, - %, 0 < n<N.
(h) Strategy 3 =(3,), 0<n <N.
(1) Set of admissible strategies ©.

By the entity DS: (N, ¥, ¥, po, p, I, @) a dynamical system is defined.

2. Notation

Each vector of the form s,:=(sq, 51,...,5,), $,€ %" is called a state-n-
history. In case N = oo we write sy:=(sg, 5;,...). By the states sgp,...,s,
contained in a n-history h, = (Sq, do,...,d,_, S,) we may form the vector of
state-n-history s,(h,):=(sq,...,s,). To a n-history h, = (sq, dg,...,d,_,, 5,) Or
a state-n-history s, = (s,, ..., s,,) we define for 0 < k < n the k-sections a, h, :

= (Sg, dg,.--,dy-, 5) and a,c = (Sp,- .., 5,). Immediately we understand the
abbreviated notation h,,, (h,,, d,,, S,,+1) n=0. A n-history h,
=(sg, dg,---,d,-1. Sp) and a strategy 9 =(J,) are called compatible — in
symbols h, ~ 3 or 3 ~h, — Il o (a.h,)=4d, for all k=0,1,....n—1. To
given s, = (Sg, S1... -, ,, 1, S, and 9 =(J,) we can construct by do = d4(50),
dl = 6 (SO’ bO(SO)) n 1 : (SOa d (SO) 6n 1(50’ o (qO) Sp— 1)) the
n-history (s,, dg,-. ., d,, 15 Sp) = hs(s) Wthh is characterlzcd by h, ~ 3, s,
= ¢,(h,), o (a,h,) =d, for 0 k < n—1. Finally for 3 =(3,) we put
Pn,S( ’ |5n— 1) L= pn( |hn- 1 (5n— 1)7 5n—- 1 (hn—l (Sn— 1))) (1)
and
I"ns(s) (hS\( n)) (1’)

3. The controlled stochastic process

In the usual way we define by the theorem of lonescu-Tulcea to each 3¢® a
stochastic process (X,), n=0,1,... on a probability space [{2, #, Py] with

N
Q= X S, ® P(&L), X, (w)=s, for w=(sg, 5;,...)2 and the pro-

bablhty measure Ps defined by
Py(Xo = s0):= po(so), so€ S,

(2)
PS(XH = Sn|X0 = 505000y Xﬂ—'l = Sp- l) L= pn.S(Sn‘Bn—l)a
(SO’Sl’-u',Sn_1)=sn_,lEl(/’JI5 n=1,2,,..
By means of the notation &,:=(X,, X,,..., X,) for the random state-n-

history we have in equivalence to (2) the relation
Py (S, = s,) = po(so) H Pyvs(5,8,-1),
v=1]

Sy = (S0, S1y--ySp) s, = a, S, I<v<n. (2)
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We design by Xg:= {X,),n=0,1,...|[Q, #, P;]} the stochastic process
controlled by 3, 3€6.
A state-n-history s,, n > 0, is called essential for 3, if P4(E, =s,) > 0.

4. Formulation of the problem

In dependance of the random state-n-history &, we define (compare (1')) the
random cumulative cost

kis(S) =:Kng, n=12 .. 3)
and thereby the aim function
_ JEs(Kys) if N < oo, @
' lim Eg(K,;) if N=oco, 9€0.

(The existence of the corresponding expectation values is supposed.)
A strategy 3*e€ @ is called optimal, if

vy, = inf vy 1 = v¥. (5)
3o

5. Notation

We define by
Culhy) i =kplhp) =Ky y(@p-1 B, n=1,2,..ke:=0 (6)

step cost c¢,|#,— R for time n and 1in dependance of hy
=(Sg, dgy---»Sns dp,...) by

rn(hN):zkN(hN)—kn—l(an—th)’ h = la 2:“‘! (7)

rest cost r,|#,— R for time n.
Given a strategy 3 and a state-history s, or sy we use in connection
with h, = h3(s,) and hy = h}(sy) the notation

Cn.&(sn) =Gy (hn)’ rn,B(sN) =T, (hN)a (8)
and in connection with this we obtain by
Cn,SI erl - Cn,S( en)a Rn.SI eN - rn,S ( eN) (9)

the random step and rest cost at time n.
The mean step cost for time n =20, 1, 2,,,, are because of (1), (6), (8)
defined by

_E(Cn+1,8| 6,, = sn) = Z pn+1.3(sl5n) Cp+ 1,.9(5m S) = (gn,s(gn)a (10)
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and for 3 =(6,) ~ h,, s, = 5,(h,), d, =0,(h,), n=0,1,2,... we have (com-
pare (1), (8))
Gn.S(sn) = Z Pn+ I(Slhm dn) Chu+1 (hm dm S) = (gn(hm d) (10’)
We define (conditional) mean rest cost for time n,n =0, 1, 2,..., under
the hypothesis &, if control is performed with the strategy 3 by
Voo 1= Eg(Ruy 4 5| S,) (11)
with the realisations
. Un.B(sn):= ES(Rn+1,3|6n = 5n)- (111)
In case N < o0 we put

vyo(sy):=0  forall syes™*! 3eO.

For 38 ~ h,, s, = s,(h,) we still denote
vn.&(sn) =. Wn.s(hn)' (12)

Now our aim function (4) may be represented as mean total cost for the
strategy 9 and for each n > 0 decomposed in the form (compare (7), (3), (9),

(11))
vy = Eg(Ky5)+ Es(Veg): (13)

because of (11') we obtain for n =0 especially
by = Z Po(s) E3 (R 4| X = 5) = Z Po(8) vp,s(s). (14)

For an arbitrary strategy 3 =(5,)e® and 0 <m <n < N with m, neN
we define the (strategy-) section

Fmm 1= (O, Ot 15+, 8). (15)

0,(9):= {neod: Mo.m = 3[0,:.]} (16)

signifies the set of all strategies of @, which coincide with 3 till step n; the
elements of @,(9) are called (n+ 1)-continuations of 3. In addition we put

©_,(9):= @ for arbitrary 3¢6.
Departing from

Vn,q = n (Rn+ 1,1|| eﬂ)s

compare (11), we consider for 3¢ @ and n > 0 the random variables

VSTA L= inf V;l,.‘)s

ned,_ (N
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especially for n =0 we put because of @_,(9) =@ (17)
I/‘gTo = lnf Vo‘,' =. VO*'
ned
As to the existence of these random variables we take into account, that the
state-space is supposed to be countable. V¥, is obviously independent of 3.
For the notation of the corresponding realizations we write for we 2 with

a,w=s, n>0 instead of Vg, (w) likewise v,(s,), and it follows by
definition

vgln(sn)h= lnf Un.s(sn) fOI' P&(en = n) > 0
ne@y, _ 1(9)

and especially for n =10 (17)

v3j0(So) = 1§ (s) = ingvo',, (s0) for  po(so) > 0.
ne

In case of Py(S, =5, =0 we put
v§ia(sn) : =0,
and in consequence we define
v§(sg):=0 for po(se) =0.

The existence of the precedingly introduced random variables is ensured by
the following assumption

(V): For all 3¢ ©® and n = 0, ne N there exist Pg-as. V,

As a consequence of (V) we have

EgV,s < +0.

6

DeriNmioN.  (a) For 8€®, n >0 and s,e ' with Py (S, =s,) >0
we denote

‘?:+1('93 sn):= {Sey: Pn+1,3(slsn) > 0}

If exists always, this means for each choice of the precedingly quoted
symbols and in addition for every positive ¢, and for each two strategies
3., 9,€0,(9 another strategy 3e@,(3) with

Unt 1.3’(5m S) S min (U,.,+ 1,81 (Sm S)s Upst 1,84 (5,,, S))+8

for all se %), (9, s,), then we call @ weakly complete (relative to minoriz-
ation by pairs). We symbolize this property by (V}). If there exists for each
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two strategies 3,, 3,€0@,(9) always a strategy 3 €@,(9) with

VUn+ 1,9'(5m S) S min(vn+ 1,3 (5,,, S)a Unt 1,32(5” S))
for all se %), (8, s,), then © is called complete (relative to minorization by
pairs). In symbols: (V).

(b) The set @ of admissible strategies is called strongly complete
(relative to uniformly optimal continuation), if there exists to each n = 0 and to
each 3e@ a strategy 93*"e€@,_,(9), so that

Up, g0 ( 5n) = v;| n (Sn)

is valid for each state-n-history s, being essential for &; in symbols (V,,). In
case n = 1 we call 9*" a (uniformly) optimal n-continuation of 3. In case n =0
we have accordingly to (17’)

Vg g0 (50) = o3 (So)

for all s, with py(se) >0, and in consequence of (14) and (5) $*° is an
optimal strategy. By means of the precedingly introduced symbols (V)
implies (V) and (V) implies (V).

7

LEMMA. Let be condition (V) — see (18) — fulfilled and we suppose the
set @ of admissible strategies to be weakly complete (compare Definition 6(a)),
then to each € > 0, to each 3¢ © and to each state-n-history s,, n = 0, being
essential for 3, there exists a strategy ne @,(9), such that

ES(V;|+],WISII=Sn)< E&(V.‘}Tn+l|6n= 5n)+£' (19)

Proof. To each state-n-history s, being essential for the strategy e,
5,€ 1" 117 (9), n =0, there exists a countable set T; ,(5,)€0,_ (3 with

inf Un,n (5n) = U.Eﬁn (Sn) .
neTy glsp)

As & is countable, it follows that "*! and consequently the subset
font 1+ (9) of "' and further

T (s): = T
i"zl'(/Hll-"(S) S.n( n) an

are also countable, and we have the equation Vg, = inf V,;, Pjae.
nely n

Now let be Ty, =:(f), k=1,2,..., a countable subset of @,(9)
existing by the preceding considerations with

« .
Vatns1.= il Vo5 P;-ae.
1€l g n+
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We still put " :={s€ % por15008) >0 = £ 1(9, 5,) and we write in
abbreviation
Vn+1,q=:v;p V.9n+1=:V.9*s
Up+ l,q(sm S) = U"(Sn, S) and U§|n+ 1 (sma S) = :U;‘(ﬁ", S)' ’

To given ¢ > 0 we define departing from 5, := 7, and by virtue of the weak
completeness of @ a sequence (n,), k=1, 2,... with ,¢6,(9) and

Dy, (%, 8) < min(v,ij(s,,, s), Uy, (3, s))+€;s se¥ j=2,
whereby &; = ¢/2’. With |
min (v, (%5, S),- -+, Vg, (Sn, s)) =: ;(s,, 3)
it follows
Op; (5ny 5) < @(50y ) FE2+ ...+ = @;(5a, s)+3e, se, (o)

As by definition of (7,), k =1, 2,..., the sequence (¢;(s,, 5)), j =1, 2,...
for each se.%” is monotonously decreasing convergent to v§(s,, s), we have
by a well-known integral-theorem an integer j,, such that with &,,,
=(Xo,.-- Xn,-fl) and (Pjo(en+1) =9,

10
Es(®;4|S, = 5,) < Es (1S, = 5) + 3¢ ®
By (o) and (8) now follows
Ey(Viol Sp = ) < Eg(VF S, = s,) +¢
after which with #n; =:y# we obtain the assertion. ]

For the proof of the optimality-equation given later on, we add a
transformation of (19). For ne®,(9) we have

Pn+ 1,S(S|5n) = Pn+ 1.,n (Slsn)»
and from
P&(Xn+l = Slen = n) = Pn+1,s(5|5n),

compare (2), it follows

EB(Vn+1.q| en = 5n) = Z vn+l,rr(5n9 S)pn+l.rp(slsn)

s

and correspondingly

ES(VSTH+ l'e‘n =s,) = Z U§|n+1(sm S) pn+l.q(s'5n)'

s

Therefore (19) is equivalent to

Z vn+ l,n(sm S) pn+l,n(3|5n) s Z v;|n+1 (gm s)pn+ I’U(SIS,,)'FE. (19’)

s
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8

DerFINITION. To a given set © of admissible strategies we introduce for
n = 0 the following sets:

E,:={{|#,— 2: 33 =(0,)e @ with { =34,)}, (20)
the set of all admissib]é decision functions at time n;
Po(h):={de #: 3({cE, with {(h) =d!, he #,, (21)
the set of all admissible decisions at time n to the given n-history h;
Api= | H,— @ {(h)e P,(h), he #,}, (22)

the set of all functions on ., with values in the corresponding sets of
decisions. |
Evidently we have E, — 4,, and it follows
©c X E,c X 4, (23)

0€n<N 0sn<N

We call @ (with respect to the corresponding set of decision-functions)
combinable, if

O = X E, (24)
0sn<N
complete, if
E,=A, nz=0, (25)
and maximal, if © is both combinable and complete, i.c.,
o= x a,. (26)
0<n<N
9

Remark. If @ is combinable, the admissible strategies may be formed
by an arbitrary combination of decision functions 3,€ E, to the individual
points of time n=0,... If 3 =(8)) and 9 = (67) are two strategies of an
arbitrary set @ of admissible strategies, we denote by 3,9 the strategy &
= (§,) formed by combination of 8' and 9%, for which §, = 4} if k < n and
8, = 6% if k > n. According 10 (24) the set @ is combinable, iff to each two
strategies 9' and 92 from @ and for arbitrary n > 0 also the strategy 3,9 is
contained in 6.

In case of a complete set of admissible strategies at each point of time n
= 0 the totality of functions on #, with values in & _(h), he #,, is used as
set of admissible decision [unctions, but in difference to the case of a
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combinable & not each possible ‘combination (é,) of decision functions §,,
n >0, 1s necessarily an admissible strategy.

A rather simple but for many real situations fitting case is given by
maximal sets of admissible strategies. We demonstrate by the following examples
that the inclusions figuring in (23) may in general not be replaced by equalities.

10

ExampLes. (a) Let be N =2, % respectively & denote the sets of
states and decisions and 4y and 4, the sets of all functions from #,
respectively #; in . For any special €4, let be 4 :=4,\{5). Then the
set of strategies © := 4, x 4] 1s combinable, but not complete. Not combin-
able sets of admissible strategies are arising for instance, if single strategies
are removed. In connection with the theory of optimal stopping we still
consider the following example. In the dynamical system 1 let be N = oo
and 7 = |0, 1). We define a strategy 9 = (,) to be admissible, i.e. ¢ @, if for
each w e 2 there exists an integer n < oo with d,(a,®) = 1. For all ke N, and
h e #, we have 7, (h) = {0, 1}. Therefore each strategy & = (4,), for which
for arbitrary weQ and every neN, we always have §,(h,(u,w)) =0, is

contained in )X 4,, but by supposition not in @. Hence & is not
0<n<N

combinable.

(b) Let be @ =(dyxdy)u(dgxdy) and A, =A; A, AinA =0
with 4] £ @, 4’ # @, i=1,2 Evidently @& is complete, but because of
(do xA)) @ = (45 x A7) O = @ not combinable.

In literature sets of admissible strategies are frequently introduced in this
way, compare for instance [2], that at first are given for each point of time
n, n 2 0, in dependance of each r-history h the set of all admissible decisions.
We denote these sets again by ¢,(h), however regarding that for the moment
strategies and decision functions are not yet present. Then for n > 0 the
totality of all functions J, with é,(h) e &,(h) for he #, is introduced as set 4,
of all admissible decision {unctions at time n. The set of all admissible
strategies is then defined by @ = X 4, ie, @ ={8=(5,): d,€4,,n

Oxn<N
= 0}, which is accordingly to (26) maximal by definition.
Let F be an arbitrary function from ¢ in R. For n > 0, he #,, 3¢®
with 3 ~ A we consider

inf  F{{.(h)=:F*. (27)

=)0, - 1($)

If @ is combinable it follows according to (24)

F* = inf F((,(h), (28)
SneEn
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and if @ is maximal, it [ollows according to (26)
F*= inf F(d). (29)

de (k)

The preceding equations signily, that the infimum, formulated in (27),
which relates to all strategies, which are n-continuations of 3, can be reduced
in case of a combinable @ to the decision functions of E,, and in case of a
maximal @ to.the decisions of the set &,(h). This will be used for appro-
priate formulations of the optimality equation.

11

LLEMMA. Let be h, a n-history and 3 a strategy in @ with 3 ~ h,. If @ is
combinable, then for

wn.q(hn) = Erp(Rn+1,q| el’l = 5")
with h, = hl(s,) — compare (11") and (11") — it follows
inf  w,,(h,) = inl w_, (h,). (30

ne®,_ 1(3) n~h,
Proof. We put
inf  w,,(h) =:4, inl w,,(h,) =:B.

nedp - 1(9) n~hp

(a) In consequence of ne@,_,(3) =95~ h, we have immediately A
= B.
(b) To each & > 0 there exists a ' ~ h, with

w,,.(h,) < B+e.

n.

As @ is by supposition combinable, the strategy &,-,,7" =:9 also
belongs to &, and we have 3@, _,(9) and hence 9 ~ h,. Because of h,:
= hj(s,) = h (s,) = h} (s,) then follows the equation R,,; s = R,.,,, almost
sure with respect to the measures Py and P,,. Further we have

Wn.S'(hn) = ES'(RrH- 1.3'| 6|'| = Sn) = Enr(Rn+ l.quen = u) = wn,q:(hn)a

as the expectations are independent of the process till n, and the strategies
coincide after that. Hence follows

Wwpo{h,) < B+e

for arbitrary & > 0 and from this 4 < B.
From (a) and (b) the statement ol the lemma follows. »

For h,e #, we denote

inf Wy, () =Wk (hy). (31)

n‘hn
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12

LEMMA. If @ is maximal (see Definition 6), then @ is complete (relative
to minorization by pairs).

Proof. Let be 3 =(3,)e®, n=20, 5, | """ (9) and I, =(8})e @,(9)
and 9, = (8)e @ arbitrarily given. As @ is maximal by supposition, @
contains the strategy 3 = (&), defined by 6, =9, if k <n, and for k = n+1

5’% (h"?l (sk)) lf Ups 1.4 (5117 S) S Ups 1,85 (5", S)s
61% (h Z(Sk)) lf Un+1,31 (Sm S) > Un+1,.92(5m S),

Si (¥ (s) = {

at which a,,, s, = (s,, s). From this especially for se€ & with p,,, 3(s|s,) > 0
we obtain the relation

Un+l.3'(5m S) S min(vn+1.31 (5,., S)a Up+ 1.32(5m S)),

whence the statement of the lemma follows. »

13. A recurrence formula

In preparation of the optimality equation we next formulate a simple recurrence
relation between mean rest cost to neighbouring points of time. Taking notice of
(6), (7), (8), (10) and (11) we obtain from

Ryi19=Cri13+Rp42s

and
Eg(Rp+25S, = 5,) = Ey (ES(Rn+ 2,8l S+ 1)l S, = 5n)
= Eg(V,11.5/G, = 8,) for n=0,1,...
the equation
vn.&(sn) = ES (Rn+ 1.8' 6n = 5n)
= Es(Cn+1,3+Rn+ Z,SISM = E‘n)
= Es(Cn+1,.9|6n = 5n)+E3(Rn+ 2,8' 6n = n)
= ES(Cu+l.3|6n = sn)+_E3(Vn+ l,3| 6n = Sn)' (32)

Now we have

ES(V;:+1.3| C-..-:" = sn) = Z pn+1,3(s|5n)vn+1..9(5m 5)‘

Hence from (32) and (10) we obtain

Un,s(f’n) = Z pn+ l,S(Slsn) [cn+ 1.3(‘5m S)+vn+1.3(5m S)], n= Oa la 2’ e (33)

5
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For 3 =(J,) ~ h,, s, = s,(h,) it follows because of (1), (10), (10") and (12) from
(33)
wn.s(hn) = 6n(hm dn)+z Pn+1 (S,hm du) Wpo l.s(hm dm S)a

h,e #,, 0,(h))=d,,n=0,1,2,... (33)

The formula expresses the simple but basic fact, that mean rest cost for a
special point of time yield recurrently by addition of the next mean step cost
and the mean rest cost for the following point of time.

14. Optimality-equation

TueoreM. Let 3 be an admissible strateqy and s, be a state-n-history
being essential for 3, n = 0. We assume that in addition to the condition (V) (see
(18)) @ shall be weakly complete relative to minorization by pairs (see
Definition 6). Then the following optimality-equation holds (for notation we
refer to (1), (8), and (17"

U§|n(5n) = lnf . {Z pn+ l,q(Slsn) [cn+ l,q(sn’ S)-Jf_u::‘|n+ 1 (sna S)]} (34)
ne@,_ 1(9)
(We take notice on our definition @ _ (9) : = & made after formula (16).)

Proof. (a) For an arbitrary strategy $€@,_,(9), n>0, we have in
consequence of (33)

Un.B’.(sn) = z Pn+ 1,8 (SlSn) [cn+1.8’(5m S)+U"+ 1,3’(Sm S)]
2 Z Pr+ 1,8 (S|5,,) [Cn+ 1.3'(5m S)+U;'|,,+ 1 (5m S)]
; lnf {Z pn+1,q(S|5n) [cn+1,r](sm S)+U:|n+ l'(sm S)]} (O)
neb, _1(8)

(by If v§,(s,) = —oo, then to every positive M exists a strategy
Yed,_ (3 with v,4(s,) < —M, hence by (o) follows

-M > ll'lf {Z pn+1,q(slg’n) [Cn+1,q(5m S)+U:|n+l'(5ns S)]}
nel, 1(8) s
From this we immediately obtain (34).

(cy) Let be vgj,(s,) > —oc. Then to arbitrary positive ¢ we have a
strategy ¥ €@,_,(J) with

Up, 9 (5,.) < U§|n(5n) +e&,

so that from (o)

U;ln.(sn)""ﬁ > lnf {E pn+l.n(s|5n) [Cn+l,q(5m S)+U:|n+ l(sn: S)]}
ne@,_ 1(8) s

follows.
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(c;) According to (19') to each ne€®,_,(9) and to arbitrary positive &
exists a strategy n'€&,(n), such that

Z Pn+ 1,9 (SIS,.) vn+ 1,/ (Sm S) S Z Pn+ l,q'(slsn) v:|n+ 1 (Sm S)+£'
s s

Hence from (33) and according to the equations
Pn+ 1,n/ (Slsn) = Pn+ l.n(slsn) and Ca+ l,rp(sm S) = Cp+ l,q(sm S)

it follows

U;In(sn) g vn,q:(sn) = z DPn+ 1, [cn+ 1,9 (sna S)+Un+ 1,n (5,,, 5)]
s
g Z pn+ l.r;(slsn) [Cn+ l.q(sn’ S)+ u:]n+ 1 (5m S)] +£

for each ne@,_,(9), and consequently

U;ln(5n) < ]l'lf {Z DPn+ l.ry(slsn) [Cn+ l,q(sm S)+U,T|,,+1(5,,, S)]}+E'
ned, (%) s

As ¢ 1n (c;) and (c,) is an arbitrary positive number, the validity of the
optimality equation (34) follows. =

We deduce the special form of the optimality equation for the case, that
the set @ of the admissible strategies is combinable respectively maximal; see
Definition 8. Firstly we have for n = (f§,) according to (1), (8) with h, = hl(s,),
s, € nz20, sed

Pn+ 1,n (S|5n) = Pn+1 (S'hm ﬁn(hn))’ Ca+ l.rp(sn’ S) = Cpt1 (hm :Bn (hn)a S)
and else for combinable &, compare (12), (30) 'and (31),

v:lu+ 1 (5,., S) = w:+l (hm Bn(hn)a S).

Hence from (34) according to (24) we obtain for n=0,1,... and each
essential n-history h, in case of a combinable set @ of admissible strategies
the optimality equation

W: (hn) = lI'I.f {Z pn+ 1 (Slhm ﬂn(hn)) [Cn+ 1 (hns Bn(hn)’ S)-{—W:_,, 1 (hm ﬁn(hn)a S)]}

n€Ep s
If & is moreover maximal, i_t_ follows. from (35) according to (29)

W: (hn) = inf {Z Pn+1 (Slhm d) [Cn+ 1 (hm d9 s)+w,’f+ 1 (hm dv S)]} (36)

deFplhy) s

15

Remark. The idea for establishing of Lemma 7 was suggested by [1].
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