ACCUMULATION POINTS OF NOWHERE DENSE SETS

BY

W. KULPA AND A. SZYMAŃSKI (KATOWICE)

The following question, originated from Hewitt's paper [2] (see also Elkin [1]), remains open: does there exist a regular topology which is maximal among topologies without isolated points? (P 914)

Related to this question is another one: is it true that every point of a regular space without isolated points is an accumulation point of a nowhere dense subset? (P 915)

As it is easy to observe, the affirmative answer to the second question implies the negative answer to the first one. We shall give a partial positive answer to the second question in the case where the space is compact Hausdorff. The answer in the case of minimal Hausdorff spaces is unknown; when the space is *H*-closed, the question is answered negatively by examples of maximal *H*-closed topologies.

THEOREM. If X is a dense-in-itself compact Hausdorff space, then, for every point $x \in X$, there exists a closed nowhere dense set F such that $x \in \operatorname{cl}[F \setminus \{x\}]$.

Proof. Let $x \in X$. Denote by R_x a family of all regular open sets $U \subset X$ such that $x \in \mathcal{U}$. The relation of inclusion yields a partial order on the family R_x . Note that if $U \neq V$, U, $V \in R_x$ and $U \subset V$, then $V \setminus \mathcal{U} \neq \emptyset$.

(I) Assume that there exists a chain $R' \subset R_x$ such that

$$\{x\} = \bigcap \{\operatorname{cl} U \colon U \in R'\}.$$

There exists a chain $R = \{U_{\xi} : \xi < a\}$ which is well-ordered and cofinal in R'. It is clear that $\{x\} = \bigcap \{\operatorname{cl} U : U \in R\}$ and that a is a limit ordinal, since x is not isolated. Choose a set $E = \{x_{\xi} : \xi < a\}$ of points $x_{\xi} \neq x$ of X such that

$$(1) x_{\xi} \in U_{\xi} \text{ of } U_{\xi+1} \text{for every } \xi < a.$$

Every one-point set $\{x_{\xi}\}\subset E$ is nowhere dense in X and open in E, x_{ξ} being non-isolated in X. Hence, by Theorem 3 of [3], § 8, III, it follows that E is nowhere dense in X. From (1) and the fact that X is

compact Hausdorff and $\{x\} = \bigcap \{\operatorname{cl} U \colon U \in R\}$ we have $x \in \operatorname{cl}(\operatorname{cl} E \setminus \{x\})$. Thus the conclusion of the Theorem holds in case (I) for $F = \operatorname{cl} E$.

(II) Let R be a chain in R_x . According to the Kuratowski-Zorn Lemma we can assume that R is maximal in R_x . It is clear that the set

$$F = \bigcap \{\operatorname{cl} U \colon U \in R\} \setminus \operatorname{int} \bigcap \{\operatorname{cl} U \colon U \in R\}$$

is closed and nowhere dense. From the maximality of the chain R it follows that

(2)
$$x \notin \operatorname{cl}(\operatorname{int} \bigcap \{\operatorname{cl} U \colon U \in R\}).$$

This implies that $x \in F$. We show that $x \in \operatorname{cl}(F \setminus \{x\})$.

Suppose that x is isolated in F. Then (2) implies that x is isolated in $\bigcap \{\operatorname{cl} U \colon U \in R\}$. Thus, X being regular, there exists a regular open neighbourhood G of x such that

$$\operatorname{cl} G \cap \bigcap \{\operatorname{cl} U \colon U \in R\} = \{x\}.$$

Put $R_G = \{U \cap G \colon U \in R\}$. The sets $U \cap G$, $U \in R$, are regular open. We have $\{x\} = \bigcap \{\operatorname{cl} U \colon U \in R_G\}$, but this is case (I). Thus the proof is completed.

REFERENCES

- [1] А. Г. Елкин, О разложимости пространств, Доклады Академии наук СССР 186 (1969), р. 9-12.
- [2] E. Hewitt, A problem on set-theoretic topology, Duke Mathematical Journal 10 (1943), p. 309-333.
- [3] K. Kuratowski, Topology I, New York and London 1966.

Reçu par la Rédaction le 24. 4. 1973