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1. Introduction

The theme of these lectures will be the application of a combination of
mathematical techniques to certain physical problems. Often it is in precisely
the region where one method fails that another i1s most successful, hence if a
combination of techniques is used each method can serve as a check on the
other as well as possibly extending the range of the solution. Moreover, it is
sometimes possible to get an answer in some limit of a physical parameter
that is relatively insensitive to the constitutive model under consideration.
Some examples of results of this kind will be given.

The two principle mathematical techniques to be discussed are singular
perturbation theory (matched asymptotic expansions) and transform methods
leading to functional equations. The solution of the complex functional
equations arising from many physical problems defies exact analysis and
various approximate methods for their solution must be considered. We will
not discuss these methods in detail here but we will quote some results
calculated by these methods in order to compare with our asymptotic results.

In each case the physical motivation for the mathematical problem will
be introduced prior to a description of the mathematical treatment. In
Section 2 some problems of solid-solid phase transformations are considered.
First certain moving boundary problems involving non-linear diffusion due
to a concentration dependent diffusion coefficient are treated by asymplotic
methods (Section 2.1). Then is Section 2.2 the steady motion of a step under
volume diffusion control conditions is studied. A comparison of these results
with a complete numerical treatment of a functional equation shows good
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agreement. In Section 3 recent numerical calculations of stresses at line crack
tips in non-local elastic media are reexamined. On the basis of careful
analysis, doubt is cast on these numerical results. In this section both
asymptotic methods and Fourier transform rechniques are used. Finally in
Section 4 dynamic crack propagation in a viscoclastic strip is considered by
matched asymptotic expansions and comparison made with more complete
Fourier transform and numerical integration results.

2. Moving boundary problems arising in the theory of the growth
kinetics of metallurgical phase transformation

There are many problems in metallurgy in which diffusion is the rate
controlling process in a transformation from one metallic phase to another.
For example, there are many experimental observations of growing precipi-
tate particles, dendrites and plates and a knowledge of the growth rates of
these transformations is essential in order to control and understand the
processes involved. There are additional complications due to the effect of
favored crystallographic orientations, surface energies, interface kinetics etc.
Furthermore, in some alloy systems, thermodynamic arguments plus experi-
mental data have been used to predict the dependence of diffusion coeffi-
cients on composition. In these systems the growth ol precipitate particles is
determined by diffusion in a medium in which the diffusion coefficient
depends on composition, i.e., the diffusion equation takes the form
@.1) % . (picyro).
ot

In the next two subsections we consider situations where particular
particle shapes are involved in the transformation process. In Section 2.1 we
formulate the moving boundary problem for particles of ellipsoidal shape an

in Section 2.2 the question of lateral growth due to step motion is
considered.

2.1. Asymptotic results for the effect of composition-dependent diffusion on the
growth rates of precipitate particles. In this section our object is to derive,
via perturbation methods, quite general formulae for the growth rate of
particles under certain conditions without restricting the diffusion coefficient
D(c) to have any specific form. We give here a rather abbreviated treatment
(see Atkinson (1974) for a more complete account).

The following assumptions are made in the model.

(1) The precipitate particle, which is assumed to grow from zero size,
is assumed to be of a constant composition X,;, matter is provided (or taken
away in the case of negative precipitation) by diffusion to the particle from
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the matrix phase. In the matrix phase the composition profile is determined
as the appropriate solution of equation (2.1) where C is the composition of
the diffusing species.

(i) The value of the composition in the matrix at the particlematrix
interface is assumed to be constant C,. The dilfusion coefficient at this
interface 1s written D(Cy) = Dy.

(m) The value of C at infimity (in the matrix phase), or at the initial
stages in time 1s assumed to be a constant C_.

(1v) The growth of the particle will be determined by the flux of matter
through the particle matrix interface, e.g.,

dR, (P.»C
X,—Co) ——=Dg | 5
(X, ~Co) 2 = D, aR)
in the case when R, is the radius of a spherical or cylindrical particle. In
general for an i1soconcentrate surface the gradient of C at the surface 1s

parallel to the normal N =(N,, N,, N;) to the surface. Condition (2.2) then

N
has the form (X, — Cy) N-—Jr—- = Dy N-VC at the interface. It is fairly easy to

see that the above conditions will all be satisfied if the particle is assumed to
be spherical and then C can be seen to depend only on the similarity
variable R/t'2. Thus expanding spheres satisfy the above conditions, the rate
of the spheres expansion being determined from the flux equation subject to
(2.1) and the boundary conditions. What is not so obvious, however, is that
solutions can also be obtained for families of expanding ellipsoids as shown
here.

2.1.1. Ellipsoidal growth. Consider the following change to the variable w
where
2 2 2
(2.2) T 4,

The moving boundary is assumed to be the expanding ellipse @ = wy.
Making the change of variable (2.2) in equation (2.1) and assuming that C
depends only on w reduces (2.1) to the ordinary diflerential equation

(23) f,[(: +_(_[.. (F _‘1("_)_{_5 d_f. ( I +- 1 + I ) =10
do dow do/ 2dol\a;+0 at+o atow

where we have written

(2.4) D(c) = Dy F(c), F(co) = 1.

Conditions (i1) and (iii) above are consistent with the boundary conditions

C=C, when ® = wgy (the moving boundary),
(2.5)
cC=C, when - .
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Thus equation (2.3) subject to boundary conditions (2.5) defines the ellipsoid
growth problem; the unknown w, which determines the moving boundary is
to be found from the flux condition at the interface which can be written as

1 dc
2.6 —_{— =1.
( ) (XI_CO) (dw)w=mo

Explicit solutions of the non-linear equation (2.4) are not available in general
so numerical methods must be employed. However, for limiting values of w,
some general results can be obtained.

2.1.2. Fast growth (wg > 1). This situation might be expected to occur
when the composition of the particles is very close to that in the matrix
phase at infinity, and the composition in the matrix at the matrix-particle
interface is either very rich, or very depleted, in solute so that very stecp
concentration gradients are set up in the matrix, ie, (C,— X J(Co—C,) < L.

To attempt a solution of this problem (wq > 1), put @ = wy+u, where
wo = 1/c and ¢ < 1 is to be a small parameter in the following analysis.

(a) Asphere, cylinder or plane. First, we treat the situation when
the ellipsoid reduces to either a sphere, a cylinder or a plane; then (2.2) gives
r? = 4wD,t where r denotes distance from a plane, radius of a cylinder or of
a sphere. In terms of the new variable u, (2.3) becomes

' dC d dC\ AF dC £
7 —+—|F—|+——{|—])=0
7 du +du( du)+ 2 du (l+£u)
where 4 =1, 2, 3 signifies a plane, cylinder or sphere, respectively.

The boundary conditions (2.5) become,

C=0(C, when u =0,
C=C, when u - 0.

(2.8)

It is convenient to replace this latter boundary condition by

dc
(2.9) — =0 aas C-C,.

du
With this condition a first integral of equation (2.7) can be written

C
dC
(2.10) 'E= — J{l+%).Fc(l+eu)"‘}dC,
C

a

where u in the integrand is of course an unknown [unction of C. We look for
an inverse coordinate expansion of the solution u as a function of C and
write

(2.11) U= ug+euy+etuy+ ...
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With this in mind, rewrite (2.10) as

C

-1
(2.12) F! ‘% = —{ [1+éiFa(l+au)“]dC} ,
Ca
c
1 du Ae FdCc || 7!

) — —=—(C-C,) <1 .
@13 Fyc=-0) { +2(C—Cw)|:_[(l+£u)]}
Substituting from (2.11) gives the following sequence of problems:

du
214 F' 2= —(C-Co i,
(2.14) e ( )
c
du
2. F' b =4ac-Cc,)? | Fdc,
(2.15) qc 2 ) J
CCD
(2.16)
C c
-1 duy 1 -2 142 -3 :
F i —3A(C-C,) FuyadC—434°(C—-C,) FdcC),
Cor Cop

d
(2.17) F”£=%A(C—Cm)‘2 F(u2—u,)dC +

—n

8

C

+%12(c—cm)~3( Jch)(

[

2}
8 ——n N

C

k]

qudC)+3‘r/13 (C—-Cm)"“( Jch) .
CCD

ar

The boundary conditions C = C, at u =0 could then be interpreted as C

=Co at uo =0, u, =0, u, =0, etc. Under these conditions the solution of
(2.14) is

Co
(2.18) Ug = j (C—C,) 'FdC,
C
and the solution of (2.15) is
Co Cy
(219) ul = —%j. I(Cl—cw)_zF(Cl)dci “‘ F(Cz)dCZ.
¢ ¢

G

Our procedure so far has been entirely formal; we have not stated under
what conditions this inverse expansion may be valid or what restrictions on
F(C) are necessary in order that the above solution would be valid. Our
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interest is in determining wy, (i.e. 1/¢) from the condition (2.6) which becomes
in the new variables

du B B 1
(2.20) (d_E)(,‘:CO =(X,—Cy) "

and equations (2.14) to (2.17) can be used directly in (2.20) providing the
expansion procedure is valid. Assuming that it is, substitution from (2.14) to
(2.17) in (2.20) gives (recalling that F(Cg) = 1)
Co
(X, = Co)™ ' = ~(Co—C) "' +384(Co—C,) 2 | F(O)UC-
¢
Co
~&2(Co—Co)  [AA*(Co—C o) 2| [ F(O)AC) +

¢ a

ax

Co
+3AM(Cy—C, )" | F(C)ugdC]+0(?).
Ce
This equation can be rearranged as
Co

(221) (X, =C HX;—Co) =}14e(Co—Cy)" ! | F(O)dC—
Cl)
Co
—&[GACo—C) 2! [ F(C)dC}?* +
CCL
Co
+34(Co—C,) " | ug F(C)dC]+0(s),

C

with u, given by equation (2.18). Thus, as a first approximation, (2.21) gives
Co
(222) wo=¢"" 2 3A(X; —CHX, —C,) " (Co—C,) " | F(O)dC.
Co
A number of authors have approximated the effect of a composition-
dependent diffusion coefficient by using the results of a constant diffusion-
coefficient analysis and replacing the diffusion coefficient by an average one.
The above result suggests that, for very fasg growth rates (wqy > 1), the best
0

average to use 1s the simple one D, = [ D(C)dCHCy—C,). Moreover,
c

equation (2.21) suggests that such a proccduach gives an upper bound to the
growth rate.
Using equation (2.21) to give a correction to the result (2.22) we have
Co
(2.23) wo=¢'xFAX;—Co)(X;=C,) ' (Co—C,) ! | F(C)dC—
: c

an
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Co
(X —C )X, =Co) ' [3AHCo—Cy) ! | F(O)dC+
CCD
Co Cy Co
+ [ (C,—C) ' F(C)dC, | F(C)dC | [ F(C)dC}™ ],
Cq Cy .

where those terms after the first can be considered as the error made in using
the formula (2.22).

A check on the above results can be made when F(C) = C#/C5, B > 0,
using results for this case derived in [8]. Using a different notation from that,
but applying the same method, we find

C dw '
(229 F(C)dC —l+a, Y, —a, Y +0(Y7),
where
(225) a, =A(1+B7 1, a, =221+ 1(1+2p" +A2(1+p)7 2,

and the boundary condition C = C_, =0 at infinity i1s satisfied.
We have not yet satisfied the boundary condition C = Cj at w = w,.
Substituting this in (2.24) and putting © = wo+u gives

C d
(2.26) mﬁ: —1+3F(C)a e—L (F(O)2e2a, + O ()

at C = C,, and this agrees with (2.11), together with (2.14) to (2.16), when C
= Co.
(b) The ellipsoid

x2 y2 zZ

=4D,t.
aGit+w a,+w aytw

Results for this case can be obtained in a similar way to that for the sphere,
cylinder or plane. If q/w, < 1 then the corresponding result to (2.23) is
Co
(227)  wo =1/e x 3(X; —Co)(X;—Cp) ' (Co—C,)"" | FdC~
Cd)
—(X;=C)(X;=Co)™ " [3(a +a,+a3)+
Co 1 Co
+ [(C,—C) ' F(CdC, | FdC( | FdC) '+
C C C

a ab [0 o]
Co

+3(Co~C,)™" | FdCl+ ...
C

aOx
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The above result applies also to spheroidal particles whose equation is
written

x2+2 zZ
Yoy

(2.28) -
atw atw

=4D0t

with aspect ratio A = {(@+ w)/(a+we)} /2. The two parameters a and a are
superfluous for spheroids so we define oblate spheroids when a=0, a> 0
and prolate spheroids with a = 0, @ > 0. Putting 2, = a;, = a, a; = a in (2.27)
gives the result for this case.

2.1.3. Slow growth (wy < 1). We expect slow growth when there are not
very steep concentration gradients in the matrix phase, so the rate of flux of
material into the particle of new phase is correspondingly small, ie.,
|Co—Cql <|Co— X,|. Equations (2.3) to (2.6) still apply but it is convenient
to change variables by writing

Co : Co
(2.29) o(C) = j’F(C)dC/j' F(C)dC
C Co
so that
do _ _F.(C) d_C
(230 do~ A, do’

Co
where 4, = j F(C)dC. With this change of variable (2.3) becomes
C

a

dp d&2¢ 1dé [ 1 i 1\
(231) f(¢)%+d—w?+52(;(a1+w+az+w+a3+w)—0’
where
(2.32) S @) ={F(C@®)} ',

together with the boundary conditions

(2.33)

LY when = w,,
0= 1 when o= .

We look for wq as the solution of the flux equation (2.6) which, when
written in terms of ¢, is

, i )
(2.34) Ao (EZ;),,, =(Co—X,)

-0
since F(Cy) = 1.

We begin by considering the situation when the particle shape is that of
a sphere, a cylinder or a plane.
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(a) A sphere, a cylinder or a plane. In this case equation (2.31)
becomes

dp ¢ A dp _

do  dw® 2w do

(2.35) J(¢)

where 4 =1, 2, 3 represents the plane, cylinder or sphere, respectively.

When w, is much less than unity we take wy, =¢ to be the small
parameter in our problem; [urther, since 1/w occurs in equation (2.29), a
singular-perturbation approach to the problem is suggested. Putting o = aw,
in (2.35) reduces it to

qu d2¢+ 4 do

=0
do? 2w, dw,

(2.36) o (9) 5

so if a » 1, this reduces to

d¢
2. —_—
(2.37) o, 0
and if a €1, to
d*¢ A do
2. =0,
(2.38) dw? +2wl dw,

while o of order unity gives equation (2.35).

Although the ranges of validity of (2.37) and (2.38) do not overlap,
singular-perturbation methods can be used to get asymptotic solutions to the
problem. These methods have been used in Lagerstrom and Casten (1972) to
treat a differential equation which has a similar character to equation (2.35)
(their example has ¢ in place of f(¢) in equation (2.35) and (N —1) in place
of A/2). Intuitively one expects that close to the particle its shape would be
important, whereas at infinity with boundary conditions (2.33), to a first
approximation, the presence of the particle would be unnoticed. This sug-
gests that we scale the variables for the inner problem by writing @ = &u.

Inner problem. With w = gu, equation (2.35) becomes

4> JA20 hdg
(2.39) of (#) Gt 2o =0

with inner boundary conditions ¢ =0 when u =1, the other boundary
condition to be determined by matching. To a first approximation we have

—B(u' -1 A#2
(2.40) ¢={ (u ), # 2,

B log u, A=2,
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with solution

d*¢ 7 d

(2.41) o +2u e 0
where B is a constant to be determined by matching.

For A = 3 (the sphere) this solution is finite at u = o, for A = 2 it tends
to infinity like log u, whereas for A = | (the plane) it goes to infinity like u'/?
as u—cc. Thus for 2 =1, matching is not appropriate and the problem
appears to be a regular perturbation problem (see [13]) for which the first
approximation would be the stationary-interface problem, equation (2.35),
with 4 =1 and @y =0 which involves the full non-linear equation so no
simplification seems possible. The problem of getting sharp bounds for
dC/dw at «» = 0 for this equation seems surprisingly difficult (see [14], [15]).
We consider first the sphere.

24.1. The sphere (4 =3). Write the inner solution as

(2.42) Oi ~got+ag,+ ....
and (2.40) gives
(2.43) go = B(1—u"1"?)

as the first approximation to the inner solution. We want this to match with
the outer solution as u tends to infinity so we take B = 1. We write the outer
solution as

(244) ¢~ 1+pp+2 o+ ...,

where both o and f are to be determined.

The equations governing ¢,, ¢,, etc. can be obtained by expanding
f(¢) in a Taylor series and equating to zero terms involving 8, B2 etc. For
the general case equation (2.31) gives

d d? 1d 1 1 1
(2.45) fi b1, 44, 1 ¢‘{ + + }:0,
atw at+w atw

do do* 2 dow

d¢, d*¢, ldqbz% 1 1 1 %__, d_‘f{;_
(246) fl dw + dwz +2 dw al+(0+02+w+a3+w B f1¢l d(J)’
etc.,, where
(2.47) Hisf) = F(CL ™,
df , -3
(248) f]’ =\ = AOF (Ccu) {F(CI)} ’
do /4=

together with the boundary conditions ¢, =0 = ¢,, etc. at o = oc.
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W assume that f; # 0 in the following analysis. The solutions of (2.45)
and (2.46) which apply to the general ellipsoid are

ac

(2.49) ¢ =A, [e 7 l(a, +0)(a; + ) (as + o)) " do,
(2500 ¢, =4, (e "1 i(a, +o)(a; +w)(as+w)) P do+
+fi A} e 1 a; + wy) (ay + 0,) (a3 +@,)} T2 dw, x

ao
~f _
x |e Hwy —y) [(a) + @) (@ + 0} (a3 + o)} P dw,,
w2

where 4, and A4, are constants to be determined by matching. In the case of
the sphere the above relations reduce to

(2.51) by =A, [e 0 do,

w

252 ¢, =4, (e 0w do+

[ o] s o]
+fi Al (e f‘wzw'mdwz fe f‘m‘wl’m(wl——wz)dml;
w wz

_p and A4, can be determined by matching with (243), ie, go=1-u" "2,
Expanding (2.51) for small o gives

(2.53)
b= Ay [20° V2 1 2p1 2 L2 (1 = 20" V2 (f, )2 (1 =3 f, 0+ .. )],

Written in outer coordinates, g, becomes
(2.54) go=1-¢ePw 12

so matching with ¢ = 1+ ¢, is possible, provided g = ¢'/?and 4, = —1/2.
To proceed to higher-order approximations for the inner solution we look
for the solution of

¢ 3 db

(2.55) —duz +£ E

d
= _E.f(g()) %7

which should give a solution to (2.39) correct to order &.
The solution of (2.55) with ¢ =0 at u =1 can be written

My

¢ =B (1—u" ") —efu, 2du, | u3f(go)(dgofduy)du,,
i i

By

2 - Banach Center Publications 15 W
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or after changing the order of integration,
(2.56) ¢ =B (1—u""?)—e[f(go)(uz ? —u""?)duy,
1

where B, is an arbitrary constant, g, = 1 —u3; "2, and f(go) is a function
defined implicitly in terms of g, (or ¢) through equations (2.32) and
(2.29). The constant B, is to be determined by matching the above sol-
ution (equation (2.56)), expanded for large u, with the outer expansion
¢ ~ 1+ ¢, +s¢, expanded for small w. To get the expansion of ¢ in
(2.56) for large u and for a general f we can expand f(go) by Taylor
series giving

(2.57) fgo) =f()—uz'2f (D+3u; ' f7()...,
and (2.56) becomes
(2.58)  Gipne ~ By (1 —u™ 3 —g M2 f(1)—f"(1) log u—
—4f'u” 2 log u+constant +(constant) u~ /2., ),

Using the Taylor expansion (2.57) to a finite number of terms will not give a
closed form expression for the constants in equation (2.58). We could, using
the full Taylor expansion, obtain an expression for those constants in terms
of a series, however by rewriting the second integral in (2.56) in terms of g,
and integrating by parts we get the following expression:

(2.59) P = By (1= Y2 = {u' 2 £ (go) = 2/ (0)+1" (go) +
+u" 2 (f(0)~f"(0))~f"(go) log u—}u™ "2 f"(go) log u—

1-w- 1/2 1-u— 12
=2 [ ['(g)) log(1=go)dgo—u""* [ f"(go) log (1-go}dgo}.
0
This is true to order ¢ for all u with go = 1—u~1/2.

If f(go) is such that f and its derivatives have no worse than integrable
singularities in the range 0 < g, < 1, then the integrals in equation (2.59)
above are finite as u — o0 (i.e. go — 1 in the upper limit), and so the first of
the two integrals in (2.59) can be used to evaluate the constant times ¢ term
in the expansion of (2.59) for u large. The result for large u is

(2.60)  Piger = By(t—u" V) =g (W21 (1)-2f (0)—
1
~2[/"(g0) log (1—go)dgo—/"(1) log u+0 (")},
0

where in O(u~'?) we have included terms like u~'/? log u. It should be
recalled that we have no explicit expression for f(g,) as it is determined
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implicitly through equations (2.29) and (2.32). We also have f(0)=
(F(Co)} ™' =1
Expanding the outer solution 1+¢'2¢, +&¢, for small w, we get

(261)  Goue x 1§62 (20712 =2 /nf{? 4+ 2, 02 4+ O () +
+e(d; 20712 =2 /nfi?+2f; 02+ 0 (0¥))+
+Hi B2 (o) P +log (2 0) =1+ 7312 (f,0) 2+ 0(f1w).. .}),

where f, and f| are the values of f(¢) and f'(¢) evaluated at ¢ =1 and y
is the Euler constant y = 0.57721566.
Writing the inner expansion (2.60) in terms of w gives

(262) ¢inm:r = Bl (1 —8”20)— ”2)_8 lelzs_ llzfl _fl’ log ((D/E)—
t

-2—23;f”(90) log (I —-go)dgo} +0(e'*fw'"?).
To match (2.61) and (2.62) to order ¢ we choose
(2.63) Ay = —4nfif Py f
and

1
(264) By =1+n'2f!2e 2 4 fe log e+& (2+2 [f"(go) log (1 —go)dgo +
o

+fi(log (2)+7+n/2—1)+nf, }.
From (2.56), we have (d¢/du),-, =+ B, and so equation (2.34) gives
(2.65) 3¢ Ao By =(Co— X))

as the equation which determines & = wy.
The result (2.60) can be checked in special cases when an explicit
expression for f(g,) can be obtained from equations (2.29) and (2.32).

ExampLe. When F(C)=¢“ ‘™! and a; is a constant, then
(2.66) f@)={1-H¢(C)} ™',

where H = 1—e 1“7 Equation (2.56) for the inner solution can then be
integrated to give

(267) ¢=B,(1—u"Y)—gw?(1—H) "+2QH-1)(1-H) 2+
+(1=3H)u™Y2(1—H)"2~2H(1-H)" 2 log (1 — H)u'/* + H|
—2H?u"Y2(1—H)"? log {(1 - H)u">+ H|)



20 C. ATKINSON

and expanding for large u gives
(268) ¢ =B (1—uV)—g[w*(1—H) '+2QH-1H(1-H) *-
—2H(1—-H) % log |(1 —H)u? +0u'’? log u))
2B (1—u V) —e[u'2f ()—f'(1) log u+
+2QH-1)(1—-H)"2=2H(1—-H)" % log |1 - H|+0(u" "2 logu)],

since the results f(1)=(1—-H)™ !, f'(1) = H(1—-H)™ 2 follow directly from
(2.65).
The other two terms in the square brackets check with

1
-2-2 ff”(go) log (1 —go)dgo
0
on integration.

22 Step motion during lateral growth in solid-solid phase trans-
formations. In this section we consider situations where volume diffu-
sion in the parent phase is the predominant contribution to the growth of
steps during lateral growth in solid-solid phase transformations. It is as-
sumed that the ledged interphase boundaries have faces whose structure is
sufficiently coherent to render them immobile in the direction normal to
these faces; all motion thus takes place by the formation and lateral
movement of the ledges. The specific situation considered here is that of a
single step, such as shown in Figure 1, representing a precipitate growing

" | : y

—_—————

!

—_—
X

kv

Fig. 1. The steady motion of a single precipitate step growing into the parent phase

into the parent phase by means of the ledge mechanism. The equilibrium
solute concentration at the interface is indicated by C, while the actual value
at the step face is denoted by C,,. It is assumed that the forward step velocity
V. is constant and that the solute distribution is independent of time when
written in terms of a coordinate system moving with the step.

The governing equations can then be written

r
(2.69) V2T (x, y)+2p ‘;—x =0
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where
X —vgt Y
(2.70) x = P y= n’
(2.71) 2p=V.h/D
and
(2.72) r(x,y)=(c(x, )—-C)(Ca—CH',

D is the diffusion coefficient for solute in the matrix.

The dimensionless velocity parameter p is the peclet number, h is the
height of the step in the stationary (X, Y) coordinate system, C¢ is the
concentration at the base of the step and C_ the concentration at infinity.

Since it is assumed that the step progresses without change of shape the
following boundary conditions are imposed on equation (2.69)

QI_“=0 on y=1, x <0,
dy
r

(273) €_=0 on y=0, x>0s
dy
ir
g--:g on x=0,0<y<1;
ox

g is constant and I' tends to zero as (x2+y?)'/? - o in the matrix y > 0,
x>0;y>1 x<0.

Once the problem specified by equations (2.69), (2.72} and (2.73) is
solved, the condition

(2.74) r,0 =1

can be used to determine g as a function of p. Note that condition (2.74) is
a consequence of C(0, 0) = C2 the concentration at the base of the step.

The dependence of the steady growth velocity ¥, on volume diffusion
can be found by performing a flux balance across the step face, i.e.,

oC

2.75 = - - -1 -
(275) y D(ax)mp(cp C.)

where D is the diffusion coefficient for solute in the matrix and C, is the
constant solute concentration of the precipitate. Assuming that C, > C, and
that C, ~ C, the flux equation (2.75) can be seen to be consistant with
boundary condition (2.73); and leads to the equation

(2.76) Qo = 2pa(p)
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for the growth velocity V¥, (recall definition (2.71)) in terms of the dimension-
less normalised supersaturation

Cc_—C

.7 —_ ab e

(2.77) Q, c-c.
and

(2.78) a(p) = —g '

which follows from the solution of the boundary value problem specified by
equations (2.69) to (2.74).

This problem will be treated here by the method of matched asymptotic
expansions assumed to be applicable for p < 1. The results of the asymptotic
method will be compared with results obtained by numerical solutions of a
functional equation. A more complete account of these two methods can be
found in Atkinson [6].

2.2.1. Analysis. Making the change of variable

(2.79) r=e™U
in equation (2.69) reduces it to
(2.80) P2U-p2U =0
and the boundary conditions (2.73) becomes
ou
- — =0, y=0, x>0,
(2.81) oy
y=1, x<0;
U
(2.82) (;—x—pU=g, x=0,0<y<l1.

Matched asymptotic expansions valid for p < 1. Viewed on a
length scale large compared to the size of the step it seems plausible to
assume that the diffusion field is not affected by the fine detail of the step
geometry (the outersolution) whereas close to the step the geometry becomes
all important (the innersolution). At some intermediate length scale in
favorable cases these two solutions will overlap and the method of matched
asymptotic expansions can in principle be used to provide a complete
solution.

The “outer” problem. We define “outer” coordinates (xq, yo) as

Xo = pX, Yo =Py
then the differential equation (2.80)
Fu® 02y ®

2.80 + —u? =0
= o3
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and the boundary conditions (2.81) and (2.82) become

614(0)
(281) dyy O Ym0 x>0
. 0
YVo=p, X0<0
and
F: (0)
(2.82,) au—_u(0)=g’ x0=01 Os}’osp-
Xo P

Letting p tend to zero in these equations the boundary conditions (2.82) is
lost, to zero order, and the first approximation to the outer solution is thus
an eigensolution which could be written in general as

(2.83) ul® =Y b, K,(rg) cos nf
0

where
2 _ W2 2 d _ 9
ro = x5+ Yo an Xo =Trg cos 0.

Clearly this solution satisfies the differential equation (2.80") and the bound-
ary conditions (2.81°) with p = 0. Subsequently we will need to rewrite
u(ro, 0) in terms of the inner coordinates r (r, = pr) and expand in terms of p
for fixed r, ie, the “inner” limit of the outer expansion. Note that

B © 1 I'(s+1) [ro\* 1 ro \* ro
"0"°’:§o‘s‘z{{ru+1—n‘z(€) ‘rmu(?) ‘"(?)}

K,(ro) ~(re) ¥=p Nr ¥ as ro—0if N>0.

This suggests that only the eigensolution by K, (ry) is relevant to our first
“outer” approximation and the unknown coefficient b, is to be determined
by matching this solution with an appropriate inner solution.

The “inner” problem. Taking (x, y) as “inner” coordinates, the
equations governing the inner problem are equations (2.80) to (2.82), ie,

P*U *U

and

2.80” -ptU=0
( ) ax2 + ayl p
with
U
‘—3—— = 0, y=0, x>0,
(2.817) oy
y=1, x<0;
U
(2.82") a—-—pU=g, x=0,0<y<1.

ox
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Formally letting p—»0 we have that the zero order inner approximation
must satisfy the equations

PU U
g =0
oU
(2.84) E:o, y=0, x>0,
y=1, x<0;
%E=g, x=0,0<y<1.
X

Equations (2.84) lack conditions on U as (xZ+y?)!'/? - o0, these conditions
are to be determined by matching with “outer” solutions. The solution of
(2.84) can be written

(2.85) U=gx+A+U,
where U, satisfies equations (2.84) and

U,

(2.86) .

=0, x=00<y<l.

To find the eigensolution U, we use conformal mapping. The region
exterior to the step in mapped onto the upper half of the complex ¢ plane by
the transformation

(2.87) z =% (=12 +1n (t 42— 1)!/?)]
where z = x+iy, t = ¢, +it, (¢, t,) real.

The step corners z =0 and z =i map into r =1 and t = —1 respect-
ively, the logarithm has its principal value and the cut from t = —1 to +1
lies in Im t < 0. The problem for U, satisfying equations (2.84) and (2.86) is
satisfied by U, = Re F(t) where F(¢) is analytic in Im ¢t > 0 continuous in
Im >0 and such that Im F(¢) =0 on Imt =0.

The most general such F(r) depends upon conditions prescribed as [¢|
— oo in the upper half of the t plane. However, the “outer” solutions
discussed earlier have algebraic-logarithmic singularities as x, — 0 and the
matching procedure would then demand such behavior as |t| - oo. Hence
one can deduce via Liouville’s theorem that F(r) should be a polynomial in ¢.

Hence we take

(2.88) Uy, =B, Re t

where the real constant B, is to be determined by matching.
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Thus the zero order inner approximation is written
(2.89) UY =gx+A+ByRet

where z and t are connected by the transformation (2.87). To match with the
outer solution we require the expansion U" for (x? + y?)!/? large, hence note
that from (2.87) with |z| large we can write

In nz

05+In 2
L Y
nz nZ

(2.90) t=nz—Innz+ +0(z73).

The matching principle. This principle which follows Van Dyke
[16] says that U® (r, »0) is equivalent to U® (r - o) where ry =
(x3+yH'2, r = (x*+y?)!2. More precisely write U™ to denote the outer
expansion of U (r,, p) up to terms of order p*. Then rewriting U™ (r,, p)
in terms of the other variable r = ro/p and expanding to order pM with r
fixed gives a result denoted U™ Similarly the Mth order inner expansion
U™ (r, p) is expanded outwards by writing in terms of r, = pr and retaining
terms of order p¥ with r, fixed to get U™ The matching principle then
states that

(2.91) UONM) _ [JitM.N)

Using the matching procedure and grouping terms of log p and p°
together (similarly p¥ and p" log p, etc.)

(2.92) U9 = po(r'(1)~In 4 pr)

from equation (2.83) with ro = pr. I''(1) = —C = —0.5772 (Eulers constant).
Also from (2.89) and (2.90)

(2.93) yioo 9% 4. g, (“—x—"—ln 0 _1n 2).
P p p

Note that although including the K| (ro) eigensolution in US® would have led
to a 1/p term in U%°® there is no way in which it could have been matched
to this order. '

Matching the above two equations is indeed possible and leads to

g+BoT[=0, bo=B0,
+bo(—-C+In2) = A+Bo(ln B—ln 2)
n

hence
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and
(2.94) a=-9 (2 tn 2—C—In 3).
n T
Now from (2.89) we can deduce the concentration at the base of the step
(2.95) Uu®©, 0) = 4+ B,

since t = 1 maps into z =0 in the mapping (2.87).
Thus the zero order application of the matching procedure leads to the
approximation

(2.96) U9(0, 0) = —% (1+2 In2—C—In g)

Setting U™ (0, 0) equal to one gives a(p) = —1/g as a function of p. In
Figure 2 this is plotted and compared with the results of a numerical

10

E o\ \
- \ Full Solution
L —um——=— Matched Asymptotic
01
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Fig. 2. Peclet number p versus a(p). Comparison of matched asymptotics with full numerical
solution of complex functional equation

solution of a functional equation derived in [6]. As the figure demonstrates

the results of the asymptotic method are in excellent agreement with the
numerical ones for p < 0.01.

3. Line crack problems in non-local theories of elasticity

3.1. Introduction. In a recent series of papers Eringen and co-workers
([10]-[12]) have applied a non-local theory of elasticity to the problem of
fracture from a line crack. A major conclusion of their work is that the crack
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tip stresses are finite for the non-local moduli they consider, in contrast to
the well-known inverse square root singularity of linear elastic fracture
mechanics. Another aspect of their work is an approximation scheme in
which they compute the stress field for their non-local continuum by
substituting the classical elastic crack face displacements into the non-local
stress-strain constitutive equation. Both these aspects have been questioned
by Atkinson ([3], [4]). In the first paper a detailed analytical treatment of
the model problem considered in [12] is made and in the second one
generalisations to plane strain, anti-plane strain and non-local moduli with a
delta function component are made. The conclusions of the papers of
Atkinson ([3], [4]) are that the approximation scheme used in [12] and [10],
[11] has a non-uniform character and that consequently the finite crack tip
stress result is not substantiated. Moreover, for the problems in which direct
numerical calculations were made in [12] non-existence results can be
proven. Furthermore, for non-local moduli with a delta function component
solutions with singular crack tip stress fields are constructed in Atkinson [4]
and the behaviour of the solution has been confirmed by numerical analysis.
Here we consider the simple model problems treated in Eringen et al. [12]
and Atkinson [3] and refer the reader to Atkinson [4] and Eringen [10],
[11] for the full plane non-local elastic situation.

3.2 A model one-dimensional problem. In [12] the following one-
dimensional problem is proposed, defined by the equations

e 1
(3.1 t,, = (A+2p) f a(jx"—x|) ?%Vl dx!
with
(3.2) P s+, =0, = puf(A+2p)
(¢ and 4 are constants), together with the boundary condition:
ty(x, 0) = —to(x), given for |x| <,
3.3 v(x, 0) =0, x| 2 1,
v—-0 as y— +o.

In equation (3.2) the subscripts denotes partial differentiation. In [12] it is
shown that the problem specified by equations (3.1) to (3.3) has similar
characteristics to the more complicated plane strain crack situation.

Taking the Fourier transform of (3.2) and using (3.3); gives the trans-
form of the displacement in the hall-space y > 0 as

(3.4) o(k, y) = A(k) exp (— 7|kl y)
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where

(3.5) ok, )= | v(x, y) e** dx
and |k| is defined so as to have positive real part in the complex k plane.
Also, taking the Fourier transform of (3.1) and using (3.4) gives

(3.6) fy= —7klA+2w Ak [ a(lx,)e " dx,.

In [12] the problem is reduced to a Fredholm integral equation for the
unknown function 4 (k) and arguments are given, together with some numeri-
cal work, to support “strongly” the approximation of replacing A4 (k) in (3.6)
by the corresponding result for the classical elastic problem, i.e., the problem
with a(]x,|) = é(Jx,{). This approximation amounts to using the displacement
from the classical elastic problem, v_(x', y) say, in (3.1) to compute the stress
field.

We first investigate the consequences of this approximation in a fairly
straightforward example.

3.2.1. The semi-infinite problem. This problem which mimics a semi-
infinite crack problem has boundary conditions

fy(x,00=—¢e** for x<0,
3.7 v(x,0)=0, x>0,
v—0 as y— +00.

In (3.7), 1/4 plays the role of a characteristic length. Writing
ty,(x, 0) =1, (x) for x>0,
(3.8)
v(x, 0) =v_(x) for x <O
with both ¢, (x) and v_(x) as yet unknown functions of x, the tranforms of

(3.7) and (3.8) together with equations (3.4) and (3.6) lead to the functional
equation

(A +ik)

(39) F,y(k, 0) = +7, (k) = —7olkl & (k) 5 (k)

where

Yo = Y(A+2p) = {p(A+2p)) 12,

(3.10 & (k) ? a(lx,))e” * dx, .

- ¥

If d(k) =1, (the classical elastic case), the functional equation (3.9), which
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holds on the line Im k = 0, can be solved by writing |k| = k'/2k}/? where k!/?
has a branch cut from —i0 to —ioo and k% a cut from +i0 to +ico. These
branches are chosen so that [k| has positive real part when viewed as a
function of k in the complex k plane. Using this factonsation (3.9) can be
rearranged as

I IR L
(3.11) J = +(k_i)h)(k‘+’2—(ii)5~”)

i
AV (k—id)”
Using analytic continuation, a generalized form of Liouville’s theorem and

edge conditions on the crack tip, it can be shown that J defined by (3.11) is
in fact zero. Thus the solution of (3.9) with d(k) =1 is

= _?Okl—lz U - (k)"—

—i
Yo (i) Y2 kY2 (k—id)
We use the notation 7, to indicate that (3.12) is derived from the approxi-
mation a(k) = 1. In the spirit of the approximations used in Eringen et al.

(1977) we substitute from (3.12) into (3.9) and take this as the result for the
stress #,, in the model non-local problem defined in (3.1). The result is

- i (k) k12

7GR k—id)

Clearly if @(k) # 1 then (3.9) is not satisfied exactly, what is required is a
measure of how the accuracy of the approximation (3.13) varies with the
parameters defining a(k). To investigate this we consider three forms for

(| x1).

(3.14) (i) a(|x|)=§-e—f”*' then  d(k) =

(3.12) b, (k) =

(3.13)

ﬂz
(B*+k?)’
and &(k) is analytic in —f8 < Im k < f. The dimensionless constant S/4 is
assumed to be much greater than unity. For this example ,, given by (3.13)

can be split into the sum of plus and minus functions by inspection. The
result is

(3.15) fylk, Q) =7_(k, )+7, (k, 0)
where
if? (A2 = kY2
(Y2 (k~i2) (A2 -7
iBGANI-KYY ik
200V (B—-D(k—if) 2(A+ Bk +ip)(iA)y?

(3.16) 7,(k, 0=

+
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and

_ _‘-BZ lﬂ ﬂ 12 1
-0 =G —-ﬁZ)'7(1)+ B—Dk—if)

Inverting the expression for i_ (k, 0) gives for the stress on y =0, x <0
the result

B e;uﬂz E ﬁ 1/2 eﬂx
e =t
Rearranging this as
. _Azelx ﬂ ﬁ 1/2 eﬁx
BIn =t 0er = S B (0) S

it is easy to see that for /A > | the boundary condition (3.7) seems to be
more nearly satisfied as B increases, since x < 0. For fixed x < 0, the right

hand side of (3.17) tends to zero as B — oo. However, Il we write ffx = X,
then (3.17) becomes

(3.18) P.(x)=

_JTeMNIB B RNIZ X
- +5() B—7

A
and clearly P.(x) does not tend to zero, as f — o0, for x < 0 uniformly in x.
In fact

ﬂ 1/2
(3.19) Pc():)A%(I) e*

as f—o, X0

In [12], [10] various plots are given of P,(x). Superficially, it looks as il
the boundary condition (3.7), which is P.(x) =0, x <0, is satisfied more
accurately as a parameter, analogous to f, increases. However, we contend
that the same non-uniform behaviour described above is present in their
numerical results.

%1(1—""), X < a,
(3.20) (i) aph=dal’ a

0, x| > a.

This expression is used in [12], a is a lattice parameter and is given the
value 2.48 A° in the case of steel. Thus with a of order 107 ® ¢ms, the ratio of
any macroscopic crack length to a will be much greater than unity. In this
case
sin’ ka

k%a?

(3.21) @(k) =
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which is analytic everywhere. The expression for i,,(k, 0) given in (3.13) is
thus analytic in, 0 <Im k < 4. The Fourier inversion theorem then gives

x+id
1 .
(3.22) t, = o J Iy(k, 0)e™ > dk
—a+id
with 0 <d < 4. From (3.13)
_ ik'/? sin® ka

T I k—ih) Kd?

and sin’ka = {—-1e?*_1e~2a hence substituting into the above integral
gives

sin h*(A*a?
(3.23) P AA) e for x< —2a.

CR TR

This result is obtained by closing the contour in the upper half-plane
and picking up the pole at k = id. The condition x < —2a is necessary in
order that the exponential terms decay on a large semi-circular contour in
this upper half-plane.

From (3.23) it is easily seen that as al — 0, t,, » —e** uniformly in x
provided x € — 2a. The boundary condition is thus satisfied uniformly in the
‘region x < —2a, it remains to investigate what happens in —2a < x < 0. To
do this we take the complex integral (3.22) along the real axis (d = 0) and
obtain

(3.24) ¢

o

1 r'/? (sinra\{r sin Gn+rx)—4 cos (A n+rx)} dr
- (e +19) '
0

This integral is valid for all x and is a continuous function of x with a
constant value at x = 0. As a — 0 the contribution to the integral from the.

integrand with the factor A cos ({n+rx) will be finite. This is easily seen,
02

since ——5— < 1, the contribution to this part of the integral is of magni-
r‘a

o
AIIZ 1/2

tude < (r )dr which i1s finite for A>0. The rest of the

integrand |s however, much more sensitive to the limit a —» 0. To see this,
write
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to give
1 J’R:‘"" sin? R sin (3 m+ RX)dR

t, =
YT n(ad)M? R? (R2+a%4?
0

(3.25)

We use the = sign to indicate that we are neglecting the contribution
from the second term of the integrand of (3.24) since this is finite as a — 0 as
shown above.

When X = 0O, expression (3.25) shows that when (ad) — O the stress at the
origin behaves like

a0

1 sinR\ dR
(326) t)'}' x 1[(02.)”2 Jv( RZ )(ZR)I/Z ’

o

Further this result is irrespective of whether X — 0 with X > 0 or with
X < 0. Thus the same characteristics as shown in example (i) are present in
this case, i.c.,, that as the region of the discrepancy in the boundary condition
gets smaller the magnitude gets larger tending to infinity as a — 0. In [12] it
is asserted that the increase in magnitude of ¢, at x = 0 over the boundary
value is the stress concentration. OQur contention is that the stress is in fact
continuous in this approximation and the value (3.26) merely a property of
the approximation not of the original boundary value problem.

2
(3.27) (1) a(|x]) = aq exp{ —(g) xz} with ay = »—I-}—

a./m

Typical values of constants in this expression are given in [10] as a = 248
A° and B = 1.65 for steel. Now a(k) =exp | —k?a*/(48%)} and is an entire
function of k. Hence f,,(k, 0) with this expression for a(k) is analytic in 0
<Imk <A so (3.22) applies. Evaluating this integral along the real axis
leads to

(3.28)

1
S T 2 +1?)

[e o]
r'’2 exp { —r?a*/(4p*)} Ir cos (n—rx)— A sin (31 —rx)} dr
yy '
4]

The second term in the integrand gives a finite contribution to ¢,, as a — 0.
To investigate the contribution from the first term write

r=2fR/a and x =aX/2p
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to get
t 1J‘(2ﬁ)”2R”2 exp(—R?¥) cos ({n—RX)dR
w= el \a) ai\? '
R*+|—
o ()
Hence, this integral shows that 1,, goes to infinity like (28/(ad))'/? as (al/p)
—0 with X - +0 or —0.

Thus in each of the examples we have considered, the approximation of
using the displacement of the classical elastic problem 1n order to calculate
the stress for the non-local problem has been shown to be non-uniform and
hence unsatisfactory. In the next section we show that the same kind of
behavior is present in the finite crack problem.

(3.29)

3.2.2. The finite crack, model problem (specified displacement). To
demonstrate the effect of the approximation suggested in [10] and [12]
we consider the problem specified by equations (3.1) and (3.2) together with
the boundary conditions:

v(x, 0) =0, x| 21,
(3.30) v(x, 0) = (P—x})'"2,  |x <1,
v—0 as y—- +o.

For reasonable crack lengths we expect a small parameter ¢ to appear in
the problem because of the magnitude of the non-local moduli, for example a
(the lattice parameter) is given in Angstroms (10”2 ¢cms) in examples (ii) and
(m1). Hence we define

1 a a
(331) 81 = — 82:_1’ (;aza

where ¢; < | and i = 1, 2 or 3 refers to examples (i), (1) and (1i1) of the section
(3.1).
To investigate the behavior near the crack tip x =! we write
x=1+elX, y = ¢elY,
(3.32) x'=1l+elX’, y =elY’,
v=()'"2V, 1, =()T,

where ¢ without a subscript refers to either of (3.31) whichever is appropriate.
In these new coordinates (3.1) and (3.2) become

1
VLY

(3.33) T(X,Y)=(A4+2u) f o (X — X)) 2y

3 - Banach Center Publications 15
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and
(3.34) P Vxx+Vyy =0
where
(335 (i) a, (| X) = 3 exp (—1X]),
) CjU=IXD X<,
(1) a (| X) = 0, X]> 1,
|
(i) a3 (|1X]) = 7 exp (— X?).
N

The boundary conditions (3.30) become

V(X, 0 =0, X>0 X <-2
&
(3.36)

2
V(X,0)=(—X)"22l+elX)"?, - <X <0
&

As ¢ — 0 these boundary conditions become
VX, 0 =0, X >0,
(3.37) 5
V(X,0) = +(2D"* (- X)V?, - < X <0.

This problem now has similar characteristics to the semi-infinite one dis-
cussed in section (3.1) and it is straightforward to derive the corresponding
results

(3.38) Tk, 0) = —yolkla; (k) V. (k)
and from (3.37)
(3.39) V (k)= 1" m)ti2 et k=32
with

X
and

a5 (k) = exp (—k*/4).

The calculation of T(X, 0) from (3.38) is similar to the evaluation of ¢,, in

section (3.1). For example (i), T can be split by inspection into plus and

minus functions as
Yol'?

w2 ~in/4 —ki 2 1 -2 _(n- 142
(3.40) T.,. =*‘?' E e { (k+1) +(k—i) (k+ — (i) )
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T :}12 11’2 IE 1/2e——r|:l'/2
-T2 7)) w=)

since (i) /2 = e ™4 Inverting T_ gives

. 172 1/2
(3.41) rotol” (5) X for X <O.

and

2 \2

Recalling that X = (x—)/(c]) and that t,, = (e))” V> T we see that 1,, tends to
zero, the stress free crack boundary condition, except when x—1 = 0(g), ie.,
except within distances of order ¢ from the crack tip. Within such distances
the crack boundary stress goes to infinity like £~ '/%, as ¢ — 0.

Thus for the finite crack problem the correct boundary condition cannot
be satisfied uniformly by the approximation of using the elastic crack
displacement. Similar results can be obtained for examples (1) and (iii)
following the analysis of Section 3.1.

3.3. Miscellaneous results. The results of Section 3.2 demonstrate (in
our opinion) the inadequacy of the approximation suggested in [10] and [12],
however the question remains as to what is the precise nature of the solution
to the problem originally formulated in Section 3.2 with boundary conditions
(3.3). Note, that the case with 1, (x), a constant, was treated numerically in {12]
and results displayed which apparently justified the approximation scheme
subsequently used and that we have criticized in Section 3.2.

To investigate this further, we consider solutions of (3.2) in terms of a
continuous distribution of virtual screw dislocations within the crack y =0,
—!l < x <[ Thus we can write

i

, wix,y) [ (x—Of(&)de
1342 vy j(x—é)zﬂ*zyz
—1
where
(3.43) vix, 0) = jj'(é)dé.
-1

We have presupposed here that the crack displacements will be finite by
assuming f (&) is integrable. It is possible that there may be solutions to the
non-local problem in which v(x, 0) is not finite particularly as x — +1.
However, assuming f (&) is integrable we can substitute for (3.42) into (3.43)
to get

@ [§

(3.44) ty = (A+24)7 j 2 (! — ) f (x' =8/ ()

(xl _é)2+}'2 _}72

— ah v_[
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o faid -y
(3.45) =y | f1@4e | Tt

-1 -
the last equation following by interchanging the order of integration.
Taking the limit y tending to zero (3.45) can be written
{ ®
a(|xol)dx,
346 ty = d — .
(346 »=To f“é) ‘ Jxo+(x—~f)

-1 - &

The inner integral being a Cauchy principal value (Hilbert transform).
For convenience rewrite (3.46) as

1
(3.47) ty = Yo | f(E)dEK (x—&)
=i
where
[ alxod,
(3.48) K(x-¢) = J.*m-.

—ay
For a(|x,) given in our previous three examples we have

(1) a(|x]) = 3B exp (—BIx))
then

(349 K(x-{)=13Bfsgn(—x+)®

®lexp (BIE— XN E;(—BIE—x)—exp (—BIE—xD E;(BIE— x])}
(see tables of the Hilbert transform, Erdélyi, Magnus, Oberhettinger (1934)).

1 ( lxl>
e - 1_— ’ ,xl g a,
) aflx)) = % a a

0, x| > a

then

(3500 K(x-¢) = l a+x—¢)log |x+a—{¢|—

L
a2

~(a—x+&) log |x—a—¢& —2(x—¢&) log Ix—¢}.

(iii) a(|x]) = A exp { — (é)zxz}
a./n a
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then

T

1 J exp (— x3)dx,

(3.51) K(x—¢&) = ooy ol

=
Vv

— ag

For interest we consider a fourth example

X 1
(1v) a(|x]) = T Ptad)
then
__ x=f
(3.52) K8 = "y

The functions «(|x|) given above can be ordered in terms of how quickly
they tend to zero as |x|] » oo. Such an ordering is (i1), (i), (1), (iv). The
boundary condition t,, =1 for |x] < I, y =0 leads to the integral equation

(3.53) L=y, | K(x=0f(E)dE, X<l
=1

We first consider the kernel (3.52) since it is perhaps the easiest to deal
with. When a =0, K(x—~¢) = 1/(x—¢) and (3.53) becomes the usual Cauchy
integral equation associated with the classical elastic problem.

3.3.1. Non-existence theorem. We sketch here a proof that no sol-
utions of the integral equation (3.53) can exist for integrable f(&). The proof
is illustrated by example (iv) above, although note that in [ 3] other examples
are briefly considered. The importance of this non-existence theorem is that
it suggests that numerical solutions obtained in [12] are untenable as
solutions to the precise mathematical problem posed. Of course, arguments
are often put forward to suggest that a discrete approximation may be a
better physical model than a continuous one but such was not the original
purpose of the non-local models considered here.

For complex z, define

(3.54) ¢ (2) = yo | Kla—)f(8)dE

where K is defined as in equation (3.52), (3.54) makes sense in the strip |Im z]
< a and is analytic in z. Furthermore, ¢ (z) = 1 for z = x, |x] < | hence ¢(z)
= 1 in the whole region |Im z| < @, and in particular for z = x (real) for all x.
(Note that to deduce this, the theorem used is that if {(z) is analytic in
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region D, and ¥ (z) = 0 at a sequence of points = = zy with zy — z* in D then
Vv (z) =0 in D.) However, for real x > [, and || </

1 [
IK(x; =8| € — < —
Ix—=¢l ~ x—1
S0
i

() < -2 j.f(i)dé.

x—1
-1

This gives ¢(x) >0 as x— x contradicting ¢(x})=1. The contradiction
proves the theorem that there exists no solution of (3.53) with K specified in
(3.52) and f(&) to be integrable.

3.3.2. Direct calculations. To further illustrate the kind of results to be
expected in such non-local media we present here some explicit results.
Consider the problem specified by equation (3.7) (i.e., a semi-infinite “crack”
with an exponentially decaying internally applied “stress”). This reduced in
equation (3.9) to the functional equation '

(3.55) e 4 T, () = — k& (K)o (K)

(for convenience we have taken y, = 1).
Consider the non-local modulus with a delta function component
(3.56) a(|x]) = bd (Ix]) +(1 = b) x, (|]).

For simplicity we choose a,(]x|) as in example (i) above. Thus

k=
=g

and then

(3.57) & (k) = BP+bk> (b k+i)(b* 1 k—if)

BTk k+ip)(k—ip)

It is then a simple matter Lo factorise 4 into the product of plus and minus
functions (the subscripts + and — denoting regularity in upper and lower
halves of the complex k plane). Thus

(3.58) &y (k) =- T : a_ (k) = T
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The functional equation (3.55) can now be rearranged as

i, (k) i 1 1

O = e, T | ke R @ )

i

— L1225 t_(k)—
- Wr W e )

The expressions k/? and k'? are as defined in Section 3.2.1. Thus the
functional equation (3.59) holds on the real k axis, the + region being
Im &k > 0 the — region being Im k < 0. An application of Liouville’s theorem
together with edge conditions at the crack tip gives J = 0 and thus f, (k)
and 0. (k) are determined. The behavior of 1, (x) as x >0+ and v_(x) as
x = 0— can be determined from the behavior of the transforms r, and T©_ as
k — x in their respective half planes of regularity. These are

i +ibi12
I k) =iy
0 o W = RaGgT e iy
(3.60) i e —ib 1?2
m t_{k) =y
ek kN2 (i2)
Thus
pl/2 (A+5) -
o fo(x) ~ xV2 502 GRUEy X2 as x -0+,
: b™'2g!2 ()
Pl mE VAR g e <o

2292 (b2 4 )

As the contribution ol the delta function component in (3.56) becomes
smaller (i.e. b — 0), when the constitutive equation reduces to that of the type
considered in [12] the displacement in (3.61), tends to infinity like b~ "2,
Thus the result of this exact calculation seems to corroborate the non-
existence results obtained in (3.31). Note also that for /4 » 1 the expressions
in (3.61) tend to their elastic counterparts except that the stress is multiplied
by h'/? and the displacement by b~ '/2. This result has been shown Atkinson
[4] to be valid for the full non-local elastic problem and relatively tnsensitive
to the particular form of «, (]x[}. Some numerical evidence in support of this
more general result for plane elastic problems is given in [5].

It is of interest to consider the situation when b = 0 to begin with. In
this case (3.56) reduces to

(3.56) a(|x]) = a; (|x])
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and

. B R p
(3.62) o, (k) =—— a_ (k)= -—-—=.
(k—if)
If t, is to be finite as x — 0+ then Liouville’s theorem can again be used to
show that J = 0. However, it then follows from (3.59), that v_ 1s infinite as x

—-0-.

4. A crack propagating steadily in a strip

Fixed displacements are applied to the sides of a strip x, = +1 and a semi-
infinite crack propagates on the x; axis with uniform velocity v (Fig. 3). We
use co-ordinates moving with the crack tip and define x, = xj—uvt. On

7,

; 4
Clamped Boundaries

Fig. 3. Moving crack in clamped strip

account of the steady state assumption the stress and displacement field
depend only on x, and x,. We assume a two dimensional configuration
together with mode 3 deformation for simplicity (the more general plane
strain configuration is considered in the cited papers). The boundary con-
ditions of the problem can thus be written

on x, = +1, uy = tuy, forall x;
4.1 on x, =0, 0,3 =0 for x; < O (stress-free crack);
on x; =0, u, =0 for x; > 0 (from symmetry),

u;o IS a constant.

The fixed grip configuration described above is a reasonable approxima-
tion to an experimental configuration although the anti-plane strain assump-
tion (i.e., only one non-zero displacement component u,) is less realistic.
Note, however, that the methods used here can and have been applied to the
more realistic plane strain situation. It is also worth recalling the result for
an elastic strip; in this case it is relatively easy to show that the energy flow
into the crack tip is independent of the crack speed for speeds less than the
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shear-wave speed in the anti-plane case. A similar result is true in plane
strain for speeds less than the Rayleigh wave speed. One way of evaluating
the energy flow into the steadily moving crack tip in the elastic case 1s to
simply calculate the energy stored in a thin ligament at x;, — + o0, this
amount of energy will eventually have been transformed into that at
x, = —oc which is zero. The difference must have gone into the crack tip.
Now the displacement in a ligament at x; — + 00 is u3 = U39 x,/h and the
energy stored in this ligament is thus

2 2
(4.2) b0 dx, =B
h h
-h
Hence
2
Uso
G=u-—>~
"

where  is the elastic shear modulus, and G is the energy flow into the crack
tip. Since this energy could also be calculated by a local work argument at
the crack tip it is possible to use (4.2) to deduce the local stress and
displacement field at the crack tip. The result is

(4.3) uy ~ Ay (—x)'2, 01 ~ Ay x1_”2
where
A =n 12 uaoﬂhi”z(l _0_2)1/4’
(4.4) zi -1/4
A, =2n V2 yuyah™ 12 (1 —(ﬁ%)

with ¢3 = u/o, ¢ being the density of the elastic medium. (See Atkinson [2]
for generalisations of this result.)

4.1. The viscoelastic strip. When the strip is made of material which is
linearly viscoelastic its constitutive equation can be written

(4.5) Gy = J G(t—1) ai(; dr
where

0
ei3=%£, . l=1,2
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An alternative form to (4.5) using differential operators would be

d d
(4.6) H, 5)013 =P I)en

where H, and P, are [unctions of the operator d/dr. To the above consti-
tutive equation must be added the equation of motion

- 2
(03 7 uy

4.7) )

( ox; ar?

where ¢ is the density and the x; are stationary cartesian co-ordinates. We
now change to the moving co-ordinate system

(4.8) X, = Xx)—ut, Xy = X5, Xy = X}

and apply a Laplace transform over time and a Fourier transform over x,
defined by

Six, p)=Je "f(xy, 1)dt,
(4.9) °
T, = | 7 (xy, prdx,.
Then (4.7) becomes
5
(4.10) 023 _ i,y = o(p+ivs) il
dx2
while (4.6) becomes
(4.11) H,(p+ivs)d,3 = Py (p+ivs)e;,
and
~ P ~ [
(4.12) pG(p) = __1(.0!’ with G(p) = J e "Gdr.
H(p)
(1)

The steady state can be achieved by letting p tend to zero in the above
equations. Alternatively, if we use the representation (4.6) with d/dr replaced
by —uvé/dx, for the steady state then it is easy to see that (4.6) combined
with (4.7) leads to the equation

~ o] | SN2
C ("e"3 C 2(. U3
Pyl —v o )50 =eH, (—” vl LA
( Xl (..\1 (-.‘C, (,'xl

It can then be seen that under certain conditions the coelficients of the
highest derivatives in this equation will be small, the classical halimark of a
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singular perturbation problem. Following this observation an asymptotic
method was outlined by Atkinson and Coleman [7] and applied to certain
steady moving boundary problems. The key ingredient in the analysis was a
dimensionless parameter ¢ = vt/L where V was the crack speed, t the
relaxation time of the medium and L a length associated with the problem
(e.g., half of the strip width). This asymptotic method is presented here in a
slightly different way and applied to media where the moduli have small
rclaxation times. Thus a typical relaxation function G(t) might be written

N
(4.13) G(t)=Go+ ) Gj;exp(~t/er)
j=2
where G; and r; are positive constants and ¢ a small parameter.

If we put ¢ =0 in the wviscoelastic relaxation functions as a firsl
approximation to the problem, G (1) = G,, we get an elastic strip problem
whose solution is well known. However, if a formal perturbation expansion is
attempted it is soon seen that the expansion is a singular one. This suggests
that the elastic solution formed by putting ¢ = 0 is valid at distances 0 > ¢
from the crack tip. The influence of this “outer™ solution is transmitted to the
“inner” solution through matching conditions near the crack tip where ¢ <€ 0
< 1, and since both inner and outer approximations are valid in these
regions they must be asymptotically equivalent there. Thus the inner limit of
the “outer solution™ must match with the outer limit of the “inner” solution
(cf. Van Dyke (1964) for details of the method of matched asymptotic
expansion). One key feature of the present problem is thai the zero-order
outer solution is just the solution for the elastic strip and the inner limit of
this solution (i.e., the solution near the crack tip) has the form given in
equations (4.3) and (4.4).

To obtain the zero-order inner solution, we define inner co-ordinates
(X,. X,) by

(414) X1 =8X-l, x2=CX2
and write
(4.15) 023 =¢ Ty, uy =¢'? Usy.

In this new co-ordinate system the boundary conditions (4.1) become

on X, = +1/, Uj; = uqo/e'’? for all x;

4.16
( ) on X, =0, T,;, =0 for X, >0, Uy=0 for X, >0.

Thus as ¢ — 0 the boundary condition (4.16), is lost and the inner problem
becomes that of a stress free semi-infinite crack moving steadily in infinite
viscoelastic medium, the conditior:s at infinity begin determined by matching
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with the outer solution. Note that from (4.10) and (4.11) the transformed
equations in the original (x,, x,) co-ordinate system become

2= 0 .22
(4.17) d “’—[squﬁa —0

2
dx;

where

P,(p+ivs) (p+ivs)G(p+ivs)
(4.18) c3 = — =
oH, (p+ivs) 20

NN

Replacing p by zero in (4.17) and (4.18) for the steady state situation,
changing to the inner co-ordinate system (X,, X,) and replacing the trans-
form variable s by

(4.19) S, = &S

reduces (4.17) to the equation

d* U, 02\
(4.20) i —sf(1 —(—%) U, =0
where
(4.21) Oy = [ UL (X, X,p)dX,
also
422) 2 = ivs, G (ivs,/e) _ u(ivs, /&)
20c Q
with
(4.23) Glivs) = Givs,fe) = ¢ [ ¢ "V Get,)dt,
0

where the substitution ¢t = &, has been made in (4.12). Note that with the
definition (4.13)

N
(4.24) Glet)) = Go+ Y Gjexp(—ty/t))
j=2

J

so the expression (4.22) is independent of ¢ in these new co-ordinates.
The solution of (4.20) with U, bounded as X, tends to plus infinity is
thus

(4.25) U, =A4exp(—7X,)
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where y i1s the branch of the square root of
UZ

(4.26) bt = 55(1 _._j)
3

which has positive real part in the complex s, plane.
Transforming the boundary conditions (4.16) on X, = 0 gives

(4.27) Ty = { €7 Tyy (X, 0)dX, = T (sy)

Qe 8§

an unknown plus function (regular in some upper half of the complex s,
planc)

o
(4.28) Oy= | " UL (X,, 00dX, = O_(s))

- an

regular in some lower half of the complex s, plane.
However, the transformed constitutive equation gives

- iUSl dU3
42 — ()4
(4.29) T (E)dxz

u being defined by (4.22). Thus combining (4.29) with (4.27) and (4.28) gives
(4.30) T, (s) = —myU_(sy)

where both g and y depend on s,.

To determine the behavior of the complex function uy we note that from
the definition (4.23), u(ivs,/e) and c¢? are regular in Im s; <0 and ¢3 is real
when s, is pure imaginary. It takes its purely real value when is, - + oo then
c, i1s the short time wave speed

N
(4.31) cio =(Go+ ) G;)/2e
=2

The long time wave speed is when s, = 0, this is the minimum purely real
wave speed

(4.32) c3o = Gof20.

Furthermore for Im s; < 0 it can be shown that ¢ is an increasing function
of is;. Thus provided

(4.33) v? < ¢y

then 2 has no zeros in Im s, < 0. It is then possible to factorise y as

UZ' 1/2
(434 pe =l gl = si’f(l——)

c3
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where s}’? has a branch cut from 0 to —io¢ in the lower half-plane and s}/
a cut from 0 to +ioc in the upper half plane. Equation (4.30) can be
factorised as

T, (s _
(4.35) N(s,) = KESLIUN v_ U_(sy)

it

where the minus subscript denotes regularity in Im s, < O the plus subscript
regularity in Im s, > 0.

We now need to solve the functional equation (4.35) subject to the
matching requirements that the [ar field should match with (4.3) written in
inner co-ordinates. This leads to the requirement that

Us’\Az(—A,l)llz as X,—r—OO,

4.36
(4.36) Ty ~ A, X2 as X, — +oo.

These matching conditions will be satisfied il the transforms have the
behavior

U_ ~ —Lali2s732 4,2,

(4.37) T, ~ A, glf2 itt g 112 as s, — 0.

The function N(s,) defined by both sides of (4.35) is analytic in the whole s,
plane except possibly at s, =0, and for large s, each side of (4.35) is
bounded on account of the usual condition that the stress should be no more
singular than r~'/? at the crack tip. Matching the stress boundary condition
on T, from (4.37) and using Liouville’s theorem specifies N(s,) as

A .
N(s;) == n'/2eml4,
s
Thus from (4.35) the transforms T, and U_ are determined, and using

Tauberian theorems the stress and displacement at the crack tip can be
determined. The resulting expressions are on X, =0, | X,| < 1,

24. (- X 1/2 .2 -1/2
(4.38) Tys ~ Ay XTV?, Uz~ 1 { 1’—-(1—‘) .

2 2
0C24 Crx
Referring these expressions to the (x,, x,) co-ordinate system and sub-

stituting for 4, from (4.4), noting that in (4.4) the wave speeds etc. are the
long time ones (see (4.32)), gives, at the crack tip,

C20
s o (1—v?/c3o)H
2 3.2 2
ey (1=0%/c3 )Y

p? \ 14
03 ~ (X, @)~ 12 Uao#oh_llz(l ——2—) ,
(4.39)
Uy ~2(—x;)?*n

h™ 12Uy,
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Since po = 0c3,. A viscoelastic stress intensity factor can be defined as K
where

Ty3 ~ Kw(zﬂ.\‘l)'llz as X, —‘O+,
(4.40) K. (—2nx )V [ p? \ 112
Uy ~—— 1-— 5 as x—0-—
U, Cay

where u, and c,,, are based on the short time modulus,
Then from (4.39)

(441) ‘ufE _ISE - ﬁl__vi{(:;? e
: o K, 1_172/(;%0&

where K, is the stress intensity factor of the analogous elastic problem based
upon the short time modulus u_. In Atkinson and Popelar [9] the full
solution of the above problem with no restriction on relaxation times is
given in terms of integrals which are evaluated numerically. Figure 4 shows a

A 12025, ST
1.0 -100
[™~10
1
08l - 01
- 001
xjx" o)
g
Y B
A
e | Asymptotic )
02}
1
0 Q2 Q4 06 08 10

Fig. 4. Normalised stress intensity [actor versus normalised crack speed. (Taken from Atkinson
and Popelar (1980) standard linear solid)

comparison between the resuit (4.4) and the full numerical solution for the
standard linear solid described by

d\ _d 1+f dy_ (d 1
”'(a)—z““—w ”l(a)—“w(dﬁt)-
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