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We are going to consider an optimal control problem in which the state
of the system is defined as the (unique) solution of a stationary variational
inequality.

The main difficulty comes from the fact that the mapping between
the control and the state is not differentiable but only Lipschitz-continuous
and so it is not easy to get optimality conditions of first order which make
sense and which describe correctly the situation.

This problem has been already considered from the theoretical or nume-
rical point of view by many people, for example, Yvon [9], Mignot [6],
Barbu [1], [2], Saguez [7], Zrikem [10]. They have used either an approx-
mation of the variational inequality by penalization, or the differentia-
bility almost everywhere for Lipschitz continuous mappings, or the gene-
ralized gradient. Here, using the conical derivative (cf. Mignot [6]), in
the case where there is no constraint on the control, we shall obtain ne-
cessary conditions of first order including strictly the ones obtained by
Barbu [2] for example (we shall discuss this in details later on).

In Section 1 we describe the problem; the main results are given
in Section 2; in Section 3 we give auxiliary results and prove the main
theorems; in Section 4 we make some complementary remarks and state
some open problems.

1. Statement of the problem

In order to be clear enough, we shall not consider the most general abstract

gituation and we leave to the reader the possibility of adapting the proofs
to some connected problems.

[409]
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Let 2 be a bounded domain of R" and let I" be its boundary. Ve
consider a Hilbert space ¥ such that

HY(Q) > V=rH1(Q)

and such that if u eV, u*t e V.
We denote by ((-, *)) and || the scalar product and the associated
norm in V, respectively.
Let us consider the bilinear form a(-, -) defined on ¥V xV by

n
_ Op

(11) a(p,y) = Zfaa_‘»"_a_%" +_>Jfb¢5;vdw+fcwdw,
=12 F

iJ=10

where ay;, b;, ¢ belong to L®(L). The bilinear form a(-, -) is continuous
on ¥V xV and we shall assume it is coercive, i.e.,

(1.2) 3a>0,VpeV,a(p, ¢) > alpl
If (-, ) is the duality between V' and V, we have

(13) Vo,yeV,a(p,y) =<4p,y>, where AeL(V,V).
Now define

(1.4) K ={p) 9peV,p>0 a.e. in 2}.

The set K is closed, convex and nonempty in V.

We are now able to define correctly the control problem. Let f be
given in V’, and let U,; be a closed convex subset of L?(£2). For each
v e Uy we define y = y(v) (the state of the system) as the solution of
the variational inequality:

L.5) Ia(y, -2 {f+o,9—y) Vpek,

ye K,

We can interpret (1.5) as follows:
Ay =f+”+51

(1.6) y=20; §=0,
K&, 9> =0.

We know by classical arguments ([3], [5]) that (1.5) has a unique
solution,
Now, for z; € L?*(2) and N > 0, we define the cost function J by

1 N
(1.7) J) =5 f (y(v) —za)?do + o f (v)¥dz,
Q o
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and we look for v, (optimal control) such that
v, € Ups,s

J(v,) = Min J(v).

veUpgq

(1.8)

Remark 1.1. We could have considered various examples of convex

sets, of control or of cost functions in which we can obtain analogous
results without additional difficulty in the proofs.

In particular, we can consider the following examples.

" ExaMPLE 1.1. Let
V=H(Q2); K-={p eeV,p>=>0a.e. on I'}.

Then, for the same type of bilinear form and the same control, we get

the Signorini problem, and we may consider the following cost function
(with z; € L*(I')):

1 N
(1.9) Jo) = 5 f(y('v)—zd)’dl"+? f('o)’dm.
Ir 2

EXAMPLE 1.2. If y(v) is defined as in Example 1.1, we can consider
another cost function (with z; € H-'3(I")

'31(1’)—5.1

1
(1.10) J(v) = Y
% 4

N
— | (v)¥dx
H—ll!(p)_l_ 2 !( ) !

i)
where e denotes the conormal derivative associated with A.
A

ExAmPLE 1.3. If 2 is a bounded regular open set of B" such that its
boundary I' is the union of two connected components Iy, and I', for o
€ L*(I'y), we consider y(v) solution of

Ay(v) =f in Q,

0y (v) > 0; oy (v)

4 4
y(v) =v on Iy,

and the cost function (zq € HY%(I))

oy (v)
v,

(1.11) y(v) > 0;

y(®) =0 on Ty,

1 2

(1.12) I(0) = >

b
. + o f (v)1dr.
H—IIZ(I'O) 2 rl

In this case, we have to define carefully what we mean by a solution of
(1.11) with v e L¥(I).
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ExavPLE 1.4. For fe R, ve R, z; € R, we consider

(1.13) y(v) = (f+0)*,
1 N
(1.14) J(v) = ?(y(v) —2g)*+ ?(v)ﬁ.

All what follows can be adapted to this very simple interesting situation
which contains the main difficulties and which will give some counter-
examples.

2. Main results

First we get a simple existence result for an optimal control.

THEOREM 2.1. There exists an optimal control vy € Uy, (and in general
there 18 mo umtqueness).

In order to get optimality conditions of first order, we shall assume
that Ugy = L?*(9). If v is a solution of (1.5), we can define:

(2.1) Z,={z| zeQ,y(x) =0}
(defined up to a set of zero capacity).

(2.2) 8, ={plpeV,p=00n Z,, & ¢> =0}
(where & = Ay—f—» is given by (1.6)).

THEOREM 2.2. An optimal control v, satisfies the following:
(i) vo€ V.
(i) If yo = y(v,), there exisis p, such that:

Po € Suo’
(2.3)  {Vp ey, aly,p) < [ (¥—2a)pds,
p°+Nvo == O- a

Remark 2.1. If we define (S;',;)" (polar cone of S,o with respect to the
adjoint form a*(-, -)) by

(2.4) (S:;)o ={pl peV,Vpe 8, aly, ) <0},
we can write (2.3) as follows:

Po € Sl‘o’ -
pPo—A _l(yo—zd) € (Sgo)",
po +.N170 = Ol

(2.5)
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Now, eliminating the adjoint state p,, we obtain:

COROLLARY 2.1. There exists at least one solution (y,v) of the sy#te)hz:
[[ay,p—9) = [(F+o)(p—9)de VpeK,
Q2

|y e K,
(2.6) 1,

1 .
a(p,0)> —— [(y—sz)pds  Vyes,
a

[\ —pe8,

and (y,, v,) i8 one such solution.

3. Proofs of the results

3.1. Proof of Theorem 2.1, We know that J(v) >0 Voe Uyy. Let j
be the infimum value of J(v) for v € Uy, and let (v,),.5 be & minimizing
sequence. We then have

limdJ (v,) =j = Inf J(v).
n—ro0 veUad

As XN is strictly positive, (v,),.y i8 @ bounded sequence in U,; = L?*(2)
and we can extract a weakly converging subsequence (v,, ).y such that

Un, Vo i0 L*(Q) weakly as k—>+oo.
Then v, € Uy, because U,, is closed and convex. As 2 is bounded, the
injection from Z2(£2) into V' is compact and so

O, 0 in V' strongly as k—-oo.
Then we have

Y(0,)>¥(v) =y, in ¥V as k—>oo.

Using the lower semi-continnity for the weak topology of L2(2) of v—
— [ (v)2dz, we get
0

j =limInfd(v,,) = J(v,),

k—o0
and
J(v,) = Min J(v).
veUgqq
3.2. Proof of Theorem 2.2. We first give the results obtained by approxi-
mating the variational inequality by a penalized equation. This method

has been used by Barbu [1], [2] and Mignot—Tartar [8], but as we shall
‘8ee, it does not give the result of Theorem 2.2.
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Nevertheless, it shows the important fact that the optimal control o,
belongs to V.

For &> 0, let us consider
é
r+4 E if r

(r = 4 1 .
Fin ——%r’ if —-4<r<o,
0.

N

_6’

0 ¥ r>

For ¢ > 0, we denote by vy,(v) the unique solution (which exists) of
the penalized equation

1
Aya(v) +':p‘(yc(v)) = f+9,
v,(v)e V.
Using a trick of Barbu [1],[2] we define an adapted cost function

(3.1)

N
62 20 =3 [(no-zldot G [(@rdets [o-ayrd,

where v, is a solution of (1.8), given by Theorem 2.1.
We can now obtain easily the following result (the proof is classical):

THEOREM 3.1. For each ¢ > 0, there exisis v, € L*(S2) such that

(3.3) J,(v,) = Mind,(v).
veL(0)

Moreover, we have

[ 1
Ayc+ _E_ﬂd(yc) =f+’0,,

Y.V,
3.4 { 1 .,

(3.4) A'p.+—£~ﬂ" (#.)Pe = (¥a—2a)s
p, eV,

2.+ No,+(0,—v,) = 0.

Using Theorem 3.1, we can derive some estimates and convergence results
as e—>0.

THEOREM 3.2. When e—0, we have

v,—0, tn L2(N) strongly,
{3.5) Y,—>Yo tn V strongly,
PPy in V weakly,
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with
(3.6) Po+Nvy =0,
and

(AYo = [+09+ &0y

Yo=0; £20; (&Y =0,
(3.7} { AP = (¥o—2a)+ 0y
Moy Yo7 = {0y Py = 0,
\(7)0’?0 <0.

Remark 3.1. (1) In the following we shall not use directly (3.7), but
we shall use (3.6) which shows that v, e V.

(2) In fact we shall directly obtain strictly more than (3.7) as will
be shown in Section 4 on a counterexample.

Proof. We know that for » fixed in L*(Q), y,(v)—>y(?) in V strongly
1 :
as &0 (because — f° (-) is a penalization adapted to the convex set K).
£

From (3.3), we have
J.(0,) < J,(v,) =l’f(y (B0 —2 )2d:v+£f(v Vdus
s\Ve] =X Y41V 2u s\Yo d 20 0 .

Then J,(v,)—>J (9,) a8 e—0 and
(3.8) limsupd,(v,) < J(7,).
80

Moreover, (v,),,, 18 bounded in L?*(f2) (independently of ¢£) and we can
extract a subsequence (still denoted by #,) such that

0,59, in L*(2) weakly if &-90.
Then v,—>%, in V' strongly if e—0 and we could easily show that
Yo (2)>y(%) in V if 0.
Therefore

. 1 N 1 _
limintJ,(n) > > Df (y(B0) —2a )0+ - nf (B)rdm+ 5 Qf (50— 00)?do
= J(,) + % f(i"o_”o)adw

o

>J(vo)+% [@o—vras by @8).
L
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From (3.8) and (3.2) we obtain
J,(0)>J(p,) 1f &0,
Uy = o,
v,->0, in L*(N) strongly if &->0.

Then ¥, = ¥.(v,)>¥, = ¥(v,) in V strongly if eé—»0. Multiplying now the
second equation of (3.4) by p,, and using the fact that g% (y,) > 0, we obtain
that p, is bounded in V, independently of e. After extraction of a subse-
quence we have |

P.oPo in V weakly if &-0.
From the last equation of (3.4) we get
Po+Nv, =0,

and then the whole sequence p, converges to p, = —Nv,.

This gives the first part of Theorem 3.2. As already mentioned,
the second part of Theorem 3.2 will be a consequence of our general result
but we shall prove it directly here, assuming that f € L*(Q).

Let us write

1
E- = "_"e'ﬂa(y.) =Ayl——(f+vl)’

1,
Ne= — ';ﬁd (Ya)*Pa = A.pa—(ya—zd)°
From (3.5), we know that if e—~0, then

£,~>&oin V', where & = Ay,—(f+v,),
Be>To in V' weakly, where 1o = A"Po— (Yo—%).

We have {7}, ¥}> = 0, because of the definition of f°.

When e—0,
N0 in V' weakly,
yr—>y+ =19, in V strongly.
Then
ey Y >—>{1gy ¥op in R,
{Mos Yo> = 0.
Now we have
1
- <$¢7 pl> = _8— fﬁa(ya)pad‘v
0
1 ) 1 .
2l L fra)peemgs [ el

{ve<—-9} {—0<y,<0}
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and

1 , 1 1
—<n.,y.>=—s—afﬂ° (y.)-p.-y.dw=;[ f P, y.dw—7 f yfp.dw]-

v,<-9} {— <y, <0}
Then
1 1
oo PO —5 9> = — 5= [ W+ O)p.dm,
{vy<—2}
and
1 1 Yz 12
Eop>—5 v < [ (wr+olde) ([ ras)".

{ve<—9} v, <-9}

1 1
Multiplying the first equation of (3.4) by —p°(y,), we see that— [6°(¥,)|.2q)
£ €

is bounded, and so 1( S ((9.)2+ 8%)de)” is bounded.
¢ (v, <-9

As V c 1%(Q) with ¢ > 2, we have
([ @rde)”<( [ (p)? do)'"[ Meas{y, < — 83192

w,<=9) (vy<—0)
< C-lp,ll [Meas {y, < _5}]¢:li(-q;2).

As |p,| is bounded, if we show that [Meas{y, < —d}]—>0 as -0, we have

<§s’ po> _i<7in ya)*oi
and

ypo—>0 if -0,

because (%,,y.>—>0 if ¢—>0. We know that l [ yidz< M. So
€% (yg<—0)
42 M
— f de<< M, and [Meas{y,< —8}]<—¢%

2 ]
v, <K-9} 9

thus we have (¢,, p,>—>0 if ¢—~0; and therefore (&, p,> = 0. Multiplying
the equation giving p, in (3.4) by p,, we get

a(p,, pa)— f(y-—zd)padm = - ’JE; fﬂ"'(y,)pfdm < 0.
o} Q2

27 — Banach Center t. 14
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When &0, p,—p, in ¥V weakly, and y,—¥, in V strongly. Then

@(Pos Po) — [ (Yo—#2)Pode < limint[a(p,, p)— [(y,—24)p.d0] <O
Q 2

ew 0

and {7y, Po> < 0. This finishes the proof of Theorem 3.2.
Now, using the information v, € ¥, which is a regularity result on
the optimal control, we are going to give a direct proof of Theorem 2.2.
We know (cf. Mignot [6]) that the mapping v—y(v) possesses at
each point ¥V a conical derivative w—Dy,(w) such that for all we V’
we have:

(3.9) Dy,(w)e8,, and
V’P € Su(o)! a(Dy,,(w), tp—Dy,(‘W)) = <w! ‘P_-Dyv(w));

where S, is defined by (2.2).
Therefore the mapping v—J(v) possesses at each point » a conical
derivative w->DJ,(w) defined by

(3.10) DJy(w) = [ (y(v)—24) Dy, (w)dz+N [v-wds.
n Q

LemMma 3.1. If v, i3 an optimal oontrol, we have
(3.11) Vw e V', DJ, (w)=>0.
Proof. It is evident to prove that
Vw e L}(Q), DJ, (w)> 0.

and then to prove (3.11), because L?(Q) is dense in ¥’ and because w->
~Dd, (w) is continuous from V” into E.

Remark 3.2. The condition DJ, (w) > 0 means that at the point v,
in each half direction w, the functional J(-) does not decrease strictly,
up to the first order; so it seems to be a “good” optimality condition.

THEOREM 3.3. If v, € V, the optimality condition (3.11) holds at the
point v, if and only if there ewists p, such that

Po € Sv(uo)y
(3.12) 1 Po—A* "y (o) —24) € (854)%
Po+Nv, = 0.

Remark 3.3. (1) Theorem 2.2 follows immediately from Theorem 3.3
and Lemma 3.1.

(2) (3.12) and the definition of y(v,) include (3.7).
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Proof of Theorem 3.3. For £ € V and y € K, let P,(¢) denote the sol-
ution of

(‘PV(E)"P Py(s) a(E,qJ Pv(f)) V(peSy,
P,(&) e,

and P} (¢) the solution of
alp—Py(8), Py(&)) = alp—Py(8), &) Vpes,,

(3.18)

(3.14) P68,

Then we have, for all £ ¥,

(3.15) & =P, (& +Q,(58),
(3.16) & =Py(&)+Q(¢),
where

Q,(£) €(89)° (polar cone of S, with respect to a),

Q5 (&) €(8%%)°  (polar come of S, with respect to a*),
with

a(Qy(E)r Pu(g)) =0,

3.17
310 a(P(8), @3(8)) = 0.

Notice that we have:
(3.18) Vo € 8,, Yy e(85)°, a(y,p) <0,
(3.19) Vo €8, Vy* e (8;")° alg, y*) <0.
Now from (3.9) we have, if ¥y = y(v),
D,,(w) = P,(4 7 w),
and if No, e V, we can write
DJ, (w) = f (¥0—2) Dy, (w)dz+N f v 0 dw

= a(P,, (47'w), A"‘(yo—zd))+a(A“ w, Nov,)
= a(P, (47 w), A*"}(yo—23) +Nvg) +a (@, (4™ w), No,).
Set

&y = "A‘_l(yo_zd) —Nv,,
El = —Nvoo
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We have
DJ, (0) = —a(P, (A7 w), &) —a(Q, (4 w), &),
and therefore
(3.20)  DJ, (w) = —a(P, (A 'w), P} (&) —a(P,, (4 w), @ (%))
= —a{Q,,(47'w), @, (&) —a(Q,, (47 w), P, (£,))
Suppose that (3.11) holds at the point v, € V, so that
DJ, (w)>0 VweV'.
Take w, = APy (&), s0 that 47wy = Py (&) € 8,,, and
P, (A" wy) = Py (£0),
@y, (47 wg) = 0.
Then
DJ, (wo) = —a(Py (&), Py, (£0)) —a(Py, (&), @5, (£0)
= —a(Py (&), Py (£)) =0,
and we must have
(3.21) Py (&) =0.
Now take w, = AQ, (&), so that A™'w; = @y, (&), and
P, (A7) =0,
@y, (A71w,) =@, (&1).
Then
Dy () = —a(Qy,(£1), @y, (£1) — a (@ (£1), Py (£1))
= —a(@,,(&),9Q,,(&)) =0,
and we must have
(3.22) Qu,(£2) = 0.

We have shown that (3.11) implies &, € (S:;)“, & € Syo which is equivalent
to (3.12).

Suppose now that we have (3.12) and so that P,",'o(fo) = 0,Q,,(&) = 0.
Then from (3.20), (3.18) and (3.19), we have for all w e V",

DJ,,O(’CU) = —a,(P,o(A‘lw), Q:O(Eo)) —a'(Qyo (A-l,w)’ Pyo(El)) = 0

and this finishes the proofs of Theorem 3.3 and of Theorem 2.2.

1)
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4. Some comments and open problems

Let us show briefly that once we know that the optimal control », belongs

to ¥, Theorem 2.2 implies Theorem 3.2, and in fact, that (2.3) together
with the definition of %(v,) implies (3.7).
If we set

no = A*po—(¥o—24),
we get from (2.3)
Po€8y, {no,yp<0 Vypes§,,
Moy Poy <0 and (&, p, =0.

Now y,€8,, and —y, €8, ; then {n,,¥,> =0, and this proves (3.7).

We are now going to show with a simple counterexample that Theo-
rem 2.2 is strictly stronger than Theorem 3.2. Take V = R and, for v € R,
(4.1) y(v) = (—1+v)*

(y(v) is a solution of a variational inequality in R), with the cost function

(4.2) J(v) = (y(v) -—1)2-1—'02.
Then
J(v) = 202 —4v+4 ?f v>=21,
v: 41 if v<1.

The optimal control v, is here unique and we have v, = 0. But it is easy
to show that the point v, = 1, to which correspond ¥(v,) = 0 and p(v,)
= —1, patisfies (3.7), but does not satisfy (2.3). Here the only solution
of (2.3) i8 v, =0, with y(v,) =0 and p(v,) = 0.
So we see that (2.3) is strictly stronger than (3.7). Notice also that
in our case 0 belongs to the generalized gradient of J at the point »,.
We therefore see that in our type of problem, the optimality condition

DJy (w) > 0 VYweV’

appears as a “good” optimality condition.

Unfortunately we have not been able, till now, to say exactly what
this condition means when the set U,; is not the whole space L*(2) and
this is an open problem.

Let us mention three other important open problems:

How can we solve directly the optimality system (2.6)1 This would
be important for numerical applications.
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What can we say when we replace the convex set X by more gener:l
convex sets such as, for example,

K' = {v] ve Hy(R2), |Gradv(z)| <1 a.e. in 2}?

In this situation we do not know that the mapping v—»>y(v) admits at
each point v a conical derivative.

What can we say for the evolution case, even with the convex set
K1 Again here we do not know whether »—y(v) has a conical derivative
at each point V.
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