Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Cover of the book
Tytuł książki

C*-semigroup bundles and C*-algebras whose irreducible representations are all finite dimensional

Seria
Rozprawy Matematyczne tom/nr w serii: 290 wydano: 1989
Zawartość
Warianty tytułu
Abstrakty
EN

We investigate the structure of C*-algebras with a finite bound on the dimensions of their irreducible representations, sometimes called "subhomogeneous".
In the first chapter we develop the theory of C*-semigroup bundles. These are C*-bundles over semigroups together with a "structure map" which links the semigroup structure of the base space lo the bundle. Under suitable conditions we prove the existence of "enough" bounded sections, which arc "compatible" with the C*-semigroup bundle structure. Then we establish a complete duality between a certain class of C*-semigroup bundles and subhomogeneous C*-algebras, namely the algebra of compatible sections of such a C*-semigroup bundle is subhomogeneous and conversely, every subhomogeneous C*-algebra is isomorphic to the algebra of compatible sections of such a C*-semigroup bundle. In this way we are able to even represent C*-algebras with non-Hausdorff spectrum as sections in bundles.
The second chapter is devoted to developing methods for the computation of the functor $ΠH¹_R$, which classifies certain C*-bundles with varying finite dimensional fibres. $ΠH¹_R$ is the C*-bundle analog of Čech-cohomology for bundles with one fibre type. The difficulty here is, that homotopy classes of cocycles of bundle imbeddings have to be computed, while only homotopies that satisfy a corresponding cocycle condition can be considered. We define a functor $MH¹_R$ which describes the multiplicities of the imbeddings of the fibres into the bundle and assignment of multiplicity matrices to cocycles yields a natural transformation: $ΠH¹_R → MH¹_R$.
Chapter three finally gives some applications. We calculate $ΠH¹_R$ for C'-bundles over a two disk Tor an assignment of different finite dimensional fibres. The result is stated in terms of $MH¹_R$ and quotients of homotopy groups of bundle imbeddings. It provides a new way to describe the group C*-algebra of an interesting group called p4gm, which has been computed by I. Raeburn, and furthermore, our description yields complete invariants — in fact these are given by $MH¹_R$.
A last example involving bundles over a three ball with 3 different fibres shows the fact that $MH¹_R$ does not always provide complete invariants and at the same time illustrates the limits of our methods.
EN

CONTENTS
0. Introduction........................................................................................................................................................................5
I. C*-semigroup bundles and C*-algebras whose irreducible representations are all finite dimensional.................................7
1. C*-semigroup bundles and their morphisms......................................................................................................................7
2. The universal C*-semigroup bundle of a C*-algebra........................................................................................................10
3. Abelian and associative C*-semigroup bundles and the extension of compatible sections..............................................13
4. Existence and "uniqueness" of representation semigroups and C*-semigroup bundles..................................................23
5. Duality between certain C*-semigroup bundles and certain C*-algebras.........................................................................29
6. The core of a representation semigroup..........................................................................................................................35
II. The calculation of $ΠH¹_R$ for certain C*-bundles..........................................................................................................39
1. The functor $ΠH¹_R$.......................................................................................................................................................39
2. C*-bundle embeddings, multiplicity bundles and $MH¹_R$..............................................................................................44
3. Finite order C*-bundles....................................................................................................................................................52
4. Third order C*-bundles with finite dimensional fibres over cones over pairs of compact Riemannian manifolds..............58
5. A remark on the continuity of the map $f: X → S_A$ of I.5.3.3.........................................................................................66
III. Applications and open problems......................................................................................................................................67
1. Applications and final remarks.........................................................................................................................................67
2. Applications.....................................................................................................................................................................76
3. Open problems and final remarks....................................................................................................................................81
Appendix. A simple proof of Dupre's classification Theorem II.1.1 for a restricted class of bundles.....................................82
References..........................................................................................................................................................................87
Słowa kluczowe
Tematy
Miejsce publikacji
Warszawa
Copyright
Seria
Rozprawy Matematyczne tom/nr w serii: 290
Liczba stron
87
Liczba rozdzia³ów
Opis fizyczny
Dissertationes Mathematicae, Tom CCXC
Daty
wydano
1989
Twórcy
Bibliografia
  • [BD; 72] J. W. Bunce and J. A. Deddens, Irreducible representations of the C*-algebra generated by an n-normal operator, Trans. Amer. Math. Soc. 171 (1972).
  • [DD; 63] J. Dixmier and A. Douady, Champs continus d'espaces Hilbertiennes, Bull. Soc. Math. France 91 (1963), 227-283.
  • [Di; 69] J. Dixmier, Les C*-algèbres et leurs représentations, Gauthier-Villars, Paris 1969.
  • [Do; 63] A. Dold, Partitions of unity in the theory of fibrations, Ann. Math. 79 (1963), 223-255.
  • [Du; 1] M. J. Dupré, Cohomology for classifying categories of Banach bundles, summary, preprint, Tulane University.
  • [Du; 79] M. J. Dupré, Classification and structure of C*-algebra bundles, Mem. Amer. Math. Soc. 222 (1979).
  • [Du; 2] M. J. Dupré, The classification and structure of C*-algebra bundles, II, summary, preprint, Tulane University.
  • [Du; 3] M. J. Dupré, Duality for C*-algebras, preprint, Tulane University.
  • [DG; 83] M. J. Dupré and R. M. Gillette, Banach Bundles, Banach Modules and Automorphisms of C*-Algebras, Research Notes Math., Pitman, London 1983.
  • [Ev; 79] B. D. Evans, The C*-algebras of compact transformation groups, Ph. D. dissertation. University of Pennsylvania, 1979.
  • [Ev; 82] B. D. Evans, C*-bundles and compact transformation groups, Mem. Amer. Math. Soc. 269 (1982).
  • [Fe; 61] J. M. G. Fell, The structure of algebras of operator fields. Acta Math. 106 (1961), 233-280.
  • [Ge; 77] P. Green, C*-algebras of transformation groups with smooth orbit space, Pacific J. Math. 72 (1977), 71-97.
  • [Go; 55] A. Grothendieck, A General Theory of Fibre Spaces with Structure Sheaf. Univ. of Kansas, 1955.
  • [Ho; 72] K. H. Hofmann, Representations of algebras by continuous sections. Bull. Amer. Math. Soc. 78 (3) (1972).
  • [Hu; 75] D. Husemoller, Fibre Bundles, 2nd. ed., Springer, New York 1975.
  • [Ma; 52] G. W. Mackey, Unitary representations of group extensions, I, Ann. Math. 55 (1952), 101-139.
  • [Mo; 72] C. C. Moore, Groups with finite dimensional irreducible representations, Trans. Amer. Math. Soc. (1972), 401-410.
  • [Qu; 76] B. Querenburg, Mengentheoretische Topologie, Springer-Verlag, Berlin-Heidelberg 1976.
  • [Ra; 82] I. Raeburn, On group C*-algehras of bounded representation dimension. Trans. Amer. Math. Soc. 272 (2) (1982).
  • [Ro; 76] J. Rosenberg, The C*-algebras of some real and p-adic solvable groups. Pacific J. Math. 65 (1976), 175-192.
  • [Sp; 66] E. Spanier, Algebraic Topology, Springer-Verlag, New York 1966.
  • [St; 51] N. Steenrod, The Topology of Fibre Bundles, Princeton University Press, 1951.
  • [Ta; 67] M. Takesaki, A duality in the representation theory of C*-algebras, Ann. of Math. 85, 2nd series (1967).
  • [Va; 66] N. B. Vasil'ev, C*-algebras with finite dimensional irreducible representations, Uspehi Mat. Nauk 21, (1966), No. 1 (127), 135-154.
  • [Ve; 84] A. Verona. Stratified Mappings - Structure and Triangulability, Springer-Verlag. Berlin Heidelberg 1984.
Języki publikacji
EN
Uwagi
Identyfikator YADDA
bwmeta1.element.zamlynska-0e6ff4c5-030d-4253-af79-dd1c3664236e
Identyfikatory
ISBN
83-01-09497-4
ISSN
0012-3862
Kolekcja
DML-PL
Zawartość książki

rozwiń roczniki

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.