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In the paper the principles of sufficiency and transitivity will be applied to
sequentially designed experiments. By generalization of the usual sufficiency
concept to the present case there are conditions that allow the choice of
design rules, stopping rules and terminal action rules on the basis of
sufficient and transitive sequences of statistics or o-fields. These results are
generalizations of corresponding statements of Gray ([5]), who has studied
only the dominated case. Moreover, the approach of Gray to the definition
of transitivity is changed in some sense,

1. Introduction

Sequential statistical procedures are characterized by the parallel perform-
ance of observation and statistical inference, so that the observations up to
time n will influence further sampling. In the simplest case this influence
consists in the decision of stopping or continuation at time n. In the
sequential design case from the continuation decision it follows the necessity
to design the observations for the next step in dependence on the past
observation results. '

In view of numerical realization of such a sequential procedure it is
useful to have the possibility to store not all past data, but only a set of
current values. This can be achieved by application of simplified processing
algorithms (such as stochastic approximation procedures) or by using suf-

ficient sequences of statistics or o-fields, allowing the data reduction without
loss of information.

2. Experimental design rules

The mathematical model of a real experiment is the statistical experiment.
That is a triplet (2, U, &), consisting of the sample space Z, of a chosen o-
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field W of events observable on principle, and of a family # of probability
measures. Without loss of generality # can be represented in the form #
= [P, 0@}, @ being a parameter set, not necessary in a Euclidean space.
Experimental design arises if, in a statistical problem, there is the possibility
to have differcnt statistical experiments. It will be assumed that the results of
these experiments are in the same measurable space, and the experiments
differ only in the family 2, that is, instead of £ there will be a family .2,
#¢ = |Pg, 0c @}, where e is a parameter, chosen in a measurable space (4, €).
The parameter e, ec &, is chosen beforc the experiment will be started, and
the experiment consists in a realization of a random element X in (&, A, #°).
This scheme includes the design situation in problems of regression analysis,
analysis of variance, control problems, etc.

The element e, ec &, is called the experimental design, and the choice of e
results by a design procedure.

In the following, randomized designs will also be taken into consider-
ation. A randomized design n will be a probability measure on (&, €), and in
application the design = is realized by realization of a random element V
with distribution n on (¢, €), giving an element ¢, ec &. With this e the
element X in (4, 2. 29 will be realized.

For sequential design it must be assumed that the whole experiment can
be performed by fractions, so that the whole result consists of a sequence of
fractional results. In this sense a sequentially performed experiment is the
realization of a sequence V,, X,, V5, X,, ..., in which X, at stage n 1s a
random element with realizations in (4,. ¥,), ¥, 1s a random e¢lement with
realizations in (£,, &), rie N.

For all further consideration the {ollowing assumption should be
fulfilled.

General assumption. (7, 0,), (E, &, ne N, are Borelian spacc ', that is,
measure-isomorphic spaces to a complete separable metric space with the
o-field of the Borel sets. Let

H, =V, X,, ..., Vo, X,).
G =6, x A x ... xEyx A, neN.
F~ G EAUR... ®ERA,,
Then the following definition can be given.
DerINITION 1. A sequential design rule ¢ is a sequence |m,},.n in which

7, (") is a probability measure on (&,, &), =,(; h, ), n > 1, are transition
probabilities from (%4,_,, &, ;) into (&£,, €,).

That is, =, (-} is the distribution of ¥, =n,(:; ) 1s the distribution ol V,
depending on h, ,, the realization of H, ;. (The general assumption of
Borelian spaces to be used ensures in further the existence of conditional
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probability distribuiions.) For X,, X,,... a distribution model will oe
assumed in the form that X,,, has a distribution Py U (:; k., v, ), 00,
depending on the realization v,,, of the design V,,, and, perhaps, on the
realization h, of H,. This distribution may be thought as a transitior
probability from (4, x&,,,, & %€, ) into (X4, Wyt )

With a design rule ¢ and a distribution model the whole statistical
experiment is fixed. It may be set:

X=ExT,x ...,
A=ECRMW,QD...,
P = P¢ HcO!,
where the P§ are given by the finite-dimensional distributions P§, on (%,, &,)
with
P, =mn xP"x ... xm,x Py
in the sense of the Ionescu-Tulcea theorem.

It will be noted that the statistical experiment includes the design results,
the realizations of V,, V,, ....

Remark 1. A design rule ¢, for which the n,, n> 1, are transition
probabilities only from (&, x ... x &1, €, ®... ®E,_ ) into (&,, €,), inde-
pendently of x,, ..., x,_ |, is called an iterative design rule. There are papers
in which sequential design is limited by iterative design rules, for instance [3].

Remark 2. A nonrandomized design rufe » is a sequence [i#,) ey, IN
which x, 1s a fixed element ¢, of E,, x,, n > 1, 1s a measurable function from
(9%,-1, &,-1) into (&,, €)). By the assumption of Borelian spaces it is ensured
that nonrandomized design rules may be considered as special sequential
rules with distributions =n, degenerate at points x,(h,-,). (On Borelian
spaces the single points are Borel sets.)

Remark 3. If the P{(-; h,_,,v,), n=>1, for any v,, x,,... are domi-
nated by o-finite measures u'™ on (Z,, U, with densities f{™(-; h,_ 4, U,
n =1, then P§, for any design rule ¢ is dominated by the measure

W=my xuMx . oxm, x ™, (I

and the density (likelihood furiction) is
fO.n(hn) = fﬂ(l)(xl; Ul) l_[ fﬂ(j)(xj; hj— s Uj)- (2)
j=2

This follows from the general Fubini theorem.
If the n,, n > 1, are also dominated with densities p, (*), p.(-; h,— ). then

JEn(hy) = iV (x5 0y) ]—[ fOU)(xj§ hi_ 1, v;) pi{ty) n pi{v;s hj_y). (3)
j=2 j=2
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In the latter case the rule ¢ could be called a dominated design rule. Gray
([5]) deals with this very case.

3. Sample space

For reasons of realization, a statistical experiment must be specified by a
sample size.

To simplify further denotations all introduced o-fields will be assumed
to be cylindric sub-g-fields of A on 2. Then §,, n> 1, with

S,I:GIVQIlV...VE"VQIH (4)

being the smallest o-field containing €,, U, ..., €,, 2,
The sample size may be a fixed or a random number.

(@ Fixed sample size n. In this case the sequentially designed
experiment is the reahzation of the sequence (V;, X, ..., V,, X,) of fixed size
n, and the sample space becomes (', &, %%).

(b)) Random sample size . The sequence { &,}..v is a sequence of
sub-o-fields of 2, which is nondecreasing. Further, let &, = (&, neN).
Then a random sample size may be introduced in relation to the sequence
{ &ntneny by the following definition.

DEerINITION 2. 1. A Markov sample size 1 is a Markov time in relation
to { En)nen- that is a random variable on (', A) with realizations in N and
with {t =n}e §, for every neN.

2. A randomized sample size t is a random variable on (%, ) with
realizations in N with

@ Pi(it=n}| &) =Pi({t =n}| §o) ae, 0O,

5
(b) P§({r =n}| &, has a version independent of @, 0c®. )

The requirement (a) ensures that {r = n} has fixed probability under &,,
which is not changed by further observation, in other words, {t = n} and &,
are conditionally independent under §,. The requirement (b) allows the
statistical realization of 7 without knowledge about the parameter 6.

A randomized sample size T can be realized by a stopping rule {¢@,} N
in the sense of ([1]), where ¢,, ne N, are §,-measurable functions on 2" with
values in [0, 1]. For a given 7 it may be set

0, it Pg(fc=n}| ) =0,
ou(x) = { P§(lr = n}| B
P§((r < n} &)

(By definition 2 the conditional probabilities in (6) may be chosen indepen-
dent of 6, 0e®)

(6)

(x), otherwise,
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On the other hand, every stopping rule {¢,},.v determines a randomized
sample size t.
With the sample size 7 the sample space becomes (4, &, 28, where

§ =0(Zuni{r=n}, neN)

is the o-field of observable events and ¢ is the family of measures P§,
restricted from A to J,.

4. The concept of sufficiency

For reasons of sequential design the usual definition of sufficiency must be
slightly generalized.

DeriniTION 3. A sub-sequence {®,},.n of o-fields on (2, A, #9) is
sufficient for { Fnlnens if

() ®,< &, neN,

(2) for every F,, F,e §,, and for any design rule ¢ for the conditional
probability P§(F,| ®,) there is a version P?(F,| ®,) independent of 0, 6 6O,
neN.

A sequence {T,},n oOf statistics on (2, U, 2°) is sufficient for
AV, Xys oo Vo X)haen» if T, is a §,-measurable function and {0(T;)},cn
satisfies (2), ne N. From this definition the following question arises. If the
sequence {®,}, is sufficient for { &,},.v, 7 is a randomized sample size, will
®., ®, =o({t = n} n®,, neN), then be sufficient for §? The answer will
be positive (see [1], [2], [6]). But the analogous statement is not true, if
“sufficient” is replaced by “mimmal-sufficient”.

In accordance with the nondesigned experiment case the definition of
transitivity may be given in the following way.

DerFiniTiON 4. A sequence {G,},.n of o-fields on (4, A, 7°) is transitive
in relation to {&,}.n, if
(1) 6,< &, neN,
(2) for any design rule g the o-fields ®,,, and &, v €,,, are con-
ditionally independent under 6, v €,,,, that is
Pi(Gpa 1| & v Cuin) = P§(GLiy |G, v €, ) a.c,
G,i1€0,,,,0c@,neN. (7N

A sequence {T,},.n of statistics on (7, A, %) is transitive in relation to
{ Entnens if {®,} v with &, = ¢(T,), ne N, is transitive in relation to { &,}nen-

Remark. Definition 4 substantially differs from the corresponding
POLS-definition (policy sufficiency) of [5]. His POLS-definition, different in
the fixed-sample and random-sample cases, is difficult to understand.
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Now the following theorem may be proved.

THEOREM. Let (X, §&., P°) be the sample space to the design rule ¢ and
the randomized sample size t, given by a stopping rule [@,},.x in relation to
{ Entnen» With T < co. If the sequence {®,). .~ of o-fields on (I, U, P°) is
sufficient for | &,y and transitive in relation to { &, en, then the design rule
¢ and the stopping rule {@,},.x may be replaced by rules g and |@,},.n on the
basis of the sequence {®,},.n, so that P§. and P{: will coincide on ..

(8 = |Tp)nens (Pninen Dased on {B,}, v means that the 7, are transition

probabilities from ®,_; to €, and the @, are (h,-measurable functions.)

Proof. The proof uses some aspects associated with designs in addition
to the usual conditional expectation technique.

1° If ¢ = {@,}.n is any design rule in relation to ! §,}..n, then by the
sufficiency of |®,} .~ for | §,)..x the §,-measurable functions =n,,,(B,,; ),
B,.,€€,,;, n>=1 may be replaced by &, -measurable functions
Rpe1(Beiy; ) with

Tpse1(Bps1; ) = E.ﬂs(nn+ 1(Bny1; Hy) (ﬁn)(hn)' (8)

From the assumption of Borelian spaces it follows that the sequence 7#; = =,
@5, ... defines a design rule ¢. The 7,,, in equation (8) may depend on n,,
m,, ..., but they are independent of 8, 6c ®, and (,-measurable functions
of h,, h,c%,.

Now it will be chosen that for any (®, v €,.,)-measurable function
g(h,, v,.q) on H x4, the equation

_..g (hns Un+ l)ﬁn+ 1 (dvn+ 1 s hn)

Ed
= EPg'n[jg(an U,,+1)7T"+1(dl)"+1; Hn)‘ (ﬁn](hn) (9)
x
holds. It suffices to prove (9) for functions of the form

g(hm Un+l) = XGn(hn)XBn+1(vn+ 1)
with G, e ®,, B,,,€€,.,. By defimition of 7., it is

EFS,,, [j XG,.(Hn) XB,H, 1 (vn+ l)nn+ 1 (dD,H, 1 ; Hn) | 61:] (hn)
x

= Epg X6, (Ha) Tns 1 (Bayys Hp)| ®,](hy)

= X6, (hn) Epg [Mns1(Basy; Ho)| ®,](h,)

= X6, (Ma) Tns 1 (Bps 15 hy)

= [ %6, (A Xn,, | (Ons ) Tns 1 (dVns 15 ),
so that (9) holds. ’
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2 Using equation (9) it will be proved that the measures P§ and P}
coincide on ®,, ne N, that is

P§.(G,) = P{,(G,),  Gue 0, (10)

This will be achieved by induction. For n =1 it is n, = %, and (10) trivially
holds.

If (10) holds for a n, n > 1, then using properties of the conditional
expectation and equation (9)

Phn1(Guay) = ‘ XG,,H(hn+1)P§,n+1(dhn+1)

%n+1
|. ,“ “ XG,,+1(hn+ 1) Pg"+1'(dxn+1; hnv vn+l) X

ntn+1Znr1

XM,y 1 (0,13 hy) P (dh)
= _[ EPg’n[ J. j XG"+1(Hn;vu+1axn+1)

%n+ 1 Epv 1 Tnr

e P:i"+l)(‘1xn+l; Hn: L‘n+1)7‘["+ 1 (dU,,+ 15 Hn)l (S)n] Pg.n(dhn)

- 1 .
= j‘ ‘. f l(in.,. 1 (hn+l)P(9"+ )(dxn+.l » hm 2 l) X
“nén+1Tn+1 v

X ﬁ"+ 1 (dvn+ 15 hn) Pg.n(dhn)‘

In the latter integral the integration relative to P§, may be replaced by
integration relative to PZ,. (The integrand is %,-measurable.) Thus, it follows

Pg.n+l(Gn+1) = Pé‘_n+l (Gn+1)’ Gn+1 € (5n+1'

3° To finish the proof it suffices to show that

p’;(Gr'+l I ?s:n) = Pg(Gn+l I (ﬁn)s Gn+1 E(ﬁn+1‘ (11)

From Definition 4

Pg(Gn+1 i f;n) = ‘ Pg(Gn+1 I an v (gn+l)(hn’ Un+l)ﬁn+l(dvn+l; hn)
Ept1
= [ Pg(Gn+1 l (ﬁn v (E',,+1)(IT,,, U"+1)ﬁn+1((il)"+1; hn)
Epi1 i

= Pg(Gn+l l (ﬁn)v

so that (11) holds.

Thus, the sufficiency and transitivity assumptions of Bahadur’s reduction
theorem ([1]) for the nondesigned experiment case are given on (Z°, U, #9).
If 7 is a randomized sample size in relation to { &,)..v on (2, U, 29), then it
will also be on (Z, N, 29. By thc theorem of Bahadur ([1]) the stopping
rule |¢,} .y may be replaced by a rule {@,},.y With &,-measurable functions
@, neN, so that P{. and P§; 0@, will coincide on 6,. n



188 H. HECKENDORFF

5. Corollaries

First conditions for verification of the sufficiency and transitivity of a
sequence of o-fields or statistics will be given.

In the dominated case a factorization theorem may be applied to verify
the sufficiency.

Lemma 1. If the P§, are dominated by measures yué with densities f, ,(h,)
in accordance with equation (2), then a sequence {T,},.n of statistics will be
sufficient for { &pluen- if and only if there are measurable functions g,,(t,) and
&.-measurable functions 1,(h,) such that

fﬂ.n(hn) = gn.O(tn) ln(hn)a neN. (12)

If ¢ is also dominated, then, in accordance with equation (3), the factorization
becomes

Jén(h) = Gno(ta) li(hy),  neN. (13)

Proof. The proof i1s a repetition of the usual consideration in the
nondesign case.

It may be noted that the functions g, 4 and [, in equation (12) and g, in
equation (13) are independent of p. .

For the transitivity the following lemma is useful.

Lemma 2. A sequence {T,},.x of (R™, B™)-valued statistics is transitive, if
(1) there are (B"® €, ,®MN,, )-measurable functions g, with

Tors = gn(Ty, Vas1, Xpey),  nEN, (14)

(2) the o-fields W, , and &, v &, are conditionally independent under
®,vE,.,, ® =0c(T) that is

PS(An+'I | i}n v (En+1) = PS(ArH 1 I (5& v Gn+ l) a.e., (15)

Ape1€Wtq, 0B, neN.

Condition (2) holds, if

(3) the distribution Pyt (-; h,, v,.,) does not depend on h,, h,c%,.

Proof. (a) Condition (1) of Definition 4 follows from condition (1) of
the Lemma 2.

If A, , and &, v €,,, are conditionally independent under ®, v €, ,,
then also ®, v €,,., v U,,; and &, v €,., are conditionally independent
under ®, v €,,,. But from equation (14)

®n+1 = (5n v (En+l v sl[1|+11

thus, condition (2) of Definition 4 is valid.
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(b) It will be stated the equation
P§(Api1| & v €, 1)(’1..:5.}:'1) = Py (Api 1 By Unsn) (16)

under condition (1) and (3) of the lemma. From (16) and the condition (3) of
the Lemma 2 it follows that P§(A,,;| &, v €,.,), A,:,€WU,.,, trivially

is a (®, v €, )-measurable function, and condition (2) of Definition 4
1s valid.
To prove (16) it may be noted that by definition

JP§(Aps 1| & v €. y)dP§ = P§(Ay N C)
C

for all Ce §&, v €,,,. For
C=B1 XA1X... XA,'XB,H.l, AiEQIi, BI'EE‘,

the equation

I})s(An+1| gn v (gn+1)(hm Vp+ l)dPg = J P(9"+l)(An+1; hm vn+1)dPS
c

C

may be verified using the general Fubini theorem, and for all Ce &, v €, ,
this equation follows from here in the usual way. Both integrands are
(&, v €, )-measurable functions, and the validity of (16) a.e. follows.

The general reduction theorem allows the following practicable
corollaries.

CoroLLARY 1. Let be A(:,) a (randomized) decision rule from

(&, &, #°) into a Borelian decision space (D, D). Then in the situation of the
Theorem A may be replaced by a decision rule 1 from (¥, ®,, #¢) into (D, D)
equivalent to 4 in the sense

[A(x, C)dPg, = [ I(x, C)dPE,,
T T

Ce?D, 0c6.

CoroLLARY 2. Let L(d,0) on Dx® be a decision loss function and

cp(h,, 0) the costs of observation h,. Then the loss function associated with a
statistical procedure (g, T, ) is

m,t.l(x’ B) = IL(‘L B)dl(xa ')+Ct(x)(xs B)a

and under suitable conditions the risk function
R(Q, T, '19 9) = I "fe.r.l(xa B)dPS.t
¥

exists.
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If in the situation of Lemma 2 ¢, (-, #) is a ®,-measurable function of x,
xe &, then for any statistical procedure (g, 7, A) connected with | &,}, v there
is a procedure (g, T, ) based on {®,},.,y With

R(g,t,4;0)=R(3,%.7;0), 0cO.

Remark 1. The theorem and its corollaries cannot be formulated
without using randomized rules. Even in the case where g, 1, 4 are non-

randomized rules the equivalent rules §, 7, 7 may be randomized.

Remark 2. With a concrete risk function R{g, 7, A; f) an optimization
problem arises to choose a statistical procedure. Unfortunately, only in a few
special cases global-optimal strategies exist. For the regression problem some
aspects of construction of statistical procedures including sequential design
rules are discussed by Heckendorff and Martin ([7]), and Gebhardt and
Heckendorff ([4]).

6. Examples

<
1°  Two-armed bandit problem. At each stage n one of two random vari-
ables Y, i=1, 2, with

L with probability p;,

‘ 0 with probability 1—p,, i=1, 2,

may be observed. The p;,, i =1, 2, are unknown probabilities. Here
X, =10, 1}, E,=10, 11,
where e = 0 indicates to observe Y; and e = 1 to observe Y,. X,, neN, is the
random variable observed at time n. The parameter 0 is 0 = (p,, p,) with &
= [0, 1] x[O, 1].
Let the distribution model be the [ollowing:
Pg'+1)(Xn+1 = Xps13 Byy Vpsy) = Pg)n+”(Xn+1 = Xpt+15 Unt 1) neN,
and
PPAX, = x50 = pi*' (1= py) T pn (1= py) T
x,=0,1, v,=0,1.
A design rule ¢ may be given by the probabilities
(W, =vy), vy =0, 1,

7l':r|+l(V;|+]=Un+1;hn)7 Un+1=051, n21
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Then
lin(H —h) Pg,n(Vl=U15X1=xla"'sV=vn’ an-xn)

n

n n
=[] PP(X; = x;; 07, (v)) Hn (V3 01, Xyaoves Ujm s Xj- )
i=1 j=2

- fﬂ?n (hn)

1s the density in relation to the 2n-dimensional counting measure v2".
From here, the density relative to v'xm x ... xm@, is

nng)(ij Xjs J an(h)
i=1

fin— ‘Sn(

=N

n=tin=12p 30 30 2p= 13y
p:"(l1—

1—py) P2)

with

n
l, = (Ilm Lans tJn) = ( Z Xjs
i=1

.
||M=
—

n
vjs Y, X;0j).
j=1

From Lemma 1 follows that T,=(T,,, T, T:,) 1s a sequence of three-
dimensional sufficient statistics for the observation sequence (including the
design variables!), and from Lemma 2 the transitivity of this sequence may
easily be seen.

2° Regression. Let
(g}‘(.m an) = (R] : EI;1): (Em (En) = ([_ 15 l]s !B[*I,I])’ nEN’
and
fa(j,(xj; hj— 1> V) = B(j)(xj; v))

1 | .
=\/ﬁa-exp[—ﬁ(xj—a—ﬂvj)z], jeN.

For any design rule ¢ the likelihood function in accordance with equation (2)
has the form

1 " no’®
) — -
H f _rs J ( ’_27.[ G) exp|: 20-2:')(
1 n n n n . n
XCXP{——Z ;[ vi+2ap ) v+ Y xi-2a } x;—28 ) x,-v,-]},
o i=1 i=1 i=1 j=1 i=1

so that from Lemma 1 and Lemma 2 the sequence T, = Z X, Z
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n n n
Y X7 )Y V2 Y X;V), neN, is a sequence of sufficient and transitive
ji=1 f=1 j=1 ..
statistics, and the theorem allows, without loss of optimality, any statistical
procedure (g, 7, 4) to be based on this sequence.
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