[1] C. J. Ash, Reduced powers and Boolean extensions, J. London Math. Soc. 9 (1975), pp. 429-432.
[2] B. Banaschewski, Maximal rings of quotients of semisimple commutative rings, Arch, d. Math. 16 (1965), pp. 414-420.
[3] B. Banaschewski, Equational compactness in universal algebra, Lecture notes, Prague 1973.
[4] B. Banaschewski, Equationally compact extensions of algebras, Alg. Univ. 4 (1974), pp. 20-35.
[5] B. Banaschewski, and G. Bruns, Categorical characterization of the MacNeille completion, Archiv Math. 18 (1967), pp. 369-377.
[6] B. Banaschewski, and H. Herrlich, Subcategories defined by implications, Houston J. Math. 2 (1976), pp. 149-171.
[7] B. Banaschewski, and E. Nelson, Equational compactness in equational classes of algebras, Alg. Univ. 2 (1972), pp. 152-165.
[8] P. Bankston, Baire category and uniform boundedness for topological ultraproducts, manuscript, McMaster, 1976.
[9] B. Brainerd and J. Lambek, On the ring of quotients of a Boolean ring, Canad. Math. Bull. 2 (1959), pp. 25-29.
[10] N. Bourbaki, General topology. Part 2, Addison-Wesley.
[11] S. Bulman-Fleming and H. Werner, Equational compactness in quasi-primal varieties, Notices Amer. Math. Soc. 22 (1975), pp. A-448.
[12] S. Burris, Boolean powers, Alg, Univ. 5 (1975), pp. 341-360.
[13] S. Burris, and E. Jeffers, On the simplicity and subdirect irreducibility of Boolean ultrapowers. Manuscript, University or Waterloo, 1974.
[14] S. Burris, and H. Werner, Sheaf constructions and their elementary properties, manuscript, 1976.
[15] C. C. Chang and H. J. Keisler, Model theory. North Holland 1974.
[16] S. D. Comer, Elementary properties of structures of sections, Bol. Soc. Math. Mexicana.
[17] A. Daigneault, Boolean powers in algebraic logic, Zeit. Math. Logik und Grund. Math. 17 (1971), pp. 411-420.
[18] B. Davey, Free products of bounded distributive lattices, Alg. Univ, 4 (1974), pp. 106-107.
[19] B. Davey, Weak injectivity and congruence extension in congruence distributive equational classes, manuscript, La Trobe Univ., Bundoora, Victoria, Australia.
[20] A. Day, Injectivity in congruence distributive equational classes, Canad. J. Math. 24 (1974), pp. 209-220.
[21] S. Feferman and R. L. Vaught, The first order properties of products of algebraic systems, Fund Math. 47 (1969), pp. 57-103.
[22] J. Flachsmeyer, Dedekind-MacNeille extensions of Boolean algebras and of vector lattices of continuous functions and their structure spaces. Unpublished, manuscript.
[23] A. L. Foster, Generalized Boolean theory of universal algebra, I and II, Math. Z. 58 (1953), pp. 306-336 and 59 (1953), pp. 191-199.
[24] L. Gillman and M. Jerison, Rings of continuous functions. Van Nostrand, 1960.
[25] I. Glicksberg, Stone-Čech compactifications of products, Trans. Amer. Math. Soc. 90 (1959), pp. 369-382.
[26] H. Gonshor, On $GL_n$(B) where B is a Boolean ring, Canad. Math. Bull. 18 (1975), pp. 209-215.
[27] M. Gould and G. Gratzer, Boolean extensions and normal subdirect powers of finite universal algebras, Math. Z. 99 (1967), pp. 16-25.
[28] G. Gratzer, Universal algebra, Van Nostrand, 1968.
[29] P. R. Halmos, Lectures on Boolean algebras, Van Nostrand, 1963.
[30] D. Higgs, private communication.
[31] T. K. Hu, Stone duality for primal algebra theory, Math. Z. 110 (1969), pp. 180-198,
[32] T. K. Hu, On the topological duality for primal algebra theory, Alg. Univ. 1 (1971), pp. 152-154.
[33] B. Jónnson, review of: A. L. Foster, Functional completeness in the small algebraic structure theorems and identities, Math. Ann. 143 (1961), pp. 29-58. M. R. 23 (1962), A84.
[34] B. Jónnson and P. Olin, Elementary equivalence and relatively free products of lattices, manuscript.
[35] G. Kreisel and J. Krivine, Elements of mathematical logic, North Holland, 1967.
[36] S. MacLane, Categories for the working mathematician, Springer, 1971.
[37] R. Magari, Una dimostrazione del fatto che ogni varieta ammette algebre semplici, Ann. Univ. Ferrara (N. S.) 14 (1969), pp. 1-4.
[38] R. Mansfield, Boolean ultrapowers, Ann. Math. Logic 2 (1971), pp. 297-323.
[39] J. Mycielski, Some compactifications of general algebras, Colloq. Math. 13 (1964), pp. 1-9.
[40] A, Pixley, Functionally complete algebras, generating distributive and permutable classes, Math. Z. 114 (1970), pp. 361-372.
[41] P. Olin, Free products and elementary types of Boolean algebra, manuscript, York University, 1975.
[42] R. W. Quackenbush, Free products of bounded distributive lattices, Alg. Univ. 2 (1972), pp. 393-395.
[43] R. W. Quackenbush, Structure theory for equational classes generated by quasi-primal algebras, Trans. Amer. Math. Soc. 187 (1974), pp. 127-145.
[44] P. Ribenboim, Boolean powers. Fund. Math. 65 (1969), pp. 243-268.
[45] G. Sacks, Saturated model theory, W. A. Benjamin, 1972.