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1. Introduction and results. Let X be a metric space and let # be
the class of Borel subsets of X, i.e., the o-algebra generated by the open
sets. A measure over X is a countably additive function u: # — [0, oo].
A measure u is regular if

u(A) = inf{u(U): A< U and U is open in X} for all A%

(for a discussion of this concept in a context similar to ours see [2]).
For many compaect spaces X there is no measure u over X such
that u(X) =1 and u(A) = u(B) whenever A is isometric to B, e.g.,
if X is infinite countable. But our Theorem 1 shows that this is possible
if we restriet this condition to A and B open in X.
We define an entropy E for an arbitrary metric space X by

E(C,t) = min{cardo": X is a covering of C
with sets of diameters < t},

where C runs over all compact subsets of X and 0 <t <1.

A compact set @ # C < X will be called thick in X if there exists
an open set U = X and a finite constant a such that C < U and E(D,t)
< aB(C,t) for all compact D < U and all te(0,1].

Examples. 1. If C is compact and open in X, then C is thick in X.

2. If G is a topological group with a left (right) invariant metric
and C = @ is a compact set with non-empty interior, then C is thick
in @. This follows since some open set including C can be covered with
finitely many left (right) translates of C.

THEOREM 1. If X 48 & metric space and C is a compact set thick in
X, then there exists a regular measure u over X such that u(C) = 1 and
u(A) = u(B) whenever A and B are isometric open sets.

It follows that this measure x4 has additional properties: If 4 and B
are isometric Borel sets for which there exists an isometry which can be
extended to some open sets including A and B, then u(4) = u(B). In
particular, x is invariant under all isometries of X onto itself.
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In our proof of Theorem 1 we use the axiom of choice for uncount-
able families of sets and this proof is similar to that of Banach of the
existence of Haar measure [1]. We have not fully explored the possibility
that the proof of Loomis [8], where the existence and unicity of measures
i3 proved (under stronger assumptions) without using this axiom, can
'be adapted to our context. However, in our case the unicity may fail. For
example, if X is a union of two circular curves with different radii in the
plane and ¢ = X, then there exist many measures satisfying the condi-
tions of Theorem 1. The special measure u which will be constructed in
our proof of Theorem 1 apparently depends on a parameter & but we
do not know if it really does (P 919).

By Example 2 and the theorem of Kakutani [6], Theorem 1 yields
the existence of Haar measures for locally compact first countable groups.

For more information and references related to Theorem 1 see [3],
(5], [7], (8] and [12].

Let us return to the question of the existence of a measure u over X
with x(C) =1 and such that u(4) = u(B) for every A, BeZ#, where A
is isometric to B. The following condition on a compact set C = X secures
the existence of such a measure:

(I') There exists an a > 0 such that, for every finite sequence of
numbers ?,,...,1%, in (0, 1] for which there exists a covering 4,, ..., 4,,
of C with diam(4,) <¢; for ¢ =1,..., m, we have

< By~

Indeed, under this condition, putting 2(t) = 1/E(C, t), the Hausdorff
h-measure u, over X (see [4], p. 30-31) satisfies a < u,(C) < 1. Hence
u(Y) = pp(Y)/u,(C) is an invariant measure, as required.

Unlike thickness condition (I') does not depend on the position of
C in X. Unfortunately, it is not clear which compact spaces C satisfy
(I') (see [13]). m-dimensional cubes or parallelepipeds satisfy (I') but many
compact sets in R® do not (e.g., infinite countable ones).

P 920. Does a compact parallelepiped in the Hilbert space I, say

o0

P [0, 1/n], satisty (I")?

n=1

The best we can get from Theorem 1 is that, for a large class of
natural metrisations of the Hilbert cube [0, 1]°, the standard product
measure is equal on isometric open sets.

P 921. Does a set C as in Example 2 satisfy (I')?

An affirmative answer to the last question would imply that if o
1s a left (right) invariant metric in a locally compact group G, then iso-
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metric Borel subsets of G have equal Haar measure. But we can prove
only the following much weaker Corollary to Theorem 1:

COROLLARY. If p 48 a metric in R" consistent with the usual topology
and invariant under translations, A, B < R" are open sets and A is iso-
metric to B with respect to o, then A and B have the same Lebesgue measure.

Since the unit cube I™ is thick in (R", o) (by Example 2), this Corollary
follows from Theorem 1 and from the following known proposition:

PRrOPOSITION. If u is a measure over R" such that u(I") =1 and
u(V+1t) = u(V) for every open set V and every vector teR", then u(A)
18 the Lebesque measure of A for every Ae2.

P 922, Does I" in (R", o) satisfy (I')? (If so, then the conclusion
of the Corollary could be extended to all 4, Be#.) For a result related
to the Corollary see [15].

Our second theorem concerns paradoxical decompositions. A metric
space X is said to have a paradoxical decomposition with parts of class .#
if there exist three finite partitions of X into disjoint sets of class .,

X =4,v...v4,, X =B,u...UB

8
and

X = AjvU... UAJUBU ... UB,

8

where A; is isometric to A; and B; is isometric to B; for i =1,...,r
and j =1,...,s.

It is known (see, e.g., [11]) that the real line R and the plane R? have
no paradoxical decompositions, while R" for » > 3 has such decompo-
sitions. But we will prove here the following

THEOREM 2. The space R" has no paradoxical decompositions with
Lebesgue measurable parts.

By a theorem of Tarski (see [16] or [11]) and the elementary fact
that every isometry of a subset of R" onto another can be extended to
a8 isometry of R" onto itself, Theorem 2 is equivalent to the following

THEOREM 3. There exists a finitely additive measure v on the field of
Lebesgue measurable subsets of R" which is invariant under isometries and
satisfies v(R") = 1. ‘

It follows that »(A) = 0 for every bounded set A.

We do not know any proof of Theorem 3 in which there would not
be used the axiom of choice for uncountable families of sets. We shall
prove directly the seemingly stronger Theorem 3. But one can produce
a proof of Theorem 2 in which one does not use the axiom of choice by
analyzing our proof along the lines indicated by Morse [10] (this is based
on the observation that the Hahn-Banach theorem for separable Banach
spaces does not require the axiom of choice). A more direct proof of this
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sort was communicated to us by Roy O. Davies and is included below
with his permission.

For more information and references related to Theorems 2 and 3
and fascinating open problems of Marczewski and Ruziewicz see [11].

A similar open problem of S. M. Ulam (Measure and set theory, a film
in the Mathematical Association of America Individual Lecture Series,
or The Scottish Book, Problem 2) is the following:

Is there a finitely additive measure u on the class of Borel sets in
a compact metric space X with u(X) = 1, which is equal on isometric sets?
An equivalent question (by the theorem of Tarski l.c.) is whether no
such X has paradoxical decompositions with Borel parts. Roy O. Davies and
0. Ostaszewski have proved that for countable X the answer is positive.

2. Preliminaries on generalized limits. Let [0, oo] be endowed with
its natural compact topology. Let » be the set of non-negative integers
and let # be an ultrafilter of subsets of w. For every sequence z,¢[0, oc],

n < w, we define lim z, to be the unique z¢[0, oo] such that every neigh-
n—-F
bourhood V of x has the property {n: x,¢ V}e#. This limit (for other

related limits see [9]) has the property that if m < o and f: [0, co]™
— [0, o] is a continuous function and z®e[0, co] for all n» < w and
t=1,...,m, then

lim f(a), ..., #™) = f(lim 2, ..., lim ™).
n—>F n—>F n—>F

In particular,

lim (z, +¥, =lima,+1limy,,
n—>F n—->F n—-F

where + is extended in the natural way over [0, co], i.6., £+ o0 = oo.
Finally, if # is a non-principal ultrafilter, then this limit is a con-
servative extension of the ordinary limit. '

3. Proof of Theorem 1. Let € be the class of compact subsets of X.
Thus Ce%.

LEMMA A. There exists a function A: € — [0, oo] satisfying, for all
A, Be¥, the following conditions:

(0) A(0) = 1;

(i) there exists an open set U =< X and a finite constant a such that
CcU and A(A)<a for all A< U;

(i) 4(4UB) < A(4)+ A(B);

(iii) A(AUB) = A(A)+ A(B) if AnB =0;

(iv) 4(A) = A(B) if A is isometric to B.
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Proof. We put, for all 4<%,

where & is a non-principal ultrafilter of sets in. w and FE is the entropy
defined in Section 1. All properties (0)-(iv) are visible from this definition
and the assumption that C is thick.

For every open set U < X, we put
uo(U) = sup{i(4): A%, A < U},
and, for every set Y < X, we put
p*(Y) = inf{uo(U): Y < U and U is open in X}.

LEMMA B. u* satisfies the following conditions:

(0) pu*(9) =0;

(i) 1< p*(0) < oo;

(i) p*(Y)<p*(2) if Y = Z;

(iif) p* (U Y,) < X p*(X,);

(iv) p*(Y VZ) = p*(Y)+p*(2) if
(*) inf{dist(y, 2): yeY, 2eZ} > 0;

(v) u*(U) = u*(V) if U and V are open and U 1is isomelric to V.

Proof. By Lemma A (o) and (iii), we have A() = 0 and (o) follows.
(i) is obvious from Lemma A (o) and (i).

(i) is obvious.

(iii) First, we show that

(%%) o UT) < D wo(Us)

n<o

if U, are open. Let
AcJU, and Ae%.

n<o

Then there exists an integer m such that

A< UU,
n<m
and there are sets A,, ..., 4,,_, in ¢ such that
A=1|JA, and A4,< U, for n <m.

n<m

Thus (*x) follows from Lemma A (ii).
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Now, to prove (iii) we choose open sets U, 2 Y, such that

po(Uy) < p*(X,) + e /2,
Then, by (*=*),

p(UX) < uo(UT) < D oT) < D)t (T,) +e,
n<o n<o n<o n<o
and (iii) follows.

(iv) By (%) it follows that there are open sets U2 Y and V2 Z
with UNnV =@. For every A < UUV and A%, we have ANUe¥% and
ANV e¥. Hence Lemma A (iii) yields u*(YUZ) > u*(Y)+ u*(Z) and,
by B (iii), we get (iv).

(v) 18 obvious by Lemma A (iv), which concludes the proof.

Proof of Theorem 1. By Lemma B (o), (ii), (iii) and (iv), u* is
a Carathéodory outer measure on X. Hence (see [14], Proposition 32,
P. 285) all Borel sets are measurable with respect to x4*. By Lemma B (i),
we can write

u(4d) = u*(A)/u*(C) for all Ae2A.

Hence u(C) =1 and p is a measure over X (by Theorem 1, p. 251,
in [14]). By the definition of x*, the measure u is regular and, by Lem-
ma B (v), the last requirement of Theorem 1 is satisfied.

4. Proof of Theorem 3. Let % be the class of Lebesgue measurable
sets in R" and, for every A¢%, let |A| be the n-dimensional Lebesgue
measure of A. For every r < w, we let 8, be a ball of radius r around
the origin in R". For every 4%, we put

»(4) = lim A5

a1 !
r—»% |Sr|

where & is a non-principal ultrafilter of subsets of w. It is obvious that »
is a finitely additive measure over .# which is invariant under such iso-
metries of R" which do not move the origin. It remains to prove that vy
is invariant under translations. But this obviously follows from the fact
that, for every vector v,

lim I8, A(S, 4+ )| _0

rr00 IS, | !

where A is the symmetric difference of sets and S,+v = {¢+v: zeS,}.

5. A direct proof of Theorem 2 without axiom of choice (Roy
O. Davies). Suppose there is a paradoxical decomposition of R™ with
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Lebesgue measurable parts

Rﬂ =A1U cee UA’.’ Rﬂ = BIU vee UB&’

~

R" = Au ... VAJUBU ... UB,,

and let the corresponding isometries be

d,: A, >A, and V¥,: B, B,.

Choose R so large that
ISR AD,8g| < |8gl2r (¢ =1,...,7),
ISR A, 8] < |8gl/28 (¢ =1,...,58).

We get an immediate contradiction by looking at the three decom-

positions of Sg.
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me all the concepts used in this paper, to S. M. Ulam for many conver-
sations on the problem of invariant measures (especially in I*) and to
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