EN
CONTENTS
Preface.................................................................................................5
Chapter 0. Preliminaries and notation..................................................6
PART I. Free topological vector spaces - Introduction..........................9
Chapter 1. Universal arrows...............................................................10
Chapter 2. Free locally convex topological vector spaces..................12
Chapter 3. Free normed spaces........................................................23
Chapter 4. Uniform pairs....................................................................32
PART II. Properties of the free functors - Introduction........................40
Chapter 5. Monads, comonads and extension...................................40
Chapter 6. Invariance and tensors.....................................................54
PART III. Free complete topological vector spaces - Introduction.......63
Chapter 7. Measure spaces and completion......................................64
Chapter 8. Properties of the completion.............................................77
Chapter 9. Variations on a theme.......................................................86
Appendix............................................................................................90
References........................................................................................91
List of notation...................................................................................94