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Dedicated to the memory of
Abraham Robinson

§ 1. Introduction*

This paper concerns questions on the interface between topology
and model theory. We deal here with a notion of equivalence of top-
ological spaces (elementary equivalence) which comes from model theory
and which is properly weaker than the notion of homeomorphism. To
say that X and Y are elementarily equivalent spaces is to say that X and
Y have the same “first order properties”. In order to make this idea
precise it is necessary to consider what is meant by a “first order property”
of topological spaces. This requires explanation because a topological
space is not an algebraic structure of the type dealt with in model theory.
In fact our approach is to replace each topological space by closely related
algebraic structures to which the point of view of model theory does
apply.

In dealing with groups, for example, the idea of a first-order property
is well understood. Such a property is one which can be expressed in
a formal language for groups which allows quantifiers ranging over el-
ements of a group, but not over subsets or other higher type objects, and
in which meaningful expressions are of finite length. For example, to
say that a group is Abelian is first-order (VaVb: ab = ba) but, at least
superficially, to say that a group is simple is not first-order, since it seems
to require quantification over subsets (*“there does not exist a proper
normal subgroup.”) It is first-order to say that every element of a group
has order < 2 (Va: a® = 1) but it is not first-order to say that a group
is a torsion group, since this requires a sentence of infinite length, as
one might suspect.

It is true that properties which superficially seem not to be first-order
often turn out to be so. Indeed, this fact is one reason why the model-
theoretic point of view is useful and powerful in many mathematical
contexts. Consider, for example, the ring of integers and the formal
language of ring theory. The property that an integer is positive appears

* This research was partially supported by grants from the National Science
Foundation.



8 First order topology

not to be first-order until one realizes that an integer is positive if and only
if it is a sum of four squares; the latter property is evidently first-order.

Similar considerations apply to other algebraic structures such as
lattices, but as mentioned above, topological spaces are nof suited to
such a treatment. We get around this by associating with each topological
space X the lattice #(X) of its closed subsets. For us, then, a property
of topological spaces is first-order if it corresponds to a [irst-order property
of lattices via this association. For example, connectedness is a first-order
property of topological spaces since X is connected if and only if #(X)
has no nontrivial complemented elements, and this latter property is
a first-order property of lattices. Most separation properties are first-
order as is the property of having inductive dimension %, just to mention
a few. In fact, so many topological properties turn out to be first-order
that we have only a few examples of non-homeomorphic spaces with exactly
the same first-order properties. On the other hand, there are obviously
only countably many first-order properties of topological spaces.

This view of first-order properties leads us to define two topological
spaces X and Y to be elementarily equivalent (e.e.) if #(X) is elementarily
equivalent to #(Y) as lattices, that is, if #(X) and £(Y) have the same
first-order properties. It should be observed that two T, spaces X and Y
are homeomorphic iff #(X) and #(Y) are isomorphic lattices. For this
and other reasons we restrict ourselves to I, spaces in this paper. As
mentioned above, many important properties of topological spaces are
preserved under elementary equivalence. Although compactness is not
preserved nnder e.e., there are infinite spaces (such as the closed unit
interval) which are e.e. only to compact spaces. Furthermore, if only
metric spaces are considered, then a “completely arcwise connected”
compact space is e.e. only to compact spaces (see § 4).

This is an example of the fact that it is often profitable to resftrict
attention to a topologically interesting class & of spaces (e.g. metric spaces,
completely regular spaces, compact spaces, ete.) and to study the relation
of elementary equivalence between pairs of spaces from #. We are able
to give a clear technical meaning for the notion of “characterizing” a space
X within a class €: we say X & is categorical within % if for each Ye %,
Y e.e. X implies that ¥ is homeomorphic to X. We show, for example,
that the closed unit interval and the closed unit disc are categorical
within the class of all metric spaces. The proofs of these facts depend on
the classical characterizations of the interval and the disc within the class
of compact metric spaces together with a close analysis of spaces which
are e.e. to the interval.

The major difficulty of our subject is that the class of lattices iso-
morphic to £ (X) for some T, space X is not cloted under elementary
equivalence (see § 8). Thus certain important theorems of first-order logic



§ 1. Introduction 7

fail badly when lattices only of the form % (X) are considered. For example,
the Skolem-Ldwenheim theorem fails to be true in this context. In § 9
we give & space X such that every space which is e.e. to X has cardinality
at least X,. We also show that the extent to which the Skolem-Ldwenheim
theorem holds for topological spaces is governed in part by large cardinal
axioms of set theory. Also we show that the compactness theorem of
first-order logic fails for topological spaces (see § 8).

In another direction we consider certain decision problems which
are connected with first-order properties of topological spaces. Grzegorezyk
[8] showed that the first-order theory of .#(E?) is undecidable, where
E*® is the Euclidean plane. That is, there is no effective procedure for
deciding which sentences of the first-order language for lattices are true
in £(E*). We strengthen this by showing that second-order number
theory is effectively interpretable in the first-order theory of % (E2).
Also let Top denote the set of sentences, of the first-order language for
lattices, which are true in #(X) for every T, topological space X. We
show that Top is at least as complicated as second-order number theory.
In particular, Top is not decidable (see § 7).

One may associate other algebraic structures with topological spaces
and consider problems analogous to those discussed above. One possi-
bility, which we do pursue here, is to associate with X the ring C(X)
of continuous real-valued functions on X or the lattice Z(X) of zero-sets
of functions in C(X). Another possibility is the closure algebra of X;
this was treated in [1], [16] and [17] but will not be considered here.
In § 4 we examine C(X) and Z(X) in some detail, especially for totally
disconnected, compact Haunsdorff spaces. In this setting new phenom-
ena arise and we are far from a complete understanding of the relation-
ships among C(X), Z(X) and #(X). When X is a metric space, the first-
order language associated with C(X) is even more expressive for dis-
cussing properties of topological spaces than the language of #(X). The
best comparison between C(X) and #(X) known to us for general spaces
is Theorem 6.1, which is expressed in terms of certain infinitary languages.
This result (and Theorem 6.2) indicate that, in a certain sense, £ (X)
is generally more expressive than C(X). Infinitary languages are also
used as an important tool in the analysis of C(X) given in § 5.

For O(X) and compact spaces X we do have a downward Skolem—
Lowenheim theorem (see § 9). This raises the possibility of constructing
relatively small compact spaces with interesting properties (expressible
as first-order properties of C(X)).

We conclude this paper with a short list of open problems. The inter-
ested reader will have no difficulty in adding to this list. It is our hope that
topologists and logicians alike will share our fascination with revisiting
topology from this new viewpoint.
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We are grateful to many people for helpful suggestions and information.
These incinde (but are not limited to) J. R. Isbell, A. Adler, Brian Scoft,
A. MacIntyre, and A. Charlesworth. The second and third authors are
grateful to the University of California at Berkeley for its hospitality
during the writing of an earlier version of this paper.

§ 2. Basic development

We use the standard terminology of logic (cf. e.g. [24]). In particular
a first order language is determined by specifying its non-logical symbols,
which are n-ary relation and function symbols (including constants).
The formulas of the langnage are built up in the standard way from the
nonlogical symbols, variables, the equals symbol =, parentheses, prop-
ositional connectives such as A, v, 7], -, and the quantifiers (Hz), (Vz).
A sentence is & formula without free variables. A structure for the language
is a nonempty set (universe) together with a relation or operation on
the universe corresponding to each nonlogical symbol of the language.
(4;R,, R,) would be the notation-for a structure «/ with universe 4
and relations R,, R,. If of is a structure, a,,..., a, are elements of its
universe, and ¢(z,...,2,) i8 a formula having at most the variables
z,,...,3, free, then & F ¢p(a,,...,a,) means that ¢(z,...,x,) i8 true
in & when ; is interpreted as a,. In particular if ¢ is a sentence (has no
free variables), &/ F ¢ means that ¢ is true (or valid) in «. If «of is a strue-
ture with universe 4 and R is an n-ary relation on A4, then R is said to
be definable in o if there is a formula ¢(z,, ..., z,) such that R(a,, ..., a,)
iff o kop(ay,...,a,) whenever a,,...,a,¢ 4. If X is a set of sentences,
a structure & is said to be a model of L'if & F pfor each pe 2. o7 i8 a model
of a sentence ¢ if o F ¢. The theory of a structure .« is the set of sentences
¢ such that &« F p. Two structures =/, # for the same language are said
to be elementarily equivalent (denoted o = &) if they have the same
theory. -

We shall in particular be concerned with a"&nguage L, for lattice:
theory and a language Lg for ring theory. Lo has binary function symbols;
v, N, and Ly has binary function symbols +,

In §1 it was proposed that #(X), the lattice of closed subset of the:
topological space X, could be used to replace X in logical investigations.
As indicated there we henceforth restrict our attention to T';-spaces,
which will be called simply spaces. The letters X, ¥, Z will always stand
for spaces.

For any space X, ¥(X) is a structure for Ly in a natural way. We
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say X and Y are elementarily equivalent (e.e.) if ¥ (X) = ¥(¥). If 2 is
a property of spaces, & is first-order if there is a sentence ¢ such that for
every space X, X has property 2 iff ¥ (X) k. 2 is a first-order prop-
erty of, e.g., metrizable spaces if there is a ¢ whose metrizable models
coincide with the metrizable spaces having 2.

We desire to show that some standard topological notions are first-
order. Since it would be cumbersome to write out the corresponding
sentences, we introduce some abbreviations. If ¢ is a term, let “; = 0”
abbreviate (Va)[tnz =1t] and “t = 1” abbreviate (Vz)[tuz = t]. (Here
@ is any variable not occuring in ¢. From now on, such restrictions on
bound variables will be tacit.) In #(X), “t = 0” and “t = 1" assert
that ¢ represents @, X respectively. Now the property of commectivity
is expressed by the formula

T(Hu) () [(TTwe = 0)A (v = 0)Auuy = 1Auny = 0].

Many topological properties of X refer to points of X, and it is im-
portant to be able to refer to points in our language. Since X is T',, we
can refer to points as atoms of the lattice #(X). Let At(z) be the formula

2 #0A(Vy)[ycs o>y =0vy = 2],

where ¥ < » is rendered in our language by ynz = y. Using At, it is easy
to express the Hausdorff property by a first-order statement. However,
some circumlocution is necessary because the Hausdorff property is
stated in terms of open sets. We now set up a generalized language which
has the same expressive power as our original langunage but which in-
corporates many topological notions directly into its symbols. The gen-
eralized lerms are all variables, constants 0 and 1, and all expressions
of the form (¢, uty), (4,nty), 1, t,—1,, &, 8%, t, and t;, where t;, , are
préviously constructed generalized terms. (Here ¢{ is interpreted as the
complement of ¢, ¢, —t, is the set-theoretical difference of #, and i,,
is the closure of ¢;, and 9, ° ' refer to boundary, interior, and derived
set, respectively. The variables still range only over closed sets, but gen-
eralized terms are interpreted as (finite) Boolean combinations of closed
gets in the obvious way.) Generalized atomic formulas are expressions of
the form ¢, < ¢,, ¢, = ¢, where ?,, ¢, are generalized terms. Generalized
formulas are built up from generalized atomic formulas in the same way
that formulas were built up from atomic formulas. Generalized atomic
formulas are translated into formulas of our original language using the
following equivalences:

tl - ta Htl E tzAtz c tl’
ty S ly & (Vo) (Ab(2) A% S L~ AL(B) AT S 1),
]
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At(2)AD < 1, Uty > (Ab(2)AZ S 1)) v (Ab(@) AL S 1),
At(z)AD S 1N, & (Ab(@) Az S 1)) A (At (2)AD S 1),
At(z)Az S 1] « At(2)A Tz = 14,
At(p)az = iy > At (2)A (Vy) [ty s y—2 = y],
At(@)Ax € £, <> At(2) A2 S (T—2)

One simply uses the first two equivalences to replace generalized
atomic formulas by those of the form # < ¢ in the presence of the conjunct
At (z). The fact that such formulas can be expressed in the original lan-
guage is then proved by induction on the length of ¢ using the remaining
equivalences and the observation that dt, t* can be replaced by ¢~ N,
1¢=¢ respectively. (Expressions of the form At(z)az < 0(1) are of course
trivial.)

Now the property of being Hausdorff is expressed by the (generalized)
formula

(Vo) (Vy) (At (z)A At (y) Ay =0
- (Hu) (o) [z < #°Ay < v*Au°n2° = 0]).

The properties of regularity (T,) and normality (T,) are shown to be
first-order by slight variations of the above formula.

To get further examples it is helpful to be able to make statements
about the relative topologies of subspaces represented by generalized
terms. Thus if ¢ is a formula (having no variables in common with a gen-
eralized term t) we define ¢’ to be the generalized formula obtained from ¢
by replacing all’ atomic formulas ¢, =, in ¢ by tnt, = tNt,. Then it
can be seen that if ¢ is a sentence and if elements of #(X) are assigned
to the variables of ¢ so that ¢ represents a set ¥ < X, then ¢’ holds in
2 (X) iff ¢ holds in £(Y).

It is not clear that the property of complete normality [10, p. 42] is
first order sinee its definition refers to arbitrary subsets of X. However,
Arthur Charlesworth has pointed out to us that a space is completely
normal iff all its open subspaces are normal. Thus complete normality
is defined by the formula (Vz)g%, where @, is a sentence expressing nor-
mality.

VWith the aid of the generalized language and relativized formulas
¢' it is routine to show (by induction on n) that for each n there is a formula
@, which defines the property of being of inductive dimension #. Thus
if n # m, Euclidean n-space is not e.e. to Euclidean m-space. In § 4 we
shall show in fact that any metric space e.e. to the unit interval or unit
disc is homeomorphic to the unit interval, unit dise respectively. However,
we shall turn now to illustrating some of the limitations of our language.
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§ 3. Some elementarily equivalent spaces

Since there are at most 2% spaces up to elementary equivalence, it
follows from cardinality arguments that e.e. spaces need not be homeo-
morphic. In this section we find some specific examples of this pheno-
meno.

It is easy to see (from the formula (Vz)(Hy)[y = 2°]) that the prop-
erty of discreteness is first order and thus that an infinite discrete space
can be e.e. only to infinite discrete spaces. Conversely, the following
result of Skolem shows that there are no elementary differences among
the infinite discrete spaces.

TumorEM 3.1 (Skolem, cf. [6] or [26]). For any sentence @ there is
a number n (which can be effectively found) such that if X and Y are any
two finite or infinite discrete spaces of cardinality > n, then £ (X) ko
iff Z(Y) Eq.

The theorem is proved by elimination of quantifiers.

COROLLARY 3.2 (Skolem). Any two infinite discrele spaces are e.e.,
and the first-order theory of any infinite discrete space is decidable.

If X is a locally compact space, let X* be the one-point compacti-
fication of X. '

THEOREM 3.3. If X and Y are infinite discrete spaces, then X* and Y*
are e.e. and their common theory is decidable.

Proof. The idea of the proof is that a statement about £ (X*) (X dis~
crete) can be reduced to a statement ahout £ (X), if £(X) is provided
with an additional predicate which picks out the finite (= compact)
subsets of X.

For any nonempty set I, let o/ be the strueture {P(I); v, N, ¢, Fin)
whose nniverse P(I) is the power set of I, ¢ denotes the unary operation
of complementation (relative to I) and Fin is the unary predicate which
holds of the finite subsets of I. As pointed out by Feferman and Vaught
[5, pp. 85 and 86], it can be shown by elimination of quantifiers that if I
and I’ are infinite sets then «/; and ; are elementarily equivalent
(and their common theory is decidable). Given a sentence ¢ of lattice
theory we shall construct a sentence ¢* in the language of the structures
&y such that if I = X* for any discrete space X, then £ (I) F p<; £ p*.
Given ¢, let @* be the sentence (Hx)[At(z) and ¢(Relx)] where p(Relz)
is obtained from ¢ by relativizing its quantifiers to range over the subsets
of I which are closed when I is the one-point compactification of a discrete
space with & = {cc}. Since these sets are the finite subsets of I and those
which contain 2, (Hy)[...]in ¢ is to be replaced by (Hy)[(y Nz - 0v Fin (y))a
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A...] in constructing p(Rele). In verifying that Z(I) ko< o; F ¥,
one uses the fact that any element of I could be chosen to play the role
of co in making I a one-point compactification of a discrete space and the
topology, up to homeomorphism, is independent of the choice.

The last result shows in particular that a countable compact space
can be elementarily equivalent to an uncountable compact space. The
next two proposition will be useful in proving that a countable compact
gpace can be elementarily equivalent to a countable non-compact space.

If o, # are structures for the same language, their direct product
o x & is defined as in [5].

The following is a very special case (which can be proved by a routine
induction) of the main result of [5].

PROPOSITION 3.4. For any senience ¢ there are semiences ¢,, ..., q,,
V1) -1 Py (In the same language) such that for any structures </, # for the
language of ¢, A X B F @ iff for some i, 1<i<n, o Fo, and B F y;.

DEFINITION. If X, Y are disjoint topological spaces, XU Y (the sep-
arated union of X and Y) is defined to be X UY with the topology whose
closed sets are those of the form ¥, uF', where ¥, is closed in X and F,
is closed in Y.

ProPOSITION 3.5. If X, Y are disjoint spaces, ¥ (XUY) ~L(X)x
x Z(Y) (where ~ denotes isomorphism).

Proof. If F,¢ #(X), F,e £(X) this isomorphism simply corresponds
F,UF, in £(X0Y) with (F,, Fy) in 2(X)x2(Y).

The last two results immediately imply the following, which will
be useful for future reference.

PropoSITION 3.6. If X,, X, are e.e. spaces and Y is disjoint from
each of them, then X,UY, X,0Y are c.e.

TeEEOREM 3.7. Let X be the negative iniegers with the discrete topology
and Y the positive integers with the discrete topology. Then Y* and XU Y™
are c.e.

Proof. Let ¢ be a sentence of lattice theory and let ¢,,..., @,,
¥yy ...y ¥, De as in Proposition 3.4, Now L (XUY*) kg iff &£(X)x
XxZ(Y*) kg iff for some i, 1<i<n, LX) ko, and L(¥*) Ey,.
Let F be a finite discrete space (disjoint from ¥*) sufficiently large in
cardinality that Z(F) ke, iff L (X) kFg; for 1<t < n. (F exists by
Theorem 3.1.) Thus Z(XUY*) E ¢ iff for some i, #(F) kp, and £(¥)
Fy;. Applying Proposition 3.4 again, Z(XUY") ke iff #(FUY")
Fe. But #OY* is homeomorphic to ¥*, so Z(XOUTY*) kg iff £(¥*)
F ¢. Since p was arbitrary, XuY" is e.e. to ™.

CoROLLARY 3.8. There exist countable e.e. spaces Xy and Y, such that X,
18 compact and Y, 1is moi.
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Corollary 3.8 follows at once from Theorem 3.7 by choosing X, = ¥*,
Y, =X0Y"

In view of Corollary 3.2 and Theorem 3.3 one might conjecture
that if Xo, ¥, are arbitrary e.e. spaces, then X;, ¥, are also e.e. However,
the spaces used to establish Corollary 3.8 provide a counterexample to
this conjecture. However, this counterexample has the defect that com-
pactification is not a very natural operation to apply to spaces which are
already compact. Consider instead the spaces X,UI, ¥,0I where X,, ¥,
are the spaces used to establish Corollary 3.8 and I is the open interval
(—%, $) in the relative topology of the real line. Then X,UI, ¥,UI are
e.e. by Proposition 3.6 and Corollary 3.8 and obviously neither is compact.
Also (X,0I)* is homeomorphic to the disjoint union of the unit circle
and the one-point compactification of the integers > 2, while (¥ ,UI)*
is homeomorphic to the circle together with a discrete sequence which
converges to one of its points and another discrete sequence which con-
verges to a point at oo. Thus, (¥,0UI)* contains a point which is both
a limit of isolated points and of nonisolated points, whereas (X,0UI)*
does not. It is easy to express this difference in the generalized language
of §2, so we have established the following corollary.

COROLLARY 3.9. There exist e.e. noncompact spaces X,, ¥, such that
T, Yi are not e.e.

The following corollary is an extension of Corollary 3.2.

CoROLLARY 3.10. If X, Y are infinite discrete spaces and Z is any space,
then X xZ, Y XZ are e.e.

Proof. If X is a discrete space of cardinality x, then X xZ is simply
the separated union of x copies of Z (in the obvious sense.) Hence, by the
same argument as used to prove Proposition 3.5, (X xZ) is the product
of x copies of ¥(Z). Thus, by [5, Theorem 6], the theory of the power
% (X x2) is independent of », for x infinite, and the corollary is proved.

A further example of spaces which are e.e. but not homeomorphic
will be given at the end of § 7.

§ 4. Elementary characterizations of some
familiar spaces

It is rather easy to show from results in the literature that the unit
interval, circle, and disc can be characterized up to homeomorphism
among compact metric spaces by first order statements about £ (X).
In this section we cite these results from the literature and also point
out how the restriction to compact spaces can be removed. The results
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of this section will be useful in the remaining sections. We call a space X
a model of a sentence p if £ (X) Egp.

In Hocking and Young [10, Th. 2.27] it is shown that if a compact
metric space X has property () of being connected and having exactly
two non-cut points, then X is homeomorphic to the closed unit interval I.
Sinee (#) is clearly a first-order property, the property of being homeo-
morphic to I is a first-order property of compact metric spaces.

TaEOREM 4.1. The property of being homeomorphic to I is a first order
property of metric spaces, i.e. there is a sentence g whose melrizable models
are exactly the spaces homeomorphic io I.

Proof. If we can give a sentence ¢ such that I is a model of p and all
models of ¢ are compact, the theorem will follow from the remarks before
it by taking ¢, to be pAy, where p is a sentence whose models are the
spaces having property ().

The construction of v is based on the fact that the usual ordering
of I is topologically definable, once the left-hand endpoint is chosen.
More precisely, for any space X and points x, y, ue X, let <, ¥y mean
that every closed conunected set which contains « and ¥ also contains .
(Thus if X = I and « is either endpoint, <, is the standard ordering of I
or the dual ordering.) Let y be a first order sentence whose models are
exactly the connected spaces X such that for some #e X the relation <«<*
has the following properties:

1. <, is a linear ordering of X with endpoints.
2. The order topology of <, is the same as the given topology of X.

To complete the proof it obviously suffices to show that if X is a con-
nected ordered topological space with endpoints, then X is 'compact.
This is a matter of elementary analysis. First, such an X has the lLu.b.
property because if § = X failed to have a l.u.b. then the set of upper
bounds to 8 would be both open and closed. Therefore X is compact as
can be seen by considering, for a given open covering, Lu.b. {z: [, #] is
contained in a finite subcover}, where « is the left-hand endpoint of X.

Let @; be the sentence constructed above to characterize I. We
shall refer to models of @; as clementary arcs. By the above argument,
elementary arcs are compact.

One can also show that the property of being homeomorphic to the
circle (i.e. being a rimple closed curve) is a first-order property of metric
spaces. One simply combines the first-order characterization of simple
closed curves among compact metric spaces [10, Th. 2.28] with the obser-
vation that any simple closed curve is the union of two elementary arcs.

TEEOREM 4.2. The property of being homeomorphic to the closed unit
disc D in the plane s a first-order property of metiic spaces.
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Proof. In [29, p. 92] there is a characterization of D due to Zippin
which easily yields a first-order characterization of D among compact
metric spaces. We first review this characterization and then show how
to eliminate the restriction to compact spaces. An arc § is said to span
a set J if §NJ consists exactly of the endpoints of §. Then Zippin’s result
implies that a compact metric space C is a disc with boundary J iff

(i) C is eonnected and locally conmnected,
(ii) J is a simple closed curve contained in C,
(iif) O confains an arc that spans J,
'(iv) every arc of C that spans J separates O, and
(v) no closed proper subset of an arc spanning J separates C.

Clauses (i)-(v) are clearly first-order for metric spaces in view of the
fact that the notions of arc and simple closed curve have already been
shown to be first-order among metric spaces. Thus there is a sentence ¢
whose compact metric models are exactly the spaces homeomorphic to D.

To complete the proof it suffices to show there is a senfence p such
that .D is a model of p and all metric models of D are compact. (The charac-
terization of D among metric spaces is then gAyp.) Let ¢ be a sentence
which asserts of Z(X) that X is Hausdorff and every closed discrete
subset of X is contained in an elementary arec which is contained in X.
(There is no difficulty in quantifying over elementary arcs since gsuch sets
are closed in X.) Let us call a space X completely arcwise conneoted if every
finite subset of X is contained in an arc which is contained in X. Then the
metric models of v are exactly the compact, metric, completely arcwise-
connected spaces, and in particular D is a model of . (If X is a model
of y, every closed discrete subset of X is contained in a compact subset
of X and is therefore finite.)

From the existence of » we have the following corollary.

COROLLARY 4.3. If X is a compact, completely arcwise connected space,
then every metric space to which X s e.e. ts compact.

COROLLARY 4.4. The property of being simply connected is a first-order
property of subspaces of the plane.

Proof. A subspace of the plane is simply connected iff every simple
closed curve in it bounds a disc in it. This i first-order by our previous
results. This characterization does not work in higher dimensions because
of the existence of knots. We do not know whether simple connectivity
is first-order nor whether the restriction to metric spaces can be eliminated
from 4.1-4.3.

Finally we remark that being homeomorphic to the 2-sphere 8 is
a first order property of metric spaces. This may be deduced from Zippin’s
characterization of §* [27, Theorem 4.2] using the same argument that was
used for Theorem 4.2.
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§ 5. First order properties of C(X)

Recall that C(X) is the ring of continuous, real-valued functions
on X. It is natural in studying C(X) to restrict attention to completely
regular spaces, since the topology on such a space is determined in a natu-
ral way by the elements of C(X).

Reecall that X is completely regular if for each closed set ¢ = X and
each point z ¢ X, if #¢ C then there is a function f in C(X) such that f(z)
= 0 and f(y) = 1 for all y ¢ C. Since a T, completely regular space is necess-
arily Hausdorff, we will consider only Hausdorff spaces in this section.

Locally compact Hausdorff spaces and metrizable spaces are com-
pletely régula,r. If X and Y arerealcompact Hausdorff spaces (in particular
if they are o-compact or separable metric), then C(X) is isomorphic to
C(Y) iff X is homeomorphic to Y. See Gillman and Jerison [7] for a
thorough treatment of completely regular and realcompact spaces.

Closely related to C(X) is the lattice Z(X) of zero-sets of functions
in 0(X), considered as a sublattice of .Z(X). For each fe C(X) the zero-set
of f will be denoted by Z(f), i.e.

Z(f) ={we X: f(x) = 0}.
If X is a metric space, then Z(X) is equal to #(X); in general this equality
does not hold.

In [13], A. MacIntyre showed that for compact metric spaces, first-
order statements about Z(X) are translatable into first-order statements
about C(X). This is true because the relation Z(f) < Z(g) is definable
by a first-order formula of ring theory, as we now show.

TeEROREM 5.1. (a) There is a formula SB(f,g) in Lg such that for
each completely regular space X and each f,ge C(X)

Z(f) s Z(g) - C(X) FSB(f, 9).

(b) For each sentence ¢ in the language of lattice theory there is a sen-
tence w of ring theory such that for every completely regqular space X,

Z(X) kg« C(X) Eyp.

Proof. Our proof is only a slight variant of MaecIntyre’s argument.
Let U(f) be the ring-theoretic formula (Hg)(f-g = 1), let CZ(f, g) be the
formula 71U (f%24-¢?) and let SB(f, g) be the formula

(Vh)(OZ (f, h) >0Z(g, h)).

(Obviously the use of 1 in U(f) can be eliminated in favor of and +.)
In the ring C(X), where X is completely regular, U(f) says that f does
not vanish and CZ(f, g) says that f, g have a common zero. Also, Z(f)
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e Z(g) clearly implies that SB(f,g) holds. If Z(f) & Z(g), then there
exists we X with f(z) = 0 but g(z) # 0. Since X is completely regular
there is a function he C(X) such that k(z) = 0 and h(y) = 1 for ye Z(g).
But then A witnesses the falsity of SB(f, g). This proves (a); (b) is an
immediate consequence of (a).

Among metric spaces then, the expressive power of 0(X) is at least
as strong as that of Z(X) = £ (X). Thus the properties shown to be first-
order in § 2 continue to be first-order for metric spaces if 0(X) or Z(X)
is used in place of #(X).

Now we consider the results of § 3. If X is a discrete space, every
function on X is continuous and so C(X) is just the direct product of =
copies of the ring R of real numbers, where x is the cardinality of X. But
by [5, Th. 6.5] the theory of the product of » copies of a structure &/ is
independent of x, for x infinite, and is decidable if & has decidable theory.
Thus, if X and Y are infinite discrete spaces, C(X) = C(Y) and their
common theory is decidable (since the ring R has decidable theory by
[28]).

However, the following result of J. Isbell shows that Theorem 3.3
fails for ¢(X) and for Z(X).

THEOREM 5.2 (Isbell). If X, ¥ are discrete spaces, X is countable,

and Y is uncountable, then Z(X*) % Z(X*) and C(X*) = C(X*).

Proof. An atom in Z(X*) or Z(X") is just a singleton set {®} such
that z is the unique zero of some continuous function, The point « is iso-
lated exactly when {z} is complemented in the lattice of zero sets. Now
in Z(X") there is an atom which is not complemented, namely {z,} where
x, is the point at infinity. However, in Z(Y™) every atom is complemented,
since any continuous function on Y* which is 0 at the point at infinity
must be 0 elsewhere too. This shows Z(X*) % Z(Y"); C(X*) £ C(Y")
follows by Theorem b5.1. (However, it will follow from Theorem 5.11
that ¢(X*) = C(XY") whenever X, Y are both uncountable discrete spaces.)

The remaining results from §3 go over to Z(X) and C(X) without
difficulty.

THEOREM 5.3. If X, Y are the discrete negative, positive integers respect-
ively, then C(Y*) =C(XOY™).

The proof is analogous to that for Theorem 3.7 except that the appeal
to Theorem 3.1 is replaced by an application of Theorem 6.6 of [6]. Of
course the analogue to Corollary 3.8 follows immediately. The analogue
to Corollary 3.9 can be proved as before except that one uses Theorem
5.1 to show that C(X}) % C(X7).

As remarked ahove, the results in § 4 go over to C(X) trivially if we
restrict attention to metric spaces. These characterization results can be
improved if we consider C(X) as an a a over R. Let C(X)g be a two-
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sorted structure with domains C(X) and R. The operations in C(X)g
are the ring operations on C(X), the field operations on R and the scalar
multiplication operation from R x C(X) to C(X). (Note that this is es-
sentially equivalent to adding the set of constant functions to C(X) as
a distinguished unary relation.)

THEOREM b5.4. There is a sentence ¢; tn the language of C(I)p such
that for any completely regular Hausdorff space X,

C(X)r Fg; <= X is homeomorphic to 1.

Proof. Let X be a completely regular Hausdorff space. Because
C(X) separates points in X, any atom in the lattice Z(X) must be a single-
ton {z} for some point z¢ X. For convenience let us to refer to these ag
the zero-points of X; denote the set of zero-points in X by ZP(X)."

Given Z in Z(X), we say that Z i8 Z-connected if there do not exist
Zy,Zye Z(X) satisfying Z,nZ + B, Z,nZ + B, Z,uvZ,2 Z and Z,NZ,nZ
= @. Note that this is simply a translation into Z(X) of the usual connec-
tedness condition in & (X).

If %, y, w are in ZP(X), we define # <, ¥ t0o mean: every Z-connected
zero-set which contains % and y must also contain 2. Now consider the
following condition on X: there exist uwe ZP(X) and fe C(X) such that

(1) <., is a dense linear ordering with end points on ZP(X).

(2) For each z, ye ZP(X) with @ <, ¥ there is a zero-set Z such that
for all ze ZP(X)

247 >0 <,2<,Y.

(3) For each zero-set Z and each xe¢ ZP(X), if ¢ Z then there exist
Yy, 2¢ ZP(X) such that y <, @ <, 2 and for all weZP(X), ¥y <, w <, %
implies w¢ Z.

(4) For all z, yec ZP(X),

@<y ¥ < f(2) <f(y).

(b) For all zero-sets Z;, Z,, if Z, ¢ Z,, then there exists e ZP(X)
such that ve¢Z, and z¢ Z,.

(6) X is Z-connected.

Suppose that X satisfies this condition. Conditions (2) and (3) imply
that the relative topology on ZP(X) is the same as the </, order topology.
Suppose that a, b, are the <,-end points and a <, b. Then (4) implies
that f maps ZP(X) into the interval [f(a), f(b)]. Since X is Z-connected,
it must be that the image of X under f contains this whole interval. Mo-
reover, (b) implies that f(X) equals f(ZP(X)), so that f maps ZP(X)
onto [f(a), f(b)]. But then (4) implies that .f is a homeomorphism on
ZP(X), which must therefore be a compact (and hence closed) subset
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of X. Finally, (6) implies that ZP(X) is dense in X and therefore is equal
to X. Thus X' is homeomorphic to a closed interval, via f.

It is obvious that I satisfies the condition above. Thus it suffices
to find a sentence ¢; such that X satisfies the condition iff C(X)g F ¢;.
With the possible exception of property (4), it is easy to translate the
parts of this condition using Theorem 5.1. Moreover, (4) is easily dealt
with once it is observed that f(z) < f(y) is equivalent to

(Ha)(Fp) (v Z(f—a-1)Ay e Z(f—f-1) Aa < §)

which is readily put into the language of C(X)g. (a and § are variables
ranging over the R-sort in C(X)g.)

For the remainder of this section we will consider C¢(X) and Z(X)
for compact, zero-dimensional Hausdorff spaces — the so-called Boolean
spaces which arise in Stone’s representation theory for Boolean algebras.
(See [9].) Given a Boolean space X, let #(X) be the Boolean algebra of
clopen subsets of X (that is, the closed-and-open subsets of X). Evidently
#(X) is contained in Z(X) as the sub-lattice of complemented elements.
Therefore every first-order property of #(X) can be translated into a first-
order property of Z(X) (and then, using Theorem 5.1, into a first-order
property of C(X)).

THEOREM b.5. There ts a sentenoe f in the language of lattice theory
such that, for any compact Hausdorff space X,

X is a Boolean space <>Z(X) F f.

Proof. This follows from the fact that a compact Hausdorff space is a
Boolean space iff each disjoint pair of zero-sets can be separated
by a clopen set. Obviously this is true of Boolean spaces, since each disjoint
pair of closed sets can be separated by a clopen set. If X is compact Haus-
dorff but not Boolean, then there must be a closed set ¢ and a point
x¢ O such that # cannot be separated from ¢ by a clopen set. But = and ¢
can be separated by a disjoint pair of zero-sets since X is completely

regular.

THEOREM 5.6. There is a sentence y in the language of lattice theory such
that, for amy Boolean space X,

#(X) is a countably complete Boolean algebra <> Z(X) k y.

Proof. Let X be a Boolean space. Consider a d creasing chain
C,20,2...in #(X). Define f: X—>R so that f(X) =1 for =x¢0,,
fle) =1/n for 3eC,,, ~C, (n=1,2,...) and f(x) =0 for oe()C,.
Evidently f is continuous; and therefore Z = (MC, is a zero-set. More-
over, inf 0, exists in #(X) iff there is & largest clopen set contained in Z.

n
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Now suppose Z = Z(f) is any zero-set in X. For each n =1,2, ...
let C, be a clopen set which separates Z, = {z| |f(2)| > 1/2n} from Z,
= {z] [f(2)] <1/(2n+1)}. That is, for z¢ X

1
=gze0, = |f(2) < —-

1
@< g3 ™

This is possible since Z,, Z, are disjoint zero-sets for each n. But then
Z = (N 0,; therefore every zero-set is the intersection of a decreasing
chain of clopen sets.

It follows from this argument that % (X) is countably complete iff
each zero-set in X contains a largest clopen subset. From this the sentence
y is easily obtained.

Theorem 5.6 is an example of a general and interesting phenomenon:
in the finitary first-order language of Z(X) or C(X) one can express prop-
erties of #(X) which require infinitary formulas to be expressed in the
anguage of Boolean algebras.

THEOREM 5.7. There is a formula F () in the language of lattice theory
such that for each Boolean space X and eaoch clopen set C < X,

C is finite <> Z(X) k F(0).

Proof. Suppose X is a Boolean space and C is a clopen subset of X.
We will show that C is a finite set iff every zero-set contained in C is
clopen. From this the formula F(x) can easily be constructed.

Obviously every subset of a finite, clopen set C is clopen, since C
must simply be a finite set of isolated points. Conversely, suppose C is
clopen but is not finite. Then we can find a strictly decreasing chain
C,o(C,> of clopen subsets of C. The set Z = (0, is a zero-set (as
shown in the proof of 5.6) which cannot be open (since the chain (C; ~ Z)
o5 (0, ~Z)>  has empty intersection).

THEOREM 5.8. There is a sentence & in the language of lattice theory such
that for each Boolean space X the set of isolated points in X is countable
< Z(X)E .

Proof. Let X be a Boolean space. Suppose first that the set 4 of
all isolated points in X is countable. Then we easily see that Z = X ~ 4
is a zero-set. If C is a clopen set disjoint from Z, then O is finite (since C
is a set of isolated points of X and X is compact).

Suppose, conversely, Z is a zero-set which containg no isolated point
of X and every clopen set disjoint from Z is finite. As in the proof of
Theorem 5.6, we may write Z as an intersection of countably many clopen
sets {C,: » =1,2,...}. But then each set X ~ C,, is a finite set of isolated
points of X and every isolated points in X is contained in X ~2Z
= |J (X ~ C,). Therefore the number of isolated points in X is countable.
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Finally, note that the isolated points of X correspond exactly to
the atoms of the Boolean algebra #(X). Thus it suffices to take é to be
the sentence

(H2)[(Vy)(y an atom in #(X) >y & 2} A
AVY)y in B(X)rynz =0 ->F(y)),

where F is the formula in Theorem 5.7. ¥

THEOREM 5.9. Let X, be a countably infinite discrele space and let X
be either the one-point compactification of X, or the Stone—Cech com-
pactification of X,. There is a sentence oy in the language of lattice theory
such that for any compact Hausdorff space ¥,

Z(Y) Fox < Y is homeomorphic to X.

Proof. First let o, be the conjunction of the sentence g from Theorem
5.5, a sentence asserting that the set of isolated points is dense in X and
the sentence “]F(X)Ad obtained from Theorems 5.7 and 5.8, which
asserts that the set of isolated points of X is countably infinite. If ¥ is
compact and Z(Y) F oy, then Y is a Boolean space and #(Y) is an atomic
Boolean algebra with a countably infinite number of atoms.

When X is the one-point compactification of X,, take ox to be the
conjunction of ¢; and the sentence

(Vy)(y clopen —>(F(y) vI(X ~ y)))_

If Z(Y) is a model of this oy, then by Theorem 5.7 every set in #(¥)
is finite or co-finite. Thus, ¥ and the one-point compactification of X,
are Boolean spaces which represent the same Boolean algebra. Hence
they are homeomorphie.

When X is the Stone—Cech' compactification of X,, take ox to be the
conjunction of ¢, and the sentence y from Theorem 5.6. If ¥ is compact
and Hausdorff and Z(Y) is a model of this ¢y, then #(Y) is a countably
complete, atomic Boolean algebra with a countably infinite number of
atoms. Thus ¥ and X are Boolean spaces which both represent the power
set of a countable set; hence, ¥ and X are homeomorphic. We remind
the reader that, by Theorem 5.1, the Z(X) characterizations of properties
and spaces, which are given in Theorems 5.5 through 5.9, can be auto-
matically translated into C(X) characterizations.

Next we present what seems to be a useful tool for proving the el-
ementary equivalence of C(X) rings, at least in some interesting special
cases. The statement of this result involves the concept of elementary
equivalence relative to the infinitary languages L, ,. Given a first-order
language I, the infinitary formulas in L., are formed by repeatedly
uging conjunctions and disjunctions of arbitrary sets .of formulas and
by using quantifiers over sequences of variables of length less than x.
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If o, # are structures for I, then we write & =, , % iff &/, & satisfy
exactly the same sentences of L;,,,,. Infinitary languages of this type are
treated in [11]. We will make use of the back-and-forth criterion for
=, [2], [3] and of a preservation theorem for =, , due to Feferman [6].
The reader may consult these references for a more precise description
of L, and a treatment of the facts about =, which we will use. Note
that L, contains L, so that =, , is a stronger equivalence than =.

THEOREM 5.10. If X, ¥ are Boolean spaces, then the following conditions
are equivalent, for each uncountable cardinal x:

1) #(X) =, B(¥),

(2) Z(X) =4, 2(Y),

(3) 0(X) =0, C(X).

Proof. The implications (3)=(2) and (2)=(1) are immediate, using
Theorem 5.1 and the analogous interpretation of #(X) in Z(X).

To prove (1) =(3) we apply a slight modification of a theorem due to
Feferman [6]. Consider the functor F which assings to each Boolean algebra,
# the ring O(X4), where X4 is the Stone representation space of %#. Recall
that the elements of X4 may be viewed as the Boolean homomorphisms
from # into the two-element Boolean algebra. Given a Boolean homo-
morphism ¢: #,-%,, the ring homomorphism F(g): F(B,)>F(%4,) is
defined as follows: given f, ¢ C(Xg ), the image f, of f, under F'(g) satisfies

fa(@) = fi(wop) for each we Xg,.

We will show that F is essentially an w,-local funetor, in the language
of [6]. First, if #, c 4, are Boolean algebras and ¢: 4, — 4, is the inclusion
mapping, then it is an easy exercise to show that F(i) is an embedding
of F(4%,) into F(4,). (In [6] F(7) is assumed to be actually an inclusion
mapping, but this is inessential.) Second, we will show below that if #
is a Boolean algebra and 8 is a countable subset of F(#), then there is
a countable subalgebra #' of 4, with inclusion map ¢: #'—>4%, such that §
is contained in the image under F () of F(4%'). From these facts it follows,
essentially as in [6, Theorem 6] that F preserves =, for each x = w,,
which is just what the implication (1)=-(3) asserts.

Let # and 8 < F(#) be given,with § countable. Since X4 is a Boolean
space, for each fe § and each pair » < s of rational numbers, there is a clopen
subset Bg(7, s} of X4 such that

f@)<r=>zeByr,s)=>f(x) <s for all ze Xg.
Moreover, by the Stone duality theory, there is an element U(r, s) of &
such that for e X4
we By(r, 8)<-2(0f(r, 8)) = 1.
(Again we consider the elements of Xz as 2-valued homomorphisms
on 4.)
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Let #' be the subalgebra of # which is generated by the sets Cy(r, 8).
Given fe 8, we must show that f is il the image of F(4%’) under F(i).
This is easily seen to be the same as saying that if «, y ¢ X4 are homo-
morphisms on # which agree on #’, then f(z) = f(y). If this is not so,
we may assume that there are rational numbers r < ¢ which satisfy

fl@)<r<s<fly).

Therefore ze By(r,s) and y¢B,(r,s). This implies z(Cy(r,s)) =1 #0
= y(Of(r, s)), so that z, ¥ do not agree on #'. This shows that F' is an o,-
local functor and completes the proof of the theorem.

In applying Theorem 5.10 we will use the well known back-and-
forth criterion for =, ,. (See [2], [3] or [6] for a discussion of this cri-
terion.) Given structures =, # for L, this criterion states that & =, . #
iff there is a family J of mappings which satisfies these conditions:

(A) each aedJ is an isomorphism from some substructure of =/ onto
a substructure of 4,

(B) for each aedJ, each subset 8 of |#/| and each subset T of |Z|
with card 8 < x and card T < x, there exists an extension § of a in J
whose domain contains § and whose range contains T.

We will refer to a family of mappings which satisfies (A) and (B) as
a x-partial isomorphism from & onto &.

TBEOI:EM 5.11. If X, Y are uncountable discrete spaces, then C(X")
=, C(Y").

” Il’rc()of.) The Boolean algebra #(X*) may be identified with the
algebra of finite and co-finite subsets of X. Let J be the set of all isomor-
phisms a from a countable subalgebra of #(X*) into #(Y") such that
for each set A in the domain of «

(i) A is finite <> a(4) is finite,
(ii) A finite = card A = carda(4).

It is easily seen that J is an w,-partial isomorphism from B(X*)

to #(Y*), and thus #(X*) =, , #(¥"). The desired result follows using
Theorem 5.10.

Our next result concerns the Stone—Cech compactification of a discrete
space X ; as usual we denote this space by fX.

TEEOREM 5.12. If X, Y are discrete spaces of cardinality > 2™, then
C(BX) =u,0,C(BY).

Proof. The Boolean algebra #(8X) may be identified with P(X),
the algebra of all subsets of X. By Theorem 5.10, we need to show that
if X, ¥ are sets of cardinality > 2", then P(X) =,q,P(¥). We do this
by constructing an o,-partial isomorphism from P(X) to P(Y).

Let P be any partition of X, Q any partition of ¥, and f: P—@Q a bi-
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jection. We say the triple (P, Q,f) is admissible if P, @ have cardinality
< 2" and for each set 4 in P

(i) cardd < 2™ <« card(fd) < 2™,

(if) if card A < 2%, then card A = card(fA).

Given an admissible triple (P, @,f) we define a mapping a as fol-
lows: the domain of a is the algebra of subsets of X which are of the form
(P’ for some P’ < P; for such sets a is defined by

a(UP) = U{f4] 4P},
Evidently e is an isomorphism from a subalgebra of P(X) into P(Y).
Let J be the set of all mappings a obtained as above from admissible
triples (P, @, f).

To show that J is an w,-partial isomorphism it suffices to prove
the following fact: Let (P,, @, f,) be an admissible triple and P, a par-

tition of X which refines P, and has cardinality < 2™, Then there is a re-
finement @, of @, and a bijection f,: P,—>@Q, such that (P,, @, f,) is an
admissible triple and for each 4,e¢ P, and 4,¢P,,

4, s Ay=f,(4,) < fi(4,).

This fact is proved by an easy cardinality argument which we leave
to the reader.

Note that Theorems 5.9 and 5.12 do not apply to O(ﬁ(X)), where X
is a discrete space with N, < card X < 2™, Tt can be shown that if X is
such a space and Y is a discrete space, then card ¥ # card X implies
C(BX) #.,.,,0(BY). Butif ¥ is uncountable and X is as above, we do not
know whether C(fX) = C(8Y) holds or not.

For our last example in this section we consider the product spaces
{0, 1}, where {0, 1} is given the discrete topology and x is an infinite
cardinal. As is well known, the clopen subsets of {0, 1}* depend on only
a finite number of coordinates. That is, if B < {0,1}* is a clopen set,
then there is a finite set # < x such that for all z, y ¢ {0, 1}* 2¢ B and z, y
agree on I imply ye B. It follows that if Z < {0, 1}* is a zero set, then Z
depends only on a countable number of coordinates. If x is uncountable,
then this implies that Z ({0, 1}*) has no atoms. On the other hand, {0, 1}*
is metrizable, so that Z ({0, 1}") is atomic. This shows that for » un-
countable Z ({0, 1}*) & Z({0, 1}*) and C({0, 1}*) £ C({0, 1}*).

THEOREM 5.13. If x4, %, are uncountable cardinals, then C({0,1}*)
=eo,a, 0 ({0, 1}72).

Proof. Fori =1, 2 let &, be the Boolean algebra of all clopen subsets
of {0,1}". Given 4 < x;, let ## be the subalgebra of all Be #; which
depend only on coordinates in 4. That is, Be £ iff Be 4, and for each
@y ye{0, 1}
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we B and x, y agree on A imply ye¢ B.
If A; € %, Ay S %, and f: 4,4, is a bijection, then there is a canonical
isomorphism f: #f1->@42, Namely, if Ce #1 we define

F(C) = {ye {0, 1}"2| there exists ze C
such that ®(a) = y(f(a)) for all ae A,}.

Let J be the set of all such isomorplusms f obtained as above from
countable sets A,, A, and bijections f: 4; > 4,.

If feJ is given as above and S < #4,, T < #, are countable sets,
then we may find countable sets 4; < K,, 4; = K, and a Dijection f:

A1—>A’ such that A, < A;, 4, 4,, f extends f, 8 < gﬁl and T < .%‘1"

Then f is in J; moreover, it is an extension of f whose domam contains §
and whose range contains T'. This shows that J is an w,-partial isomorphism
from £({0,1}1) to #({0, 1}*?) and so, by Theorem 5.10, the proof is
complete.

§ 6. #(X) and C(X) compared

If X, Y are infinite discrete spaces, X countable and ¥ uncountable,
then #(X*) = #(Y") (by Theorem 3.3) while C(X*) £ ¢(¥Y*) (by The-
orem 5.2). Our next result shows that if a strong enough equivalence as-
sumption is made about ¥ (X), #(Y) (where X, Y are arbitrary spaces),
then O(X), C(Y) must be elementarily equivalent. However, as we show
later by example, no similar result is possible in the opposite direction.

TusoREM 6.1. If X, Y are T, spaces and x 18 an uncountable cardinal,
then

L(X) = Z(Y) implies C(X)=,,.0(Y).

Proof. First we establish some notation. Suppose Z is any T'; space
and 2 is a sublattice of .#(Z). By C(Z; %) we mean the set of all functions
fin C(Z) such that {zeZ: f(2)<r} and {ze¢Z: f(2) > #} are in & for
every rational number 7.

Now assume that X, ¥ are T, spaces and Z(X) =, . £ (Y), with
% > w;. By the back-and-forth criterion for =, , there exists a x-partial
isomorphism J from £ (X) to £(¥Y). It is easy to see that if « is in J,
then (£(X), 4) scaome = (£(¥), a(4)) seaomq- In Darticular, if ae J, then a
and a~! map atoms to a,toms.

Given ae¢ J we define a relation R, (contained in X X Y) by:

R, ={(x,y)e X xY: for all dedoma, ve Ayea(d)}.
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Note that if f extends a then zR,y=>sR,y. Also, if a({r}) = {y}, then
zR,y.

If z¢ X, then there must exist ye ¥ satisfying s R,y. To see this,
extend a to fedJ with {x}c domp. Then choose y¢ ¥ 50 that B({z}) = {y}.
It follows thab mR,,y Similarly, for each ye Y there exists x¢ X such
that zR,y.

Next suppose ¥ = doma and fe C(X; &). Then if o E,y and 2'R,y
it must follow that f(z) = f(2’). For if not there must be a rational number
r with (say) f(z) <r<f(2'). But let 4 = {we X: f(x) <7}, which is
in #. We must have

ved w>yea(d)<=az'cd

which is a contradiction. Similarly, if %’ =rangea, g¢ O(Y; &’'), o Ry
and zB,y’, then g(y) = g(y’).

Now for each aeJ with & = doma and &' = rangea we construct
a function a from C(X; &) into (¥ ; #’). Given f in O(X; %) we define
a(f) on ¥ by

[a(f)](y) = s <>for some ze X xR,y and f(x) = s.

Our discussion above shows that a(f) is properly defined on all of Y.
For each rational number 7, let A = {ze X: f(z) <7} and B = {ze X:
f(z) = r}; both sets are in %. Given ye Y choose ze X such that 2R.y.
Then

[a(f Srefe)<r<zed ¢ yeca(d).

Similarly [a(f)](y)> 1 < yea(B). This shows that a(f) is in O(¥; &')
A gymmetric argument shows that a is a bijection of C(X;.#) onto
C(Y; £'). Moreover, it is clear from the definition that if f, g, f+¢ and
frg are all in C(X; &), then

a(f+g9) = a(f)+a(g),
a(f-g) = a(f)-a(g)

We now define J to be the set of all mappings which are the restric-
tiori of some a to a subring of 0(X), letting « range over J. Each element
of J is then an isomorphism from a subring of C(X) onto a subring of
C(Y). The proof of the theorem will be complete once it is shown that J
is a »-partial isomorphism from ¢(X) to C(X). To prove this, let ae J with
¥, =dome and &, =rangea. If § < ¢(X) and T < C(Y) are subrings
having cardinality < x, then since » is uncountable there exist sub-
lattices ¥, = #(X) and %, € £(Y) such that &, < &,, £.c %, £,
and ¥, have cardinality <x and 8 < C(X; ¥,), T < O(Y; &,). Since
J is a x-partial isomorphism, there is an extension g of a with fedJ, £,

€ domp and &, < rangef. Then ﬁ is an extension of a whose domain
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contains § and whose range contains 7. This shows that J is a x-partial
isomorphism, therefore C(X) =, .C(Y).

‘We remark that the maps a constructed in the proof above also
satisfy

a(sf) = sa(f)

whenever s is a real scalar and f, sfe C(X, doma). Therefore the conclusion
of Theorem 6.1 can be streng hened to read C(X)gp =,,.C(¥)g.

Note also that Theorem 6.1 does not hold for the equivalence =, -
Indeed, if X, Y are infinite discrete spaces, then it can be shown that
Z(X") =4 .2(Y*). However, if X is countable and Y is uncountable,
then C(X*) % C(Y*) by Theorem 5.2.

The next result shows that the converse of Theorem 6.1 does not hold,
even in a weak form.

TeEOREM 6.2. For each x there exist Boolean spaces X, Y such that
C(X) =,,0(Y) but £(X) £ 2(Y).

Proof. Let us suppose that there exist Boolean algebras & and #
such that & =, ,.#, & is complete and # is not complete. Take X, ¥
to be the Stone representation spaces of &/, # (respectively). If x > w,,
then by Theorem 5.10 C(X) =, ,0(Y). Now a Boolean space is extremally
disconnected iff its algebra of clopen sets is complete [9]. (A Boolean
space is extremally disconnected if the closure of every open set is open.)
Therefore, X is extremally disconnected while Y is not. Evidently this
implies Z(X) £ £(Y).

Thus- Theorem 6.2 is an immediate consequence of the following:

LemMMA 6.3. For each x there exist Boolean algebras »f, & such tha
oA =, B, but o is complete while B is not.

Proof. We just give a skefich of a proof. For convenience we may
suppose x = 7+ where 7 > w. Let 8 be a set of cardinality (27)**. Take &/
to be the algebra of all subsets of §; take # to be the algebra of all subsets
A of § such that card 4 < (29)* or card (8 ~ 4) < (27)*. Then « is com-
plete while & is not. Note however that # is closed under unions and
intersections of families with cardinality < 2%

The proof that & =, ,# is similar to the argument given in the
proof of Theorem 5.12. Here an admissibie triple (P, @, f) is a pair of
partitions P, @ of § and a bijection f: P—@Q such that:

(i) P, @ have cardinality < 2% and every set in € is an element
of 4,
(ii) for each AeP, card 4 < 2"<«-card(f4) < 27;
(iii) for each AeP, if card4 < 2%, then card A = card(f4).

Given an admissible triple (P, @, f), let «p be the algebra of all
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sets of the form (J P’, where P’ < P; similarly define #,. Note that «/p

c o and By < #. The bijection f gives rise to an isomorphism f of &/
onto g defmed by

fIUP) = U{f4| 4eP’} for P cP.

Now let J be the set of all maps f obtained as above from admissible
triples. To show that J is a x-partial isomorphism it suffices to check
that the following extension property is true for admissible triples (P, @, f):
If S< & and T < # have cardinality < 7, then there is an admisisble
triple (P', @', f') such that P’ refines P, @’ refines @, § & &p., T < 4,
and for each AeP and A’ P’

A'c A= f(4') < f(A)

(Then f’ is an extension of f whose domain contains 8 and whose range
contains T.) The details of the construction of (P’, @', f') will be omitted.

§ 7. Some results on undecidability

Let E"™ denote Kuclidean n-space. It was shown by Grzegorczyk
[8, § 3] that if » > 2, then Th(¥ (E")) (the set of sentences true in & (E™))
is undecidable. On the other hand, Rabin [19, Th. 2.9] showed that
Th(#(E")) is decidable. In this section we sharpen Grzegorczyk’s result
by showing that for n > 2, Th(&( (E™) is “exactly as undecidable” as
second order arithmetic. We also show that the set of “topologically
valid” sentences (i.e. sentences valid in Z(X) for every space X) is “at
least as undecidable” as 2nd order arithmetic.

Our reductions between decision problems are just m-reductions
in the sense of recursion theory. If L,, L, are languages and 8§; is a set
of sentences of L;, we write §; <, S, if there is an effective procedure
which associates to each sentence ¢ of L, a sentence ¢* of L, such that
pe 8y iff p*e 8,. We write 8, =, 8, if 8;<,, 8, and 8, <,, §;. Clearly
<,, 18 a transitive relation. (If S,, S, are closed under conjunction and
8; =, 8, it is easy to see that the corresponding sets of Godel numbers
are recursively isomorphic [21, Ch. 7].)

If <7 is a structure, the second order language for & has the game
nonlogical symbols as the first order language for « but has in addition
for each % an infinite list of variables {X7} for n-ary relations. For such
a variable X7, and (first order) terms i,, ..., ?,, the expression X7(t,, ...

.y 1) is admitted as an atomic formula and quantifiers (HX?), (VX?})
may be used in building up formulas. Otherwise, formulas are constructed
as in the first order case, and truth is defined in the natural way. If this
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is done only for # =1, one obtains the monadic (second-order) language
of . We write Thy(.)[Th, ()] for the set of [monadic] second order
sentences true in . (Recall that Th(.%) is just the set of first-order
sentences true in 7.) In particular, we write /4" for the structure {w, 4+, -3,
80 Th,(A#") is often called irue second-order arithmetic.

TeroREM 7.1. If n > 2, Th(Z(E") =, Thy(A).

Proof. It is routine to show that Th (55’ (B™) < Th, () since basic
open sets in E™ (e.g. balls with rational radii and centers having all co-
ordinates rational) can Dbe effectively encoded by natural numbers, and
hence open sets in E" can be encoded by sets (= unary relations) of natu-
ral numbers in Buch a way that the inclusion relation between open
sets corresponds to a definable relation between their codes.

To show that Thy(A4")<,, Th(#(E")) we gombine the methods of
Grzegorczyk [8] with the use of definable orderings <, of §4. We could
have followed Grzegorczyk’s methods more closely to obtain the theorem
at hand, but it is not clear they would yield Corollary 7.3.

LevwmA 7.2. If X is a Hausdorff space and the unit disc D is embedded
in X, Thy(AH") <, Th(£(X)).

Proof. The argument can be simplified by using Raphael Robinson’s
observation [20, p. 239] that multiplication (of natural numbers) can be
defined in terms of addition in the lauguage of monadic logic. Of course
once addition and multiplication are defined, a pairing function and its
inverses can be defined. Thus

Thy(A) <, Thp(A) <, Thpp(A o)y,  where ANy = (w,T)

and T is the ternary relation on » corresponding to addition, ie. T =
{(a, b, ¢): ¢ = a+b}. (Thus the language for 4y has no function symbols,
which yields a slight technical simplification.) Thus it will suffice to show
that Thy (A ) <,» Th(# (X)) when X satisties the hypotheses of the lemma.
This will be done by showing that the unit disc D (and therefore X) has
closed subsets which encode ./, in a definable way which we now describe.

A triple (u, U, V) is called w-like if U is a closed subset of X, V is
a discrete subset of U, we U, and < orders V with order type w, where
< is the restriction to V of the relation <, on U defined in the proof of
Theorem 4.1 (replacing X there by U). We would like to assert that the
set of w-like triples is definable in £ (X), but this does not quite make
sense because ¥ need not be closed. However, any discrete set is the dif-
ference of two closed sets (i.e. its closure and its derived zet.) We call
a quadruple of closed sets (#,U,H,, H,) an w-code if F = {u} and
(w, U, H,— H,) is w-like. Clearly each w-like triple comes from an w-code,
and we claim also that the set of w-codes is definable in Z(X). This is
because a set has order type w in an ordering iff it is well-ordered, has
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no greatest element, and each element except the least is & successor.
It is possible to say that a discrete set is well-ordered (by <) since all
of its subsets are discrete and thus differences of closed sets. If #,, F,
are closed subsets of X, let #;, ~ F, mean that there Is a closed set G < X
such that each component of G contains exactly one element of F, and
exactly one element of Fy (cf. [8]). Clearly if F', ¥ are finite and F;, ~ F,,
then F,; and F, have the same cardinality (although the converse need
not hold). Also = is a definable relation in % (X).
Let (v, U, V) be w-like. If @, ye V, let

(,y) ={#e V: 2, 2 <, ¥}

Let v, be the <,-least element of V. If =, y, z¢ V, define T (=, y, 2) to
hold iff [vy, 2) ~ [y, 2) and 2>, y. Let v; be the ith element of ¥ in
general, If T'y(v;, vy, v;) holds, then I = j -+ % since [v,, v;) is of cardinality
j and [v,, v;) i of cardinality I —%. Again the converse need not be true,
s0 we simply define (4, U, V) to be w-T like if it is w-like and for each
m,ye V there exists ze V such that Ty (z,y,#). Clearly if (u, U, V) is
w-T like then the order isomorphism of w and ¥V sends T to T,. Being
w-T like is definable in #(X) in the sense that the corresponding set of
w-codes (called w-T codes) is definable.

We digress to note that the unit disc .D has an w-T like triple (%, U, V)
as can be seen by letting U be the closed unit interval and V a sequence
of points converging to one endpoint of U (with % as the other endpoint).
To see, for instance, that T (v,, ¥;, v;) holds, consider the picture where

the @ corresponding to [v,, »,) and [v,, v5;) is the union of the two curved
lines. Since D is embedded in X it is easy to see that X has an w-T like
triple since D is compact and X is Hausdorff, so sets closed in the rela-
tive topology of D are closed in X.

For any sentence ¢ in the monadic second-order language corre-
‘sponding to .#°,, one may obtain in a natural inductive way a formula
¢(F, U, H,, H,) such that whenever (F, U, H,, H,) is an «-T cods,
N, kg iff £(X) ko(F,U,H,, H,). Quantification over (subsets of)
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w in ¢ corresponds to quantification over (subsets of) V(= G —H) in ¢,
and the predicate symbol for T corresponds to a formula defining T,.
Given ¢ as above, let p* be

(VF, U, H,, H,))[y(F, U, Hy, Hn)"&(F) U,H,, H,)]

where » is a formula defining the class of w-T codes. If #7, k¢, then
Z(X) F p* for every space X. If /7, F Tlp, then & (X) F Tlp* for every
X containing an «-I' code and in particular for every X in which D is
embedded. From this and the fact that ¢* depends only on ¢ a,nd not on X
we immediately obtain the following corollary.

CorOLLARY 7.3. If Top i8 the set of sentences of Ly such that Z(X) kg
for every space X, Thy(AH") <,, Top.

We now give an example of compact metric spaces which are e.e.
but not homeomorphic. This example is given here rather than in §3

because the corresponding proof uses results about monadic second-order
logie.

THEOREM 7.4, There are two countable compact spaces, each embed-
dable in the real line (and hence metric) which are e.e. but not homeomorphic.

Proof. Let 4 be a set which is linearly ordered by an ordering <,
and also let 4 have the order topology of <. Then the family of closed
subsets of 4 is definable (within the power set of 4) by a formula of the
monadic second-order langnage whose only nonlogical symbols is < (rep-
resenting < ). (In faet, this formula is first-order except for a free vari-
able ranging over the power set of .4). Since set-theoretical union and
intersection are obviously also definable, any first order statement about
Z(A) can be translated into a monadic second-order statement about
{A,<,). Since the translation is independent of A, it follows that if
Tha({4, <4>) = Thy({(B, <p)), then 4 and B are e.e. equivalent as
spaces in their order topology. In [4, p. 93], there is given a necessary
and sufficient condition for two countable ordinals to have the same
monadic theory as ordered sets. This condition shows in'particular that
0”41 and »“-241 have the same monadic theory and thus are e.e. as
ordered spaces. It is easy to see that these ordered spaces are homeo-
morphic to compact subspaces of the real line. However, they are
not homeomorphic to each other because the wth Cantor—Bendixson
derivative of w®--1 consists of a single point while the wth Cantor—Ben-
dixson derivative of w®-2+1 consists of two points (cf. [15, p. 21]).

Since the translation used in the preceding proof is effective, and
Thy({e; <)) is decidable for any ordinal a < w, [4, pp. 96, 124], it fol-
lows that Th(&(a)) is decidable for any a < w,, where a has the order
topology.
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§ 8. The class of topology lattices

Let %, be the class of all topology lattices, i.e. lattices isomorphic
to #(X) for some space X. A basic difficulty with our topic is that there
is no set of axioms whose models are the topology lattices. In this section
we illustrate this failure by considering various classes of lattices whose
first-order properties resemble those of the topology lattices.

Let .%, be the class of lattices elementarily equivalent to some topology
lattice. Let %, be the class of all models of the theory of #,, i.e. lattices
which satisfy all statements true in all topology lattices. Let %, be the
class of all distributive atomic lattices L with least and greatest element
such that any subset of L which is first order definable with parameters
from I has a greatest lower bound in L. (An example of the topological
interpretation of a typical axiom for %, would be: for any closed set §,,
the intersection of all closed connected sets containing 8, is itself closed.)
Let &, be the set of atomic distributive lattices with least and greatest
elements. We will show that

LS LG LS LS Y

Each inclusion above is obvious, so it remains to check that the
inclusions are all proper. That ¥, # &, in an easy consequence of the
Skolem—~-Lowenheim theorem. Let X be an infinite Hausdorff space, and
let L be a countable lattice elementarily equivalent to % (X). Obviously
Le¥, If Le ¥, L ~%(Y) say, then Y is an infinite Hausdorff space
and 50 Y has uncountably many closed sets, as a simple argument shows
(If the set I of isolated points is infinite, each of the uncountably many
subsets of I is closed. Otherwise one may successively choose infinitely
many pairwise disjoint open sets using the Hausdorff property. Any sub-
collection of those open sets has an open union.) The following result
will show that £, # &,.

THEOREM 8.1. %, is not compact, i.e. there exists a set X of sentences
of lattice theory such that every finite subset of X has a model in &, but X
has no model in ¥,.

Proof. We got the idea for this proof after seeing A. Adler’s proof
of the corresponding result for closure algebras (private correspondence).
Let C(2) be a first-order formula asserting of & (X) that 2 is a singleton
and X —2 has exactly three components. Let ¢, be a sentence asserting
that there is a closed set which is an elementary arc (cf. § 4) containing
all sets (i.e. points) satisfying O(z). Let ¢, (n > 1) assert that there are
at least n distinet points satisfying C(z). Let ¢, assert that the points
satisfying C(x) have no limit point. Let X =: {g;: 0 <1< w}. Every
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finite subset of X' has a model in &Z,, i.e. Z(X), for X a “comb™ of the

M

However, if #(X) satisfied all of X, then it would contain an elementary
arc having an infinite subset with no limit point, which is impossible
since elementary arcs are compact.

COROLLARY 8.2. &, € %,.

Proof. Let X be as in Theorem 8.1 and let 2’ be the theory of .&#,.
Then 2'uX” has a model L by the compactness theorem of logic. Clearly
Le #y,—%,. (In fact Theorem 8.1 and Corollary 8.2 are equivalent since
any class K of structures is compact iff each model of the theory of K
is elementarily equivalent to some structure in K (cf. [14, p. 315]).

The definition of %, makes it clear that %, is the class of models
of some recursively enumerable set X of axioms. The logical closure of %
is the theory of %, by the completeness theorem and is obviously recur-
sively enumerable. On the other hand, %,, %,, and %, all have the same
theory, 'and this theory is not definable in second order arithmetic by
Corollary 7.3 (and so is certainly not recursively enumerable). Thus
&, + %,. (However, we do not have a specific example of a lattice in
¥,—%,.) To show that &, # %;, let L be the lattice of countable and
cofinite subsets of the real line (with set-theoretic union and intersection
as the lattice operations). Clearly Le #,;. However L¢ ¥, because there
5 an e L (namely any denumerably infinite sét of reals) such that
{y: #uy = 1} has no g.l.b. (Intuitively L fails to satisfy the statement
“every open set has a closure” and this statement is an axiom for Z,.)

§ 9. Some bounds on the Léwenheim number
for topology lattices

Because of the Skolem-Léwenheim theorem it is natural to inquire
whether every space is e.e. to a space that is “small” in some sense, e.g.
satisfies some sort of countability or separability axiom. We have already
seen in § 8 that each infinite Hausdorff space is e.e. only to spaces having
at least 2°° closed sets. Also from § 4 1t follows that any space e.e. to the
closed unit interval is a compact Hausdorff space without isolated points
and thus has at least the cardinality ¢ of the continuum. Isbell has pointed
out a stronger result relative to compact spaces. Consider SN, the Stone-
Cech compactification of the discrete integers. If Y e.e. AN and Y is com-
pact, then by a remark of Isbell (private correspondence) Y has cardi-
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nality at least 2° since Y is an infinite extremally disconnected space and
thus contains a copy of fN. The following result gives further negative
information in this vein.

THEOREM 9.1. There is a space X such that each space Y e.e. to X satis-
fies the following for each n:
(i) there is a family of N, pairwise disjoint open sets in Y ;
(ii) there is a point p, in Y such that no basis of neighborhoods of p,
has cardinality <N,;
(iii) each nonempty open set in Y has cardinalily > e.

Proof. Let X be the “¥, long line” i.e. the space obtained by placing
a copy of the open unit interval between o and a-+1 for each ordinal
a <N, and using the order topology. Let Y be elementarily equivalent
to X.

If a space has exactly one non-cut point % and is linearly ordered
by the relation <, defined in § 4, let us call <, its canonical ordering.
Clearly X has the order topology of its canonical ordering and so the
same can be said of Y.

Requirement (iii) holds of ¥ by essentially the same argument used
to show that any space e.e. to the unit interval has cardinality > c.

The proof of (i) and (ii) hinges on the fact that for each n the collection
of discrete subsets of ¥ which are well-ordered (in the canonical ordering)
and of order type N, is definable in #(Y). (As in § 7, a family & of discrete
sets is definable if the set of pairs of closed sets F,, F, such that 7', — F,e F
is definable.) As in § 7 we observe that every subset of a discrete set is
discrete and hence a difference of closed sets 8o that in effect it is possible
to express quantification over arbitrary subsets of a discrete set in terms
of (first-order) quantification over & (Y). Thus if ¢ is any monadic second
order sentence of the language of ordering, the set of discrete subsets
of ¥ which satisfy ¢ (w.r.t. the canonical ordering) is definable in #(T).
Since by [4, p. 19] there is for each »# a sentence of the monadic theory
of ordering whose models are exactly those sets of order type N, it fol-
lows that for each n the set of discrete subsets of ¥ of order type ¥, is
definable in ¥. (Observe that the definition is independent of Y, provided
only that ¥ has exactly one non-cut point.)

For any n, X has a discrete well-ordered subset of order type ¥,, i.e.
the set of midpoints of the intervals (a, a+1) for a <¥,. Thus Y also
has a discrete well-ordered subset W, of order type N,. Each element z
of W, has an immediate successor 2’ in W,, and the open interval (z, 2')
(w.r.t. the canonical ordering) is open in ¥. The family of all these open
intervals (z,2’) for ze W, is the required family of N, pairwise disjoint
open sets in Y. To prove (ii), let y,(p) be a first-order formula which as-
serts that p is a point and that there is a discrete well-ordered set of order
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type N, which has p as a limit point and lies entirely to the left of p in
the canonical order. Let 60, be the sentence (Hp)[v,..(P)A Tw,(»)]-
Then 6, holds in #(X) as can be seen by taking p =N, ;. (¥,,,(p) holds
because of the set of midpoints used to prove (i) and o, (») fails because
N, is a regular cardinal.) Therefore 6, holds in .#(Y). Let p, be a point
which makes 6, hold in & (X¥), and let V, be a discrete well-ordered sub-
set of ¥ which has p, as a limit point, lies to the left of p,, and has order
type N,.,. Assume there is a basis £, of neighborhoods of p, such that
the cardinality of 2, is <N,. Bach neighborhood Ge¢ £, intersects V,,,
and we may choose a point gy in V,nG. The set § of all points gz(Ge 2,,)
is contained in ¥V, and is therefore discrete and well-ordered. But § hasg
cardinality < N, since £, does, p, is a limit point of 8§, and § lies to the
left of p,. This contradicts the assumption that y,(p,) fails, so no such
basis of neighborhoods 2, can exist.

COROLLARY 9.2. There is a space X such that for any space Y e.e. io
X, Y has cardinality at least max {N,, ¢}.

Shelah [23] bas observed that if Godel’s axiom of comstructibility
(V = L) holds, then for each » there is a sentence of the monadic theory
of orderings whose models are exactly those orderings whose order type
is the nth weakly compact cardinal. (A cardinal x is weakly compact
if every partition of the two-element subsets of x into two classes has
2 homogeneous set of power x. Weak compactness is a “large cardinal”
property strictly intermediate between strong inaccessibility and measur-
ability.) Hence if there are infinitely many weakly compact cardinals
and V = L holds, then Theorem 9.1 and Corollary 9.2 hold with ¥, replaced
by the nth weakly compact cardinal », and ¥, replaced by sup,x,.

By considering elementary equivalence with respect to both Z(X)
and C(X), restricting to compact spaces, and assuming the existence
of a measurable cardinal, Isbell has pointed out that one may obtain
a much higher bound on possible Skolem-Liwenheim results than any
of the preceding. A space X is called a P-space if every prime ideal in
C(X) is maximal. By [7, Ex. 4J], X is a P-space iff C(X) is aregular ring,
i.e. C(X) F(Vf)(Hg)[f*g = f]- By [7, Ex. 12H], every extremally discon-
nected non-discrete P-space is of measurable cardinal and. (if there exist
measurable cardinals) there exist compact extremally disconnected non-
discrete P-spaces. If X is such a space and #(Y) = #(X), C(Y) = C(X),
and Y is compact, then Y is also such a space and hence is of measurable
cardinal. (In [7], only completely regular spaces are considered, but
compactness implies complete regularity.)

We have no positive results of the Skolem—-Liwenheim sort for &£ (X).
However, it is obviously true that there is a cardinal x such that every
space is e.e. to a space of cardinality < x, since there are only ¢ spaces
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up to elementary equivalence. Let x, by the least such x. The results of
this section show that x, must be > N, and ¢. The remarks after Corollary
9.2 and [25] show that if it is consistent with the usual axioms of sef theory
(ZFC) to assume the existence of infinitely many weakly compact cardinals,
then it is comsistent with ZFC to assume that x, exceeds infinitely
many weakly compact cardinals. Thus it seems unlikely that the value
of %, can be found in ZFC, although it might be characterizable in a suit-
able extension of ZFC.

For C(X) the situation is somewhat different, at least for compact
spaces.

THEOREM 9.3. For each compact Hausdorff space X there is a compact
Hausdorff space Y such that C(Y) =, . O(ZX), cardY < 2° and card C(Y)
< 0

Proof. Using the Downward Lowenheim-Skolem Theorem for L, ,
we may find a subring & of C(X) which has cardinality < ¢, contains
the constant functions and satisties & <, , C(X). For fe 0(X), |fl<1
is equivalent to

(Eg)(ER) (1 —f = h* and f+1 = g¥).
It follows immediately that |.«/| is a closed subset of C(X), in the supre-

mum norm topoldgy.
Define an equivalence relation %/ on X by

2By <f(z) =f(y) for all fe .

Let Y be the quotient space X [F; since F is closed in X X X, ¥ is a compact
Hausdorff space. Evidently there is a norm-preserving, ring isomorphism
of & onto a subring &' of C(Y). Then &’ is a closed subring of C(Y)
which contains the constant funetions and separates points in ¥. By the
Stone-Weierstrass Theorem [7] this means that &' = C(Y). Thus Y
is compact Hausdortf, 0(Y) =, ,C(X) and card C(Y) < ¢. Since C(¥)
separates points in ¥, it must follow that card ¥ < 2° which completes
the proof.

We remark that the cardinality bounds in Theorem 9.3 are best
possible, even if =, , is replaced by =. For if X is fX,, where X, is
a countable discrete space, then card X = 2°and card O(X) = ¢. Moreover,
if ¥ is compact and C(Y) = C(X), then Y is homeomorphic to X by
Theorem 5.9.

§ 10. Open questions
A few questions which are related to the results in this paper are

listed below:
Q1. Call a space X categorical if every space Y satisfying £(Y)
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= Z(X) is actually homeomorphic to X. Is there any infinite categorical
gPace? Is the unit interval I categorical?

Remark. In § 4 it was shown that if #(X) = £(I), then the topology
on X is the order topology given by a complete, dense linear order < with
end points. By using the ideas in § 7 it is easily shown that X does not
have a discrete subset with order type w, under < or under >. Therefore,
X must be ¢-compact and first countable. (This fact was also observed
by A. Swett [27].) Similar reasoning shows that no discrete subset of X
has the order type of a complete, dense linear order. However we are
not able to show that every discrete subset of X must be countable. In
the presence of Souslin’s Hypothesis, this would suffice to prove that I
is categorical. A Swett has also announced [27] that if % (X) = £ (I)
and Z(X") = £ (I") for some 7 > 2 then X is homeomorphic to I. Swett
has also claimed (in a personal communication) that there exist spaces
X, Y such that X e.e. ¥ but X* is not e.e. to ¥2. (This answers a question
raised in an earlier version of this paper.)

Q 2. Does Z(X) have a decidable theory for every subspace X of the
unit interval?

Q3. Are any two O-dimensional separable metric spaces without
isolated points -e.e.? In particular, are the rationals, the irrationals and
the Cantor set e.e. as topological spaces?

Q 4. Which spaces are e.e. to spaces of arbitrarily large cardinality ¢

Q 5. Are any two infinite dimensional Banach spaces e.e. ags topolo-
gical spaces?

Q 6. Given two (connected, o-compact) manifolds X, ¥, does X e.e.
Y imply that X is homeomorphic to Y?

Q7. If X, Y are Boolean spaces and #(X), #(Y) are both countable
does C(X) =C(Y) imply that X, ¥ are homeomorphic?

Q8.If X, Y are Boolean spaces, does C(X) = C(Y) imply C(X)
=,,0,C(¥), or even C(X) =,,,,C(Y)?

Q 9. Given a space X and a closed subset C of X, the type of C is
the set of formulas ¢(«) (in the language of lattice theory) such that ¢(0)
is true in #(X). Is it true that if p, ¢ are non-isolated points of ¥, the
Stone-Uech compactification of the positive integers, then {p}, {q} have
the same type in #(SN)% (This is a first-order analogue of the question
whether SN ~ N is homogeneous. The non-homogeneity of AN ~ N
was proved by W. Rudin [22] (assuming the continuum hypothesis)
and Z. Frolik [30].)

Added note (September, 1975). A. K. Swett (The first order topology
of the real line, preprint) has used a result of Shelah [23] to show that
there is a space e.e. to the unit interval but not homeomorphic to it,
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thus answering negatively the last part of Q1. Swett has also obtained
a negative answer to Q2 by considering Cantor—Bendixson derivatives.
In addition Swett has obtained many further results in the area of this
paper, including a characterization (due jointly to W. Fleissner) of Souslin
lines a8 exactly those spaces which are %, ,-equivalent to the real line.

G. Cherlin (Undecidable rings of continuous functions, preprint) has
a general theorem which implies that the theory of C(R) (where R is the
real line) is undecidable and in faet is recursively isomorphic to true
second-order arithmetic. Along the way he shows that the set of constant
functions is first-order definable in C(R). From this and the analogue
of Theorem 5.4 for B it can be shown that if X is a completely regular
Hausdorff space such that 0(X) = C(R), then X is homeomorphic to R.
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