Sharp sufficient conditions for Hamiltonian cycles in tough graphs

Z. SKUPIEŃ

Mathematics Institute, University of Mining and Metallurgy Kraków, Poland

It is shown that if G is a 1-tough graph on $n \ge 3$ vertices such that $d(x)+d(y)+d(z) \ge n$ for every triple of mutually distinct and nonadjacent vertices x, y, z, and $\max\{d(u), d(v)\} \ge (n-5)/2$ for all vertices u, v at distance 2 in G then either G is Hamiltonian or else n is odd, $n \ge 15$, and G is a factor of a fixed maximally nonhamiltonian graph.

1. Introduction

Only simple graphs are considered. The letter G denotes an n-vertex graph with the vertex set V and the edge set E; V = V(G) and E = E(G). We sometimes write |G| and $x \in G$ to abbreviate notation |V(G)| and $x \in V(G)$, respectively. The number of components of G is denoted by k(G). We call G a tough graph if G is 1-tough, i.e., if $k(G-W) \leq |W|$ for each subset W of V such that $k(G-W) \neq 1$. The smallest possible sum of degrees of M independent vertices in G is denoted by σ_m (= $\sigma_m(G)$), i.e.,

$$\sigma_m = \min_{I_m} \sum_{x \in I_m} d(x)$$

where I_m ranges over independent m-subsets of V. Some more special notation is introduced in the next section.

Some recent investigations into Hamiltonian tough graphs are inspired by the following result.

JUNG'S THEOREM [7]. If G is a tough graph of order $n \ge 11$ with $\sigma_2 \ge n-4$ then G is Hamiltonian.

One can show that this result is sharp in a sense. To this end, let * denote the nonassociative join on disjoint graphs and let * stand for the

injective join [10, 11]. Recall that, given mutually disjoint graphs K and G^i , i = 1, ..., p, with K complete and of order $\ge p$, and given an injection $\varphi: \{G^j | j = 1, ..., p\} \to V(K)$, the symbol $(\bigcup_{i=1}^p G^i) * \to K$ stands for the union $(\bigcup_i G^i) \cup K$ augmented by all $G^i - \varphi(G^i)$ edges, i = 1, ..., p. Hence

$$J := 3K_1 * \rightarrow K_3$$

is the triangle K_3 with three disjoint short appendices. Consider the following graphs each of which is easily seen to be tough and nonhamiltonian:

$$G_n^0 = K_1 * ((\bigcup_{i=1}^3 K_{m_i}) * \to K_3)$$
 with $1 \le m_1 \le m_2 \le m_3$ and $n = 4 + \sum_i m_i \ge 7$;

(1.1)
$$G_n = ((n-7)/2) K_1 * K_{(n-5)/2} * J$$
 for odd $n \ge 7$.

Next graphs are obtained by joining a new vertex to a maximal clique of G_{n-1} . Thus we get the following graphs for even $n \ge 10$:

(1.2)
$$G_n = (K_2 \cup ((n-10)/2)K_1) * K_{(n-6)/2} * J$$
 for even $n \ge 10$,

(1.3)
$$\left\{ \frac{(n-8)/2}{K_1 * K_{(n-6)/2} * ((K_2 \cup 2K_1) * \to K_3)}{((n-8)/2)K_1 * K_{(n-6)/2} * (3K_1 * \to K_4)} \right\}$$
 for even $n \ge 8$.

Notice that, for n = 7, G_7^0 (= G_7) is the smallest nonhamiltonian tough graph of order $n \ge 3$, due to Chvátal. The graphs G_n^0 , (1.2), and (1.3) appear in [10, 11], the graphs G_n^0 being generalizations of the graphs $K_1*(3K_r*\to K_3)$ introduced in [1]; the graphs (1.1) appear in [3], their factors with $((n-5)/2)K_1$ in place of the complete part $K_{(n-5)/2}$ appear in [5]. Notice also that $\sigma_2(G_n^0) = n - 2 - m_3$ which is or can be $\ge n - 4$ for $7 \le n \le 10$; moreover, $\sigma_2(G_n) = n - 5$ for odd $n \ge 11$ and for n = 12. This shows that in Jung's Theorem both the bound on n and that on σ_2 , as a linear function of n, cannot be relaxed. However, we did not find a corresponding example for any even $n \ge 14$. This has prompted the following substantial improvement of Jung's Theorem for larger n.

THEOREM 1. If G is a tough graph on $n \ge 14$ vertices such that $\sigma_2 \ge n-5$ then either G is Hamiltonian or else n is odd, $n \ge 15$, and G is a factor of the graph G_n in (1.1).

Hence and from Jung's Theorem we get the following sufficient condition for a tough graph G with $n \ge 11$ vertices to be Hamiltonian:

$$\sigma_2(G) \geqslant \begin{cases} n-4 & \text{for } n=12 \text{ and for each odd } n \geqslant 11, \\ n-5 & \text{for each even } n \geqslant 14. \end{cases}$$

Examples presented above show sharpness of that result.

Before submitting the first version of this paper for publication, I received a preprint of [2], which prompted the following generalization of Theorem 1 above and of Theorem 4 in [2].

THEOREM 2. Let G be a tough graph of order $n \ge 3$ such that

(1.4)
$$\sigma_3 \geqslant n$$
, and

(1.5) $\max\{d(u), d(w)\} \ge (n-5)/2$ for all vertices u, w at the distance d(u, w) equal to 2 in G.

Then either G is Hamiltonian or else n is odd, $n \ge 15$, and G, called an exceptional graph, is a factor of the graph G_n in (1.1).

Notice that $\sigma_2 \ge n-5$ and $n \ge 14$ imply $\sigma_3 \ge n$ because the second smallest summand in σ_3 is then at least $\lceil (n-5)/2 \rceil \ge 5$. That is why our Theorem 2 generalizes Theorem 1.

Remark. Each exceptional graph G includes J as an induced subgraph.

COROLLARY ([2, Theorem 4]). A tough n-vertex graph G is Hamiltonian if $n \ge 3$, $\sigma_3 \ge n$, and

$$(1.6) (u, w \in V, d(u, w) = 2) \Rightarrow \max\{d(u), d(w)\} \ge (n-4)/2. \blacksquare$$

The original proof of Theorem 1 and the proof of Theorem 2 given below involve arguments which have now become standard. Namely, for a nonhamiltonian graph G, its longest cycle C with a fixed orientation is considered. It is Nash-Williams who first introduced [8] such a method into Hamiltonian graph theory. Jung proceeds in [7] from that starting point too. Related papers [4, 2] show how using convenient notation as well as appropriate results and observations can lead to elegant proofs which are easy to follow. Other papers like [5, 3, 9] also influenced our reasoning. In the proof, we first note that C is a dominating cycle in G, i.e., G-C comprises isolated vertices only, next that C can avoid a vertex of large degree and that C is of length $\geq n-2$. Finally, we show that exceptional graphs can arise only if C avoids exactly one vertex v whose degree d(v) is large enough, namely $(n-5)/2 \leq d(v) \leq (n-3)/2$.

A number of standard observations used and stated in what follows are specifications of the following trivial one.

PROPOSITION. Assume that the vertices of a longest cycle C of G form a proper subset of the vertices of the union of two disjoint subgraphs, C' and C'', each of which is a cycle or a path (possibly trivial) and $C' \neq K_1$. Let the phrase a pair in a subgraph mean an edge and end-vertices [a singleton] if the subgraph is a cycle and a path $[K_1]$, respectively. Then the following condition $L0^{\alpha}$ (= L0, L0', L0'' where the number of primes is that of paths among C', C'') holds:

L0°. No pair in C' can be matched (improperly if $C'' = K_1$) onto one in C''.

Our proof heavily depends on the following results.

LEMMA. Let G be a tough graph of order $n \ge 3$ with $\sigma_3 \ge 1$. Then L1 through L3 hold.

L1. If $n \le 10$ then G is Hamiltonian.

In fact, all maximally nonhamiltonian tough graphs of order $n \le 10$, listed in [6], have $\sigma_3 < n$.

The smallest known tough maximally nonhamiltonian graph of order n with $\sigma_3 \ge n$ is G_n in (1.1) for n = 15.

L2 ([3, Theorem 5]). Each longest cycle of G is a dominating cycle. \blacksquare

L3 ([3, see proof of Theorem 9]). If G is nonhamiltonian then G has a longest cycle C such that C avoids a vertex v of degree $d(v) \ge n/3$ in G.

Another important result taken from [3] (see L4 in the following section), under the hypotheses of L3, specifies two large independent subsets of V(G), of cardinality |G-C|+d(v)| each.

2. Preliminaries

We assume that paths and cycles are simple graphs. In what follows, let C (or C^{\rightarrow}) be a cycle with a fixed orientation in a graph G. Then C^{\leftarrow} denotes that cycle with the reverse orientation. If $u, w \in C$ then u^+ denotes the successor of u on C, u^- the predecessor, next uCw is the string of vertices on C^{\rightarrow} from u to w inclusive, where uCu:=u, and [uCw] stands for the corresponding section (path) of C; however, [vuCuv] = [vu] and $[uCu^+u] = [uu^+]$. Then the inverse of that string is clearly denoted by wC^+u . However, clearly, $[uCw] = [wC^+u]$. Similarly, if $W \subset V(C)$ then $W^+ = \{w^+ | w \in W\}$, $W^- = \{w^- | w \in W\}$, $u^{++} = (u^+)^+$.

L4 ([3, Theorem 5 and Lemma 8]). Let G be a tough nonhamiltonian graph of order n with $\sigma_3 \ge n$, let C be a longest cycle in G, let $v \in G - C$, and let X = N(v). Then $X \subset V(C)$ and $V(G - C) \cup X^+$ [also $V(G - C) \cup X^-$] is an independent set in G. \blacksquare

In what follows, G is a nonhamiltonian graph, C is a longest cycle of G, $v \in G-C$, and $X = N(v) \cap V(C)$. Moreover, let $x_0, x_1, \ldots, x_{|X|-1}$ be all vertices in X taken in their cyclic order along C^+ . Throughout, indices of vertices read modulo |X|. Because C is a longest cycle therefore $X \cap X^+ = \emptyset$. Hence both neighbours of any x_i on C are outside X. Following [5, 2] we use distinct letters to differentiate between those neighbours. Namely, let $x_i^- = z_{i-1}$ and $x_i^+ = y_i$ for each i, and let $X^- = Z$ and $X^+ = Y$. Let $T = X^+ \cap X^-$ and let t, possibly with a subscript, stand for an element of T. The following observations will be helpful.

L5 (by L0' or L4). Y [also Z] is an independent set of vertices. \blacksquare Hence no t- $(Y \cup Z)$ edge is in E.

L6 (by L0'). Given an edge ww^+ on C, if the path $P := [x_i^+ C x_j^-]$, where $i \neq j$ (and possibly $P = K_1$), avoids both vertices w and w^+ , then G has no two other edges which could match ww^+ (improperly if $x_i^+ = x_j^-$) onto $\{x_i^+, x_j^-\}$.

L7 (by L0"). Let $i \neq j$ and let $\{u_i, u_j\}$ be $\{x_i^+, x_j^+\}$ or $\{x_i^-, x_j^-\}$ where $u_i = x_i^{\pm}$. Let $w_i w_j \in E(C - \{u_i, u_j\})$ where notation is chosen so that the pairs u_i, w_j and u_j, w_i intertwine on C. Then at most one of mutually crossing chords $u_i w_i, u_j w_i$ is in E.

To use L0" in the proof, find a u_i - w_i path and a disjoint u_j - w_j path whose lengths sum up to |C|-1.

L8. If $t \in T$ and $u \in N(t) \cap V(C)$ then $X^+ \cup \{u^+\}$ [also $X^- \cup \{u^-\}$] is an independent set of vertices.

L8 follows from L5, L6, and L7.

L9 (by L0). If $y_h z_f \in E$ then no edge of the subgraph $[y_h Cz_f y_h]$ can be matched onto any edge of the subgraph $[vx_{f+1} Cx_h v]$.

For $\alpha = 4, 5, 7, 8, 15$, $L\alpha^+$ and $L\alpha^-$ will denote the part of the observation $L\alpha$ on X^+ and X^- , respectively (see the next section for L15).

Let components of C-X (represented sometimes by strings of the form y_iCz_i) be called segments of C. The number of vertices in a segment S, denoted by |S|, is called the order of S; and S will be named an |S|-segment. A segment S is called trivial if S is a 1-segment; otherwise S is called nontrivial. Thus |T| is the number of trivial segments of C. In what follows

$$(2.1) v = |X| - |T|,$$

whence ν is the number of nontrivial segments of C, each of which will be denoted by S, with a subscript if $\nu > 1$; S itself will stand for the union of all nontrivial segments of C, |S| being the number of vertices in that union.

Now, assume additionally that in what follows G is tough, nonhamiltonian, and $\sigma_3 \ge n \ge 3$. Thus, by L2, C is a dominating cycle of G.

L10. |C| = 2|X| + r for some $r \ge 2$ and $1 \le v \le r$. Additionally, if $r \le 3$ then v > 1 and, moreover, |C| = n - 1 for r = 2.

Proof. If $|C| \le 2|X| + 1$ then all segments of C are trivial, except possibly one which can be a 2-segment. Then, by L4, k(G-X) > |X|, contrary to the toughness of G. Hence, |C| = 2|X| + r for some $r \ge 2$; $1 \le v \le r$ is obvious. Assume $r \le 3$ and suppose G is still a counterexample. Suppose v = 1. Then, for some $v \in Y$, we have (i) v = 1 and $v \in V$ are trivial, except possibly one which can be a 2-segment.

If no T-S edge is in E then, by L4, k(G-X) > |X|, a contradiction with the toughness of G. On the other hand, if $u \in S$ and $ut' \in E$ for some $t' \in T$ then, by L5, u is an inner vertex of S, whence, by L6, u is the only vertex in S adjacent to T; next, by L8, S-u consists of two parts nonadjacent in G. Then, by L4, $k(G-(X \cup \{u\})) > |X|+1$, again a contradiction. Thus v > 1. It remains to consider the case |C| < n-1 and r = 2 = v. Then S is the union of two 2-segments, whence, by L4, k(G-X) > |X|, which is impossible.

3. Proof of Theorem 2

In what follows we assume that G satisfies the hypotheses of Theorem 2 and is nonhamiltonian, whence, by L1, $n \ge 11$. Let C be a longest cycle of G, with a fixed orientation, such that the maximum degree in G of vertices in G - C is as large as possible among all longest cycles in G. Let v be a vertex of G - C of the largest degree in G. By L2, C is a dominating cycle. Hence X = N(v) and, by L3, $|X| \ge n/3$, whence, by (2.1),

L11.
$$|X| = (n-5)/2 \Rightarrow |T| \ge 5 - v$$
; $|X| = (n-4)/2 \Rightarrow |T| \ge 4 - v$.

L12.
$$|X| \ge (n-5)/2$$
.

Proof. Suppose |X| < (n-5)/2. Then, by (1.5), $d(u) \ge (n-5)/2$ for each $u \in Y \cup Z$. If y is a 1-segment of C then replacing y^-yy^+ in C by y^-vy^+ gives a longest cycle of G which avoids the vertex y with d(y) > d(v), a contradiction with the choice of C. Hence C contains no 1-segment and therefore $d(v) = |X| \le |C|/3 < n/3$, a contradiction with L3.

Hence, because G is tough and $V(G-C) \cup Y$ is independent by L4⁺, therefore $|G-C|+|Y| \le n/2$, whence $|C| \ge n/2+|X| \ge n-5/2$. Moreover, by L10,

(3.1)
$$2|X|+r = |C| \le n-1 \le 2|X|+4$$
 where $r \ge 2$,

whence, by (2.1), $1 \le v \le r \le 4$ and $v \le |X|$.

Case 1: v = 1. Then, by L10 and (3.1), we have r = 4, |C| = n - 1, and |X| = (n-5)/2, whence n is odd and, by L11, $|T| \ge 4$. We may assume $S = y_0 y_0^+ y_0^{++} z_0^- z_0$. Suppose that two vertices, say u and w, in S are adjacent to T. Then, by L6 and L5, $\{u, w\} = \{y_0^+, z_0^-\}$. By L5 and L8, however,

(3.2)
$$k(G-(X\cup\{y_0^+, z_0^-\})) > |X|+2,$$

a contradiction with the toughness of G. Similarly, if G has no S-T edge then k(G-X) > |X|, again a contradiction. Thus exactly one of inner vertices in S has a neighbour in T. Suppose $ty_0^+ \in E$. Then, by L8, $y_0 y_0^{++}$, $y_0 z_0 \notin E$. Now $y_0 z_0^- \in E$ because otherwise $k(G-(X \cup \{y_0^+\})) > |X|+1$, a contradiction. However, $y_0^{++} z_0 \notin E$ because otherwise $[vx_0 C^- ty_0^+ y_0 z_0^- y_0^{++} z_0 Ct^- v]$ is a Hamil-

tonian cycle of G. Hence (3.2). Therefore, no edge $ty_0^+ \in E$ and, equivalently, no $tz_0^- \in E$.

Thus $t_0y_0^{++} \in E$ for some $t_0 \in T$. Then, by L8, $y_0z_0^-$, $y_0^+z_0 \notin E$. Hence, if none of the edges y_0z_0 , $y_0^+z_0^-$ is in E then $k(G-(X \cup \{y_0^{++}\})) > |X|+1$, a contradiction; however, those edges are not both in E because otherwise G would clearly have a cycle longer than C. Suppose $y_0z_0 \in E$ and $y_0^+z_0^- \notin E$. By L9, $y_0^+t_0^-$, $y_0^+t_0^+ \notin E$. Also $y_0^+x_0$, $y_0^+x_1 \notin E$ because otherwise G has a cycle longer than C. Hence, since $n \ge 11$, $t_0^+ \ne x_0$ or $t_0^- \ne x_1$. Therefore at least three vertices in X are nonadjacent to y_0^+ , whence $d(y_0^+) \le |X|-1 < (n-5)/2$. By symmetry, also $d(z_0^-) < (n-5)/2$, contrary to (1.5).

Thus $y_0 z_0 \notin E$ and $y_0^+ z_0^- \in E$. Now, if $t \neq t_0$ then $t y_0^{++} \notin E$ (whence $N(t) \subseteq X$), because otherwise G is clearly Hamiltonian. Similarly, $y_0 y_0^{++}, z_0 y_0^{++} \notin E$. Hence, J is induced by $\{t_0, y_0, z_0, y_0^+, y_0^{++}, z_0^-\}$ and $G \subseteq G_n$ in (1.1).

DEFINITION. Given α , $\beta \in \mathbb{Z}_{|X|}$, let $T'_{\alpha\beta} = \{t \in T: t \in [y_{\alpha}Cz_{\beta}]\}$. Given T', let T'' = T - T' and, moreover, let $t' \in T'$ and $t'' \in T''$.

Case 2: v = 2 = r. We may assume that $S = S_0 \cup S_i$ where $S_0 = y_0 z_0$ and $S_i = y_i z_i$ for some i > 0. By L10, n is odd and |C| = n - 1, whence, by (3.1), |X| = (n-3)/2. Since $n \ge 11$, $|T| = |X| - 2 \ge 2$. Moreover, $N(t) \subseteq X$ by L5. If $y_0 z_i$, $z_0 y_i \notin E$ then, by L5, k(G - X) > |X|, a contradiction with the toughness of G. On the other hand, by L6, only one of those two edges can be in E.

Assume $z_0 y_i \in E$ and let $T' = T'_{i0}$ (the remaining case $y_0 z_i \in E$ is clearly equivalent). Hence $y_0 z_i \notin E$. Moreover, by L6 and L7⁺, $y_0 x_i$, $y_0 x_1 \notin E$, whence $N(y_0) \subseteq \{z_0\} \cup X - \{x_1, x_i\}$. Similarly, $N\{z_i\} \subseteq \{y_i\} \cup X - \{x_1, x_i\}$.

Suppose i > 1. Then $d(y_0)$, $d(z_i)$ are both $\leq (n-5)/2$. Suppose i+1 < |X|. Then $T' \neq \emptyset$ and, by L6 (or L7), no $t' - \{x_1, x_i\}$ edge is in E, whence $d(x_0^-)$, $d(x_{i+1}^+)$ are both $\leq |X| - 2 < (n-5)/2$. Hence, by (1.5), $d(y_0) = d(z_i) = (n-5)/2$; and, moreover, $x_0^- = x_{i+1}^+$. Now, if n = 11 then $\sigma_3 \leq d(x_0^-) + d(y_0) + d(v) < n$, contrary to (1.4). If n > 11 then i > 2, whence $y_0 x_2, z_i x_2 \in E$ and therefore, by L9, G has no $\{y_1, y_2\} - \{x_0, x_{i+1}\}$ edge where $y_1, y_2 \in T$. Hence, $d(y_1)$, $d(y_2) < (n-5)/2$, contrary to (1.5). Therefore $T' = \emptyset$. Hence, by (1.5), $y_0 x_2$ or $z_i x_2$ is in E. Without loss of generality, assume $y_0 x_2 \in E$. Then $y_1, y_2 \in T$ and, by L9, we have $y_1 x_0, y_2 x_0 \notin E$, whence $d(y_1)$, $d(y_2) \leq (n-5)/2$. Now, by (1.5), $y_1 x_i$ or $y_2 x_1 \in E$. In either case, however, G has a Hamiltonian cycle: through $y_i z_0 y_0 x_2$ and either $x_i y_1 x_1 v x_0$ or $x_1 y_2 C x_i v x_0$, a contradiction.

Thus i = 1. By L6 (or L7), no $tx_1 \in E$, whence $N(t) \subseteq X - \{x_1\}$ and equality holds for all but possibly one $t \in T$ (by (1.5)). Now, $G \subseteq G_n$ in (1.1) and J is induced by $\{v, y_0, z_0, x_1, y_1, z_1\}$.

L13. If $v = 2 < r \le 4$ then r = 4 and nontrivial segments of C have orders 4 and 2.

Proof. Suppose the contrary. Then we may assume that $S = S_0 \cup S_i$ where $S_0 = y_0 y_0^+ z_0$ and, for some i > 0, either $S_i = y_i z_i$ if r = 3, or $S_i = y_i y_i^+ z_i$ if

r=4. Moreover, by (3.1) and L11, we have either $3 \le r \le 4$, |X|=(n-5)/2 and $|T| \ge 3$, or r=3, |X|=(n-4)/2 and $|T| \ge 2$; furthermore, |C|=n-1 if r=4.

Suppose $y_0z_i \in E$ and let $T' = T'_{0i}$. Then, by L7, $t''y_0^+$, $t''z_i^- \notin E$, whence, by L4, $N(t'') \subseteq X$. By L6 (or L7), G has no $t' - \{y_0^+, x_0, x_{i+1}, z_i^-\}$ edge, whence, by L4, d(t') < |X| even if $x_{i+1} = x_0$. Therefore, by (1.5), i < 3, i.e., $|T'| \le 1$, whence $x_{i+1} \ne x_0$. Similarly, no $y_i - \{x_0, y_0^+, x_{i+1}\}$ edge is in E. Moreover, if r = 3 then $y_i z_0 \notin E$ by L6, whence, by L4, $d(y_i) < |X|$. Consequently, (1.5) implies $T' = \emptyset$ if r = 3. Hence, if r = 3 then $y_{i+1}, y_{i+2} \in T''$. The same is true if r = 4 because then $|T| \ge 3$. Therefore, by (1.5), $tx_1 \in E$ for some $t = y_{i+1}, y_{i+2}$. Hence, by L7⁺, $y_i z_0 \notin E$ also if r = 4. Thus, in each case, $N(y_i) \subseteq \{z_i, y_i^+\} \cup X - \{x_0, x_{i+1}\}$. Similarly, $N(z_0) \subseteq \{y_0, y_0^+\} \cup X - \{x_0, x_{i+1}\}$. Hence, by (1.5), there is $u \in \{z_0, y_i\}$ such that d(u) = |X| (so $u = z_0$ if r = 3). Therefore $ux_{i+2} \in E$. Hence, by (1.5), an edge of C incident to x_{i+2} can be matched onto $z_0 x_1$ if $u = z_0$ or onto $x_i y_i$ if $u = y_i$, a contradiction with L9. Thus $y_0 z_i \notin E$ and similarly $z_0 y_i \notin E$.

Now, using L4, we shall conclude that G is not tough or has a cycle longer than C. Namely, if both S_0 and S_i are induced paths in G then, for $X' = X \cup \{y_0^+\}$ if r = 3 and $X' = X \cup \{y_0^+, y_i^+\}$ if r = 4, k(G - X') > |X'|. Otherwise, we (change notation if necessary so as to) assume that S_0 induces a triangle. For r = 4, assume additionally that $y_i z_i \notin E$ or $y_0^+ y_i^+ \notin E$. Notice that, by L7, the center of that segment which induces a triangle (hence y_0^+) is adjacent to no end-vertex of another segment. Hence, for X'' = X if $y_i z_i \in E$ or $X'' = X \cup \{y_i^+\}$ if r = 4 and $y_i z_i \notin E$, we clearly get k(G - X'') > |X''| wherein we may use the fact that |C| = n - 1 if r = 4. It remains to consider the case that r = 4, both S_0 and S_i induce triangles and $y_0^+ y_i^+ \in E$. Then, however, G is clearly Hamiltonian, a contradiction.

Condition (1.4) implies the following.

L14. If $\{u_1, u_2, u_3\}$ is an independent 3-subset of V(G) then $d(u_1) \ge n - d(u_2) - d(u_3)$.

Case 3: v = 2 < r. Owing to (3.1) and L13, r = 4, |C| = n-1, |X| = (n-5)/2 and, moreover, we may assume that $S = S_0 \cup S_i$ where $S_0 = y_0 y_0^+ z_0^- z_0$ and $S_i = y_i z_i$ for some i > 0. Hence, by L11, $|T| \ge 3$.

Subcase 3.1: An end-vertex of S_0 is adjacent to one of S_i . Without loss of generality, due to L5, assume $z_0y_i \in E$ and let $T' = T_{i0}'$. By L8⁺ and L5, $N(t) \subseteq \{y_0^+\} \cup X$ for each $t \in T$, and, by L6, $t'x_1$, $t'x_i \notin E$, whence d(t') < |X| if i > 1. By L6 and L7, no $z_i - \{y_0, z_0^-, x_1, x_i\}$ edge as well as no $y_0 - \{x_1, x_i\}$ edge is in E, whence, by L5, the sets of possible neighbours of z_i and y_0 outside $X - \{x_1, x_i\}$ are $\{y_0^+, y_i\}$ and $\{y_0^+, z_0^-, z_0\}$, respectively. However, at most one of the edges $z_i y_0^+$ and $y_0 z_0^-$ is in E because otherwise E0 has a Hamiltonian cycle: $[vx_1 C y_i z_0 z_0^- y_0 y_0^+ z_i C x_0 v]$, contrary to the assumption. Therefore, because by L14, $d(y_0) \ge n - d(v) - d(z_i)$, if i > 1 then the vertex y_0 has three or more neighbours in $X - \{x_1, x_i\}$.

Suppose i > 1. Then, by (1.5), because |X| = (n-5)/2, $|T'| \le 1$, whence $|T''| \ge 2$. Hence i > 2 and y_0 is adjacent to some x_j with 1 < j < i. Then z_{j-1} , $y_j \in T''$, whence, by (1.5), $z_{j-1}x_j$ or x_jy_j can be matched in G onto one of the edges $y_0y_0^+$ and y_0x_0 , which contradicts L9.

Thus i=1, whence T=T' and $N(t)\subseteq\{y_0^+\}\cup X-\{x_1\}$. Therefore (1.5) implies that, for some $t_0\in T$, $t_0y_0^+\in E$. Then, by L8, $y_0z_0^-$, y_0z_0 , $z_0^-y_1\notin E$. Moreover, $G-z_0^-$ can easily be seen to have a Hamiltonian cycle through z_0x_1 , whence, by L0', $z_0^-x_1\notin E$. Consequently, the set $\{v, z_0^-, z_0, x_1, y_1, z_1\}$ induces J in G and $G\subseteq G_n$ in (1.1).

Subcase 3.2: No end-vertex of S_0 is adjacent in G to an end-vertex of S_i . Suppose that y_0^+ and z_0^- are not both covered by S_i - S_0 edges. Then either (α) G has no S_i - S_0 edge or (β) for $\{w, w_0\} := \{y_0^+, z_0^-\}$, assume without loss of generality that $y_i w \in E$ for a fixed w and that each S_i - S_0 edge of G covers w. In case (α), G has a T-S edge because otherwise, by L5, k(G-X) > |X|, a contradiction with the toughness of G.

Suppose there is $u \in S$ such that $t_0u \in E$ for some $t_0 \in T$. Then, by L5, $u \in \{w, w_0\}$. Next, by L6, $N(t) \subseteq \{u\} \cup X$ for each t. Moreover, by L8, we have y_0u^+ , $z_0u^- \notin E$. Hence, (a) does not hold and, moreover, $u = w_0$ ($\neq w$ and $y_iw \in E$) because otherwise $k(G - (X \cup \{u\})) > |X| + 1$ both in case (β) for u = w and in case (a). By L7⁺, $y_0w^+ \notin E$, whence $N(y_0) \subseteq \{y_0^+\} \cup X$. Furthermore, $w = y_0^+$ because otherwise $t_0y_0^+$, $y_iz_0^- \in E$, which contradicts L8⁺. Thus $t_0w^+ \in E$, whence, due to L6 (or L7⁺), $t_0 \notin [y_iCx_0]$. Hence, by L6, $z_iw \notin E$, whence $N(z_i) \subseteq \{y_i\} \cup X$. Define the cycles $C' = [y_iCy_0^+y_i]$ and $C'' = [vt_0^- C^+ z_0^- t_0 Cx_iv]$. Now, by L0, if $j = i+1, \ldots, |X|$, then no neighbour of x_j on C' (hence neither z_i nor y_0) is adjacent to x_i or $t_0^- \in X$), the neighbours of v of C''. Therefore, because $x_0^- \in T$ or $x_0^- = z_i$, we have $d(y_0)$, $d(x_0^-) < |X|$, a contradiction with (1.5) because |X| = (n-5)/2.

Thus u does not exist, whence $N(t) \subseteq X$. Moreover, (β) holds. Hence, by L7⁺, $y_0w^+ \notin E$. However, $w^-z_0 \in E$ because otherwise $k(G-(X \cup \{w\})) > |X|+1$, a contradiction. Hence, by L7⁻, $z_iw \notin E$, whence $N(z_i) \subseteq \{y_i\} \cup X$. Let $C' = [wy_iCw^-z_0C^+w]$ and either $C'' = [vx_1Cx_iv]$, a cycle, if i > 1, or else $C'' = [vx_1]$, a path, if i = 1. Now, $i \ge |X|-2$ because otherwise the vertices $y_{i+1}, y_{i+2} \in T$ but, by L0 (or L0' if i = 1) none of them is adjacent to x_1 , the neighbour of v on C'', whence $d(y_h) < |X|$ for h = i+1, i+2, which contradicts (1.5). Hence, i > 2 and either x_0^- is the only element of T on C' or $x_0^- = z_i$. By L14, because the set $\{x_0^-, y_1, v\}$ is independent, $d(x_0^-) \ge 5$. Hence x_0^- has three or more neighbours in $X \cap V(C'')$, whence $x_0^- x_j \in E$ for some j, 1 < j < i. Therefore, by L0, both neighbours of x_j on C'', which are both in T, are nonadjacent to x_0 , again a contradiction with (1.5).

Thus S_i - S_0 edges cover both y_0^+ and z_0^- and, by L6, those edges cover either y_i or z_i (but not both). Assume without loss of generality that they cover

 y_i . Then, by L7⁺, no y_0 - $\{z_0^-, z_0^-\}$ edge is in E. Also $z_0 y_0^+ \notin E$ because otherwise we can arrive at a contradiction by considering C' and C'' defined as above with $w = z_0^-$. Thus the set $\{y_0, y_0^+, z_0^-, z_0, y_i, z_i\}$ induces J in G and $G \subseteq G_n$ in (1.1).

L15. No two vertices in X^+ [in X^-] have degrees smaller than (n-5)/2.

Proof. Let U = Y or U = Z. Suppose that two vertices u_1 , u_2 in U have degrees $d(u_1)$, $d(u_2) < (n-5)/2$. By L4, u_1 and u_2 have neighbours in C - U only and, by (1.5), no neighbour in common, whence $d(u_1) + d(u_2) \le |C| - d(v)$. Moreover, the set $\{u_1, u_2, v\}$ is independent, whence $\sigma_3 \le |C| < n$, contrary to (1.4).

L16. If $3 \le v \le 4$ then v = 3 and r = 4.

Proof. Suppose the contrary. Then, by (3.1), $3 \le v = r \le 4$ and, for v = 3, either |C| = n - 2 and |X| = (n - 5)/2 or |C| = n - 1 and |X| = (n - 4)/2, else v = 4, |C| = n - 1 and |X| = (n - 5)/2. Moreover, we may assume that $S = S_0 \cup S_i \cup S_j \cup S_g$ where $0 < i < j \le g < |X|$, $S_l = y_l z_l$ for l = 0, i, j, g, and g = j iff v = 3. By L11, $|T| \ge 1$ and, by L4, $N(t) \subseteq X$.

If no edge connects distinct segments then G is not tough, because then, by L4, k(G-X) > |X|. On the other hand, due to symmetry, it is enough to show that contradiction follows in each of the following three cases:

- (α) $z_0, y_i \in E$;
- (β) $z_0 y_i \in E$;
- $(\gamma) \quad v = 4 \text{ and } E \cap E' \neq \emptyset \text{ where } E' = \{z_0 y_a, z_i y_0, z_i y_i, z_a y_i\}.$

Suppose (a) holds. Let $T' = T_{i0}'$. Then, by L6, no $y_0 - \{x_i, z_i, z_j, z_g\}$ edge is in E and, by L7⁺, $y_0 x_1 \notin E$, whence, by L4, $N(y_0) \subseteq \{z_0\} \cup X - \{x_1, x_i\}$. Similarly, $N(z_i) \subseteq \{y_i\} \cup X - \{x_1, x_i\}$ and also $t'x_1, t'x_i \notin E$. Hence d(t') < |X|, whence, by L15, $|T'| \le 1$. Suppose i > 1. Then $d(y_0)$, $d(z_i) < |X|$, whence, by L15, $T' = \emptyset$. Moreover, by (1.5), y_0 and z_i have no common neighbour. Hence $\sigma_3 \le d(y_0) + d(z_i) + d(v) \le 2|X| < n$, contrary to (1.4). Thus i = 1. Then T = T', |T| = 1 and |X| = v + |T|. If $t \in T$ then $\sigma_3 \le d(t) + d(y_0) + d(v) \le 3v + 2 < n$, contrary to (1.4).

Thus $z_0 y_i \notin E$ and similarly $z_i y_j$, $z_j y_g$ for g > j, and $z_g y_0 \notin E$.

Suppose (β) holds, i.e., $z_0 y_j \in E$. By L6 and L7, $N(y_0) \subseteq \{z_0, z_i\} \cup X - \{x_1, x_j\}$ and $N(z_j) \subseteq \{y_j, y_i\} \cup X - \{x_1, x_j\}$. Similarly, if $t' \in T'_{j0}$ then $t'x_1$, $t'x_j \notin E$, whence $d(t') \le |X| - 2$. Therefore, by L15, $|T'_{j0}| \le 1$. Hence, because $|T| \ge 1$, if $y_0 z_i$, $z_j y_i \in E$ then one of the sets T'_{j0} , T'_{0i} and T'_{ij} is a singleton and the remaining two are empty, and $d(t) \le |X| - 2$. Then |X| = v + 1 and therefore $\sigma_3 \le d(y_0) + d(z_j) + d(t) \le 3v + 1 < n$, contrary to (1.4). Therefore $d(y_0)$ or $d(z_j)$ is smaller than |X|. Hence, by L15, $T'_{j0} = \emptyset$ and N(t) = X, whence $tx_0 \in E$ for each t. Moreover, the set $\{y_0, z_i, v\}$ is independent, whence, by L14, $d(y_0)$

 $\geqslant v+1$. Therefore y_0 has a neighbour adjacent on C to some t, which contradicts L9 with $y_1z_0 \in E$.

Thus $z_0 y_j \notin E$ and similarly the edges $z_i y_0$ and $z_j y_i$ if v = 3 as well as $z_i y_g$, $z_i y_0$, and $z_a y_i$ if v = 4 do not belong to E. This is a contradiction if v = 3.

Thus (γ) holds. Now E' contains all Y - Z chords of C that are in E. Suppose that $z_0 y_g \in E$. Then, by L6 and L7, $N(y_0) \subseteq \{z_0, z_i\} \cup X - \{x_1, x_g\}$ and $N(z_g) \subseteq \{y_g, y_j\} \cup X - \{x_1, x_g\}$. By L7, if $t \in T'_{g0}$ then $N(t) \subseteq X - \{x_1, x_g\}$. Hence $E' \notin E$ because otherwise d(t) < |X| for each t, whence, by L15, |T| = 1; moreover, $d(u) \ge |X|$ (with equality in fact) for each $u \in (Y \cup Z) - T$, and therefore $y_0 x_j, y_j x_0 \in E$, contrary to L9 with $y_g z_0 \in E$. Thus, without loss of generality, assume that $z_0 y_g \in E$ and $z_g y_j \notin E$. Then $d(z_g) < |X|$, whence, by (1.5), $T'_{g0} = \emptyset$ but $d(y_0) = |X|$. Hence $y_0 z_i \in E$. Moreover, by L15, N(t) = X for each t and therefore $T'_{0i} = \emptyset$. Thus $y_{i+1} \in T$ or $y_{g-1} \in T$ because $T \ne \emptyset$; moreover, $tx_0 \in E$ for each t. Hence, by L9, $y_0 x_{i+1}$ or $y_0 x_{g-1}$ is not in E, which contradicts $d(y_0) = |X|$.

Case 4: $v \ge 3$. Then, by L16 and (3.1), v = 3, r = 4, |C| = n - 1, |X| = (n - 5)/2, and we may assume that $S = S_0 \cup S_i \cup S_j$ where 0 < i < j < |X|, $S_0 = y_0 y_0^+ z_0$, and $S_l = y_l z_l$ for l = i, j. By L11, $|T| \ge 2$; by L5, $N(l) \subseteq \{y_0^+\}$ $\cup X$. Notice that $y_h z_g \in E$ for some $g, h \in \{0, i, j\}$ such that either $h \ne g$ or h = g = 0. In fact, otherwise by L5, $k(G - (X \cup \{y_0^+\})) > |X| + 1$, contrary to the toughness of G.

Suppose $y_0z_i \in E$ and let $T' = T'_{0i}$. Then, by L6, $y_iy_0^+$, y_ix_0 , $y_iz_0 \notin E$ and, by L7⁺, $y_ix_{i+1} \notin E$, whence, by L5, $N(y_i) \subseteq \{z_i, z_j\} \cup X - \{x_0, x_{i+1}\}$. Similarly, $N(z_0) \subseteq \{y_0^+, y_0, y_j\} \cup X - \{x_0, x_{i+1}\}$, $N(t') \subseteq X - \{x_0, x_{i+1}\}$ and $N(t'') \subseteq X$. Hence, by (1.5), $|T'| \le 1$, whence $T'' \ne \emptyset$. Suppose $d(y_i) \ge |X|$. Then, by L15, $x_it_0 \in E$ for some $t_0 \in T''$, whence x_iy_i can be matched in G onto an edge of C incident to t_0 , contrary to L9. Else $d(y_i) < |X|$. Then, by L15, N(t) = X, whence $T' = \emptyset$ (i.e., i = 1). Therefore, by (1.5), $d(z_0) \ge |X|$. Consequently, because $|T''| \ge 2$, z_0x_1 can be matched onto an edge of C incident to some t'', again a contradiction with L9. Hence $y_0z_i \notin E$ and similarly $y_iz_0 \notin E$.

Suppose $z_0 y_i \in E$ and let $T' = T'_{i0}$. By L6 and/or L7, $N(z_i) \subseteq \{y_i\} \cup X - \{x_1, x_i\}$, $N(t') \subseteq X - \{x_1, x_i\}$, and $N(t'') \subseteq X$. Hence i > 1 because otherwise $T'' = \emptyset$ and $|T'| \ge 2$, contrary to L15. Then $d(z_i) < |X|$, whence, by L15, $T' = \emptyset$ and therefore i > 2; moreover, N(t) = X. Furthermore, by L14, $d(z_i) \ge n - d(t) - d(v) \ge 5$. Consequently, $z_i x_h \in E$ for some h, 1 < h < i. Then $y_h \in T$ and therefore $z_i x_{i+1}$ can be matched in G onto $x_h y_h$, contrary to L9. Hence $z_0 y_i \notin E$ and similarly $y_0 z_i \notin E$.

Suppose $y_i z_j \in E$ and let $T' = T'_{ij}$. By L6, $t' x_i$, $t' x_{j+1} \notin E$, whence d(t') < |X|. By (1.5), $d(z_i)$ or $d(y_j) \ge |X|$. Without loss of generality, suppose $d(y_j) \ge |X|$. Then, by the above, $N(y_j) = \{z_j, y_0^+\} \cup X - \{x_i, x_{j+1}\}$. Hence, by L9, no $x_j - \{y_0, t''\}$ edge is in E. Moreover, by L7⁺, $y_0 z_0 \notin E$ because $y_j y_0^+ \in E$. Also, if $u = y_0$ or $u = t_0 \in [x_{j+1} Cx_0]$ then $ux_i \notin E$ [if $t_1 \in [x_1 Cx_i]$ then

 $t_1x_{j+1} \notin E$] because otherwise there is a Hamiltonian u^+ -v path [Hamiltonian t_1^- -v path] of $G-[y_iCz_j]$ whose end-vertices can be matched in G onto the edge y_jx_j of the cycle $[z_jy_iCz_j]$, contrary to L0'. Thus $N(y_0) \subseteq \{y_0^+\} \cup X - \{x_j, x_i\}$, whence $d(y_0) < |X|$. Hence, by L15, $T' = \emptyset$, i.e., j = i+1. Therefore $d(t_0)$, $d(t_1) < |X|$, whence, by L15, $T'' = \emptyset$, a contradiction with $T \neq \emptyset$. Hence $y_iz_i \notin E$.

Assume $z_i y_j \in E$ and let $T' = T'_{ji}$. Now, $t' x_{i+1}$, $t' x_j \notin E$. Moreover, $N(y_i) \subseteq \{y_0^+, z_i\} \cup X - \{x_{i+1}, x_j\}$, $N(y_0) \subseteq \{y_0^+, z_0\} \cup X - \{x_{i+1}, x_j\}$ and, by L7⁺, at most one of the edges $y_i y_0^+$, $y_0 z_0$ is in E. Suppose j > i+1. Then d(t') < |X| and, by L15, one of $d(y_i)$, $d(y_0)$ is |X| and the other smaller. Hence $T' = \emptyset$, j > i+2 because $|T| \ge 2$, and $d(t) \ge |X|$. By L14, because $\{y_0, y_i, v\}$ is independent, $d(y_0) \ge 5$. Hence $y_0 x_h \in E$ for some h, i+1 < h < j. Therefore $y_h \in T$ and, by L9, we have $y_h y_0^+$, $y_h x_0 \notin E$, whence $d(y_h) < |X|$, contrary to L15⁺. Thus j = i+1 if $z_i y_i \in E$.

Suppose $y_0 z_0 \in E$. Then $z_i y_j \notin E$ because otherwise j = i+1 and no $t-\{y_0^+, x_j\}$ edge is in E, whence d(t) < |X|, contrary to L15 and $|T| \ge 2$. Moreover, by L7, no $y_0^+-(Y \cup Z - \{y_0, z_0\})$ edge is in E. Therefore and by the above, k(G-X) > |X|, a contradiction with the toughness of G.

Hence finally, $y_j z_i$ is the only chord of C of the form $y_h z_g$ which is in E. Then j = i + 1, $\{v, y_i, z_i, x_j, y_j, z_j\}$ induces J in G, and $G \subseteq G_n$ in (1.1).

4. Concluding remarks

The graphs G_n and G_n^0 are used in [2] to show that the sufficient condition in Corollary (Section 1) is sharp for large n's. Namely, for $G = G_n^0$ with $n \ge 7$, the Fan-type condition (1.6) holds if $m_2 = m_3 = \lceil (n-6)/2 \rceil$ but $\sigma_3(G_n^0) = n-1$. On the other hand, for $G = G_n$ with n = 15 and $n \ge 17$, $\sigma_3(G) = n$ but (1.6) holds with the bound (n-4)/2 replaced with one by 1 smaller, i.e.,

$$(4.1) (u, w \in V, d(u, w) = 2) \Rightarrow \max\{d(u), d(w)\} \ge (n-6)/2.$$

CONJECTURE 1. Theorem 2 (Section 1) remains valid if (1.5) is replaced with (4.1), the phrase "n is odd, $n \ge 15$ " with "15 $\le n \ne 16$ ", and "the graph G_n in (1.1)" with "a graph in (1.1), (1.2), or (1.3)".

Conjecture 2. For some integer n_1 and for a tough 3-connected n-vertex graph G, if $n \ge n_1$ and (4.1) holds then either G is Hamiltonian or else G is a factor of a graph in (1.1), (1.2), or (1.3).

The Tietze graph (cubic, on 12 vertices) shows that $n_1 \ge 13$.

Conjecture 2, if true, generalizes Theorem 5 of [2] which gives the following sufficient condition for a tough n-vertex graph G to be Hamiltonian:

G is 3-connected, (1.6) holds and $n \ge n_0$

where $n_0 \le 35$. The graph G_{12} in (1.2) shows that $n_0 \ge 13$.

Acknowledgements. The author is greatly indebted to Dr. D. Bauer and Dr. H. J. Veldman for their sending him preprints of papers (among others) [3, 4] and [2], respectively.

References

- [1] A. Ainouche and N. Christofides, Conditions for the existence of hamiltonian circuits in graphs based on vertex degrees, J. London Math. Soc. (2) 32 (1985), 385-391.
- [2] D. Bauer, H. J. Broersma, and H. J. Veldman, On generalizing a theorem of Jung, preprint, 1988.
- [3] D. Bauer, A. Morgana, E. F. Schmeichel, and H. J. Veldman, Long cycles in graphs with large degree sums, Discrete Math., to appear.
- [4] -, -, -, A simple proof of a theorem of Jung, ibid., to appear.
- [5] A. Bigalke und H. A. Jung, Über Hamiltonsche Kreise und unabhängige Ecken in Graphen, Monatsh. Math. 88 (1979), 195-210.
- [6] J. Jamrozik, R. Kalinowski, and Z. Skupień, A catalogue of small maximal nonhamiltonian graphs, Discrete Math. 39 (1982), 229-234.
- [7] H. A. Jung, On maximal circuits in finite graphs, in: Ann. Discrete Math. 3 (1978), 129-144.
- [8] C. St. J. A. Nash-Williams, Edge-disjoint Hamiltonian circuits in graphs with vertices of large valency, in: Studies in Pure Mathematics (Presented to Richard Rado, ed. by L. Mirsky), Acad. Press, 1971, 157-183.
- [9] C. M. Pareek and Z. Skupień, On the smallest non-Hamiltonian locally Hamiltonian graph, J. Univ. Kuwait Sci. 10 (1983), 9 17.
- [10] Z. Skupień, On tough maximally non-Hamiltonian graphs, Bull. Polish Acad. Sci. Math. 36 (7-8) (1988).
- [11] -, Problem (conjecture on tough nonhamiltonian n-vertex graphs with $\sigma_2 \ge n-6$), Discrete Math., to appear.

Presented to the Semester Combinatorics and Graph Theory September 14 — December 17, 1987