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Sharp sufficient conditions
for Hamiltonian cycles in tough graphs
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It is shown that if G is a 1l-tough graph on n >3 vertices such that
d(x)+d(y)+d(z) = n for every triple of mutually distinct and nonadjacent
vertices X, y, z, and max {d(u), d(v)} > (n—S5)/2 for all vertices u, v at distance
2 in G then either G 1s Hamiltonian or else nis odd, n > 15, and G is a factor of
a fixed maximally nonhamiltonian graph.

1. Introduction

Only simple graphs are considered. The letter G denotes an n-vertex graph with
the vertex set V and the edge set E; V' = V(G) and E = E(G). We sometimes
write |G| and x € G to abbreviate notation |V (G)| and x € V(G), respectively. The
number of components of G is denoted by k(G). We call G a tough graph if G is
1-tough, i.e., if k(G— W) < |W]| for each subset W of V such that k(G- W) # 1.
The smallest possible sum of degrees of m independent vertices in G is denoted
by ¢, (= 0,(0)), ie,

0, =min ) d(x)
Im xe€lm
where I, ranges over independent m-subsets of V. Some more special notation
is introduced in the next section.

Some recent investigations into Hamiltonian tough graphs are inspired by
the following result.

JUNG’s THEOREM (7). If G is a tough graph of order n > 11 witho, 2 n—4
then G is Hamiltonian. =

One can show that this result is sharp in a sense. To this end, let *
denote the nonassociative join on disjoint graphs and let »— stand for the
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injective join [10, 11]. Recall that, given mutually disjoint graphs K and
G, i=1,...,p, with K complete and of order > p, and given an injection
¢: |G/lj=1,..., p} > V(K), the symbol (| Ji- ,G)t—»K stands for the union
(U;GHYuK augmented by all G-¢(G) edges, i=1, ..., p. Hence

J:=3K,»K,

is the triangle K, with three disjoint short appendices. Consider the following
graphs each of which is easily seen to be tough and nonhamiltonian:

3
GO=K, +((|J K, )+—K;) withl<m <m,<myandn=4+Ym>7
i=1 i

(1.1) G,=(n—7)2)K,*K(,_sy2*¢J for odd n>7

Next graphs are obtained by joining a new vertex to a maximal clique of
G,—. Thus we get the following graphs for even n (three for each even n = 10):

12) G, =(K,u((n—10y2)K,)*K_ey2*J for even n > 10,

(n—8)/2)K % Kn-6y2*((K, V2K ) K;)
' (("“8)/2)1(1 *Kpn-62*(3K;*»~> K,)

Notice that, for n =7, G9 (= G,) is the smallest nonhamiltonian tough
graph of order n > 3, due to Chvatal. The graphs G?, (1.2), and (1.3) appear in
[10, 11], the graphs G; being generalizations of the graphs K, *(3K,»—» K,)
introduced in [1]; the graphs (1.1) appear in 3], their factors with ((n—S5)/2)K
in place of the complete part K,_s,, appear in [5]. Notice also that
0,(GY) =n—2—m, which is or can be >n—4 for 7 < n < 10; moreover,
0,(G,)=n—5 for odd n> 11 and for n = 12. This shows that in Jung’s
Theorem both the bound on n and that on o0,, as a linear function of n, cannot
be relaxed. However, we did not find a corresponding example for any even
n = 14. This has prompted the following substantial improvement of Jung's
Theorem for larger n.

(1.3) } for even n > 8.

THEOREM 1.. If G is a tough graph on n = 14 vertices such that a, 2 n—5
then either G is Hamiltonian or else n is odd, n > 15, and G is a factor of the
graph G, in (1.1).

Hence and from Jung’s Theorem we get the following sufficient condition
for a tough graph G with n > 11 vertices to be Hamiltonian:

n—4 for n=12 and for each odd n> 11
n—5 for each even n > 14,

a,(G) > {

Examples presented above show sharpness of that result.

Before submitting the first version of this paper for publication, I received
a preprint of [2], which prompted the following generalization of Theorem
1 above and of Theorem 4 in [2].
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THEOREM 2. Let G be a tough graph of order n =3 suchl that
(1.4) ay=zn, and

(1.5) max{d(u), d(w)} = (n—5)/2 for all vertices u, w at the distance d(u, w)
equal to 2 in G.

Then either G is Hamiltonian or else n is odd, n> 15, and G, called an
exceptional graph, is a factor of the graph G, in (1.1).

Notice that ¢, 2n—35 and n> 14 imply g, > n because the second
smallest summand in o, is then at least [(n—5)/27] > 5. That is why our
Theorem 2 generalizes Theorem 1.

Remark. Each exceptional graph G includes J as an induced subgraph.

COROLLARY ([2, Theorem 4]). A tough n-vertex graph G is Hamiltonian if
nz3, oy2n, and

(1.6) (u, weV, d(u, w) = 2) = max{d(u), d(w)} = (n—4)/2. =

The original proof of Theorem 1 and the proof of Theorem 2 given below
involve arguments which have now become standard. Namely, for a nonhamil-
tonian graph G, its longest cycle C with a fixed orientation is considered. It is
Nash-Williams who first introduced [8] such a method into Hamiltonian
graph theory. Jung proceeds in [7] from that starting point too. Related papers
[4, 2] show how using convenient notation as well as appropriate results and
observations can lead to elegant proofs which are easy to follow, Other papers
like [5, 3, 9] also influenced our reasoning. In the proof, we first note that C is
a dominating cycle in G, ie., G— C comprises isolated vertices only, next that
C can avoid a vertex of large degree and that C is of length > n— 2. Finally, we
show that exceptional graphs can arise only if C avoids exactly one vertex
v whose degree d(v) is large enough, namely (n—5)/2 < d(v) < (n—3)/2.

A number of standard observations uséd and stated in what follows are
specifications of the following trivial one.

PROPOSITION. Assume that the vertices of a longest cycle C of G form
a proper subset of the vertices of the union of two disjoint subgraphs, C' and C",
each of which is a cycle or a path (possibly trivial) and C' # K. Let the phrase
a pair in a subgraph mean an edge and end-vertices [a singleton] if the
subgraph is a cycle and a path [K,], respectively. Then the following condition
L0* (= LO, LO', LO"” where the number of primes is that of paths among C’, C")
holds: '

L0°. No pair in C' can be matched (improperly if C' = K,) onto one in
C'. n

Our proof heavily depends on the following results.
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LEMMA. Let G be a tough graph of order n> 3 with o, >1 Then L1
through L3 hold.

Ll. If n < 10 then G is Hamiltonian.

In fact, all maximally nonhamiltonian tough graphs of order n < 10, listed
in [6], have o, <n. =

The smallest known tough maximally nonhamiltonian graph of order
n with ¢, 2n is G, in (1.1) for n = 15.

L2 ([3, Theorem 5]). Each longest cycle of G is a dominating cycle. m

L3 ({3, see proof of Theorem 9]). If G is nonhamiltonian then G has
a longest cycle C such that C avoids a vertex v of degree d(t) =n/3 in G. m

Another important resuit taken from [3] (see L4 in the following section),

under the hypotheses of L3, specifies two large independent subsets of V(G), of
cardinality |G —C|+d(v) each.

2. Preliminaries

We assume that paths and cycles are simple graphs. In what follows, let C
(or C™) be a cycle with a fixed orientation in a graph G. Then C* denotes that
cycle with the reverse orientation. If u, we C then u™ denotes the successor of
u on C, u~ the predecessor, next uCw is the string of vertices on C~ from u to
w inclusive, where uCu:= u, and [uCw] stands for the corresponding section
(path) of C; however, [vuCuv] = [vu] and [uCu* u] = [uu™]. Then the inverse
of that string is clearly denoted by wC "™ u. However, clearly, [uCw] = [wC™ u].
Similarly, if Wc V(C) then W' ={w'|lweW}, W~ ={w |weW},
utt = (u+)+.

L4 ([3, Theorem 5 and Lemma 8]). Let G be a tough nonhamiltonian graph
of order n with a4 > n, let C be a longest cycle in G, let veG—C, and let
X =N(@®). Then X c V(C) and V(G—C)uX™* [also V(G—C)uX~] is an
independent set in G. »

In what follows, G is a nonhamiltonian graph, C is a longest cycle
of G, veG—C, and X = N(v)nV(C). Moreover, let x;, x,, ..., Xxj—1 be all
vertices in X taken in their cyclic order along C~. Throughout, indices of
vertices read modulo |X|. Because C is a longest cycle therefore XnX* = @.
Hence both neighbours of any x; on C are outside X. Following [5, 2]
we use distinct letters to differentiate between those neighbours. Namely, let
x7 =z_, and x; =y; for each i, and let X~ =Z and X* =Y Let
T=X*nX" and let t, possibly with a subscript, stand for an element of T.

The following observations will be helpful.
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LS (by LO' or L4). Y [also Z] is an independent set of vertices. m
Hence no t(Y uZ) edge is in E.

L6 (by LO). Given an edge ww* on C, if the path P:= [x;' Cx;], where
i # j (and possibly P = K ), avoids both vertices w and w*, then G has no two
other edges which could match ww™ (improperly if x; = x) onto {x;", x;'}. =

L7 (by LO"). Let i #j and let {u,u;} be {x}, x;'} or {xi, x;} where
u, = x}. Let ww;e E(C—{u,, u;}) where notation is chosen so that the pairs
u;, w; and u;, w, intertwine on C. Then at most one of mutually crossing chords

uw;, ww, is in E.

To use LO” in the proof, find a u;-w; path and a disjoint u-w; path whose
lengths sum up to |C|—1. m

L8. If teT and ue N(t)nV(C) then X* u{u*} [also X~ u{u~}] is an
independent set of vertices.

L8 follows from LS, L6, and L7. =

L9 (by LO). If y,z,€E then no edge of the subgraph [y,Cz,y,] can be
matched onto any edge of the subgraph [vx,,,Cx,v]. =

For a=4,5,7,8, 15, La* and La™ will denote the part of the obser-
vation La on X* and X, respectively (see the next section for L15).

Let components of C— X (represented sometimes by strings of the form
y;Cz,) be called segments of C. The number of vertices in a segment §, denoted
by |§|, is called the order of S; and S will be named an |S|-segment. A segment
S is called trivial if S is a 1-segment; otherwise S is called nontrivial. Thus |T] is
the number of trivial segments of C. In what follows

(2.1) v=|X|-|T],

whence v is the number of nontrivial segments of C, each of which will be
denoted by S, with a subscript if v > 1; § itself will stand for the union of all
nontrivial segments of C, |S| being the number of vertices in that union.

Now, assume additionally that in what follows G is tough, nonhamiltonian,
and o, > n > 3. Thus, by L2, C is a dominating cycle of G.

L10. |C| = 2|X|+r for somer = 2 and | < v < r. Additionally, if r < 3 then
v> 1 and, moreover, |Cl=n—1 for r =2.

Proof. If |C) < 2|X{+ 1 then all segments of C are trivial, except possibly
one which can be a 2-segment. Then, by L4, k(G—X) > |X|, contrary to the
toughness of G. Hence, |C] = 2|X|+r for some r 2 2; 1 < v <r is obvious.
Assume r < 3 and suppose G is still a counterexample. Suppose v = 1. Then,
for some yeY, we have (i) r=2and S=yy*z;or(ii)r=3and S=yy*tz "z



168 Z. SKUPIEN

If no T-S edge is in E then, by L4, k(G—X) > |X|, a contradiction with the
toughness of G. On the other hand, if ue S and ut'e E for some t'e T then, by
L5, u is an inner vertex of S, whence, by L6, u is the only vertex in S adjacent to
T; next, by L8, S—u consists of two parts nonadjacent in G. Then, by L4,
k(G—(Xu{u})) > |X|+1, again a contradiction. Thus v > 1. It remains to
consider the case |C|<n—1 and r=2=v. Then § is the union of two
2-segments, whence, by L4, k(G —X) > |X{, which is impossible. =

3. Proof of Theorem 2

In what follows we assume that G satisfies the hypotheses of Theorem 2 and is
nonhamiltonian, whence, by L1, n > 11. Let C be a longest cycle of G, with
a fixed orientation, such that the maximum degree in G of vertices in G—C is
as large as possible among all longest cycles in G. Let v be a vertex of G —C of
the largest degree in G. By L2, C is a dominating cycle. Hence X = N (v} and,
by L3, |X| > n/3, whence, by (2.1),

LIL |X]=(n—=52=|T|>5-v; [X|=(n-42=T|>4-v. =
L12. |X]|> (n—5)2.

Proof. Suppose |X| < (n—5)/2. Then, by (1.5), d(u) = (n—S5)/2 for each
ueYUZ. If y is a 1-segment of C then replacing y~ yy™ in C by y " vy* gives
a longest cycle of G which avoids the vertex y with d(y) > d(v), a contradiction
with the choice of C. Hence C contains no 1-segment and therefore
d(v) = |X| £ |C|/3 < n/3, a contradiction with L3. =

Hence, because G is tough and V(G—C)uY is independent by L4*,
therefore |G—C|+|Y] < n/2, whence |C| = n/2+|X| 2 n—35/2. Moreover, by
L10,

(3.1) 2iX|+r=|Ci<n—1 < 2|X|+4 where r=2,
whence, by (2.1), 1 <v<r<4 and v <|X|.

Case 1. v=1, Then,- by L10 and (3.1), we have r =4, |C| =n—1, and
|X] =(n—95)/2, whence n is odd and, by L11, |T| > 4. We may assume
S =yo¥s ¥o " 2o z,- Suppose that two vertices, say u and w, in S are
adjacent to T. Then, by L6 and L5, {u, w} = {yg, zo }. By L5 and L8, however,

(32) K(G-(X iy, z5}) > IX|+2,

a contradiction with the toughness of G. Similarly, if G has no S-T edge then
k(G—X) > | X|, again a contradiction. Thus exactly one of inner vertices in
S has a neighbour in T. Suppose tyg € E. Then, by L8, y,ys *, ¥o2,¢ E. Now
YoZo € E because otherwise k(G —(X U{ys })) > |X|+1, a contradiction. How-
ever, yg *z,¢ E because otherwise [vx,C“tyg vo2o ¥o * z,Ct ™ v] is a Hamil-
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tonian cycle of G. Hence (3.2). Therefore, no edge tys € E and, equivalently, no
tzg €E.

Thus tyys * € E for some tye T Then, by L8, y,z¢, yg z,¢ E. Hence, if
none of the edges yoz,, yo2zo is in E then k(G—(Xu{ys*}) > |X|+1,
a contradiction; however, those edges are not both in E because otherwise
G would clearly have a cycle longer than C. Suppose y,z,€ E and yq zq ¢ E. By
L9, y3to, yots ¢E. Also yg xq, yd x, ¢ E because otherwise G has a cycle
longer than C. Hence, since n > 11, t5 # x4 or tg # x,. Therefore at least three
vertices in X are nonadjacent to yJ, whence d(yg) < |X|—1 < (n—5)/2. By
symmetry, also d(zg) < (n—35)/2, contrary to (1.5).

Thus y,z,¢ E and yg zg €E. Now, il t # t, then tys * ¢ E (whence N()
< X), because otherwise G is clearly Hamiltonian. Similarly, y,yg ¥, zoys *
¢ E. Hence, J is induced by {t,, Vo, 20, Yo, Vo »20} and GG, in (1.1). =

DeFINITION. Given a, feZ\y), let Ty = {teT: te[y,Cz,]}. Given T, let
T" = T—-T' and, moreover, let t'eT’ and t"eT".

Case 2: v=2 =r. We may assume that § = S, S, where S, = y,z, and
S; = y;z; for some i > 0. By L10, n is odd and |C| = n—1, whence, by (3.1),
|X| = (n—3)/2. Since n = 11, |T} = |X|—2 = 2. Moreover, N(t) = X by LS. If
YoZis Zo); ¢ E then, by LS, k(G — X) > |X|, a contradiction with the toughness of
G. On the other hand, by L6, only one of those two edges can be in E.

Assume z,y,€E and let T’ = T}, (the remaining case y,z;€ E is clearly
equivalent). Hence y,z,¢ E. Moreover, by L6 and L7*, y,x;, y,x, ¢ E, whence
N(yo) € {zo} WX —{x,, x;}. Similarly, N{z;} = {y;} v X —{x,, x;}.

Suppose i > 1. Then d(y,), d(z;) are both < (n—35)/2. Suppose i+1 < |X]|.
Then T' # @ and, by L6 (or L7), no t'-{x,, x,} edge is in E, whence d(x;),
d(x;%,,) are both < |X|-2 < (n—5)/2. Hence, by (1.5), d(y,) = d(z)) = (n—5)/2;
and, moreover, xo = x;%,. Now, if n = 11 then o, < d(xg)+d(y,)+d(v) < n,
contrary to (1.4). If n> 11 then (> 2, whence y,x,, z;x,€ E and there-
fore, by L9, G has no {y,, y,}-{xo, X;+1} edge where y,, y,€T. Hence,
d(y,), d(y,) < (n—5)/2, contrary to (1.5). Therefore T’ = . Hence, by (1.5),
YoX, OF z;x, is in E, Without loss of generality, assume y,x,€E. Then
Y1, ¥ € T and, by L9, we have y,x,, y,x,¢E, whence d(y,), d(y,) < (n—5)/2.
Now, by (1.5), y, x; or y,x, € E. In either case, however, G has a Hamiltonian
cycle: through y,z,y,%, and either x,y, x, vx, or x, y,Cx,vx,, a contradiction.

Thus i = 1. By L6 (or L7), no tx, € E, whence N(t) = X — {x,} and equality
holds for all but possibly one te T (by (1.5)). Now, G = G, in (1.1) and J is
induced by {v, yo, 2o, X1, Y15 21}- ®

L13. If v=2 <r < 4 then r = 4 and nontrivial segments of C have orders
4 and 2.

Proof. Suppose the contrary. Then we may assume that § = S,U S, where
So = YoJo Zo and, for some i > 0, either S, =y;z; if r =3, or §;,=y,y" z; if
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r = 4. Moreover, by (3.1) and L11, we have either 3 < r <4, |X| = (n—5)/2 and
[T|=3,0orr=3, |X|=(n—4)/2 and |T| = 2; furthermore, |C|=n—1if r =4.

Suppose y,z,€ E and let T' = Tg;. Then, by L7, t"y¢, t"z; ¢ E, whence, by
L4, N(t") = X. By L6 (or L7), G has no t'-{yg. x,. X;+,. z;" } edge, whence, by
L4,d(t') < |X]even if x;;; = x,. Therefore, by (1.5), i < 3, ie, |T'| < 1, whence
Xi+1 # Xq. Similarly, no y-{xq, ¥o, Xi+1} €dge is in E. Moreover, if r = 3 then
y;2o ¢ E by L6, whence, by L4, d(y,) < |X|. Consequently, (1.5) implies T' = @ if
r = 3. Hence, if r = 3 then y;.q, yi+2€ T". The same is true if r = 4 because
then |T| = 3. Therefore, by (1.5), tx,€E for some t = y;,, y;+,. Hence, by
L7%, y,z,¢ E also if r = 4. Thus, in each case, N(y,) < {z;, yi' } X — {xq, Xi+1}-
Similarly, N(zo) € {¥o, Yo JuX ~{x4, X;+1}. Hence, by (1.5), there is
u€{z,, y;} such that d(u) = |X| (so u = z,, if r = 3). Therefore ux;. € E. Hence,
by (1.5), an edge of C incident to x;,, can be matched onto z,x, if u =z, or
onto x,y; if u = y,, a contradiction with L9. Thus y,z;¢ E and similarly z,y, ¢ E.

Now, using L4, we shall conclude that G is not tough or has a cycle longer
than C. Namely, if both §, and S; are induced paths in G then, for
X =Xu{ys} if r=3 and X' =X0{ys,y'} if r=4, (G-X")>|X.
Otherwise, we (change notation if necessary so as to) assume that S, induces
a triangle. For r = 4, assume additionally that y,z,¢ E or y3 y;* ¢ E. Notice that,
by L7, the center of that segment which induces a triangle (hence yq) is
adjacent to no end-vertex of another segment. Hence, for X" = X if y;z,€E or
X" =Xu{y'}ifr =4and y,z;¢ E, we clearly get k(G— X") > | X"'| wherein we
may use the fact that |C| = n—1 if r = 4. It remains to consider the case that
r=4, both S, and S, induce triangles and yg y;" € E. Then, however, G is
clearly Hamiltonian, a contradiction. =

Condition (1.4) implies the following.

L14. If {u,,u,,uy} is an independent 3-subset of V(G) then
d(u,)) =2 n—du,)—d(u,). =

Case 3. v=2<r. Owing to (3.1) and LI13, r=4, |C|=n-1,
|X| =(n—5)/2 and, moreover, we may assume that S =S,US; where
So = Yo¥o 20 Zp and S; = y,z; for some i > 0. Hence, by L11, |T] 2 3.

Subcase 3.1: An end-vertex of S, is adjacent to one of S;. Without loss of
generality, due to LS, assume z,y,€E and let T'= T;;,. By L8 and LS,
N@® < {yluX for each te T, and, by L6, t'x,, t'x,¢ E, whence d() < |X| if
i > 1.By L6 and L7, no z;-{y,, zo, X;, X;} edge as well as no y,-{x,, x;} edge is
in E, whence, by LS5, the sets of possible neighbours of z; and y, outside
X —{x,, x;} are {yg, y;} and {yg, zo, 2z}, respectively. However, at most one
of the edges z;y; and y,zo is in E because otherwise G has a Hamiltonian
cycle: [vx,Cy;zo20 Yo¥s z;Cxqv], contrary to the assumption. Therefore, be-
cause by L14, d(y,) 2 n—d(v)—d(z), if i > 1 then the vertex y, has three or
more neighbours in X —{x,, x;}.
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Suppose i > 1. Then, by (1.5), because |X| = (n—5)/2, |T'| < 1, whence
|T”| 2 2. Hence i > 2 and y, is adjacent to some x; with 1 <j < i. Then z;_,
y;€ T”, whence, by (1.5), z;_,x; or x;y; can be matched in G onto one of the
edges y,ys and y,x,, which contradicts L9.

Thus i =1, whence T =T and N(t) € {ys } v X —{x,}. Therefore (1.5)
implies that, for some ty e T, t,yg € E. Then, by L8, y,2q, V2o, 2o ¥, ¢ E.
Moreover, G—z; can easily be seen to have a Hamiltonian cycle through z,x,,
whence, by L0, z4 x, ¢ E. Consequently, the set {v, zq, 24, X,, ¥;, z,} induces
Jin G and G = G, in (1.1).

Subcase 3.2: No end-vertex of S, is adjacent in G to an end-vertex of S,.
Suppose that yg and zy are not both covered by S-S, edges. Then either («)
G has no S-S, edge or () for {w, wo}:= {y4, zo }, assume without loss of
generality that y,we E for a fixed w and that each §;-S, edge of G covers w. In
case (@), G has a T-§ edge because otherwise, by LS5, k(G—-X) > |X]|,
a contradiction with the toughness of G.

Suppose there is ueS such that tyjue E for some t,e T. Then, by LS,
ue{w, wy}. Next, by L6, N(t)< {u}uX for each t. Moreover, by LS,
we have y,u*, zou~ ¢ E. Hence, (x) does not hold and, moreover, u = w,
(# w and y,w e E) because otherwise k(G — (X u {u})) > |X|+1 both in case (f)
for u=w and in case (). By L7*, y,w* ¢ E, whence N(y,) < {yo }uX.
Furthermore, w = y§ because otherwise t,yg, ¥;20 € E, which contradicts L8 *.
Thus t,w* € E, whence, due to L6 (or L7%), t,¢[y,Cx,]. Hence, by L6,
z,w¢E, whence N(z) < {y;}uX. Define the cycles C' = [y,Cyg y,] and C”
= [vtg C" zq t,Cx;v]. Now, by LO, if j = i+1, ..., |X|, then no neighbour of x;
on €’ (hence neither z; nor y,) is adjacent to x; or t5 (€ X), the neighbours of
v of €". Therefore, because xg €T or x5 = z;, we have d(y,), d(xq) < |X|,
a contradiction with (1.5) because |X| = (n—95)/2.

Thus u does not exist, whence N(t) £ X. Moreover, () holds. Hence,
by L7*, yow* ¢ E. However, w™z e E because otherwise k(G—(Xu{w}))
> |X|+1, a contradiction. Hence, by L77, z;w¢ E, whence N(z) < {y;} v X.
Let C' =[wy,Cw z,C"w] and either C" = [vx,Cx;v], a cycle, if i>1,
or else C’"=[vx,], a path, if i=1. Now, i>|X|—2 because otherwise
the vertices y;4+4, yi+2€T but, by LO (or LO' if i=1) none of them
is adjacent to x,, the neighbour of » on C”, whence d(y,) <|X| for
h=i+1, i+2, which contradicts (1.5). Hence, i > 2 and either x4 is the only
element of T on C' or x; =z, By L14, because the set {xq, y,, v} is
independent, d(x) = 5. Hence x has three or more neighbours in X n V(C"),
whence xq x;€ E for some j, 1 < j < i. Therefore, by LO, both neighbours of x;
on C”, which are both in T, are nonadjacent to x,, again a contradiction
with (1.5).

Thus S;-S, edges cover both yg and z; and, by L6, those edges cover
either y; or z; (but not both). Assume without loss of generality that they cover



172 Z. SKUPIEN

;- Then, by L7, no y,-{zq, 2o} edge is in E. Also z,yg ¢ E because otherwise
we can arrive at a contradiction by considering C’' and C” defined as above
with w = z4. Thus the set {y,, ¥a, 20, 2, ¥, 2;} induces J in G and G € G,
in (1.1). =

L15. No two vertices in X* [in X ~] have degrees smaller than {n—5)/2.

Proof. Let U =Y or U = Z. Suppose that two vertices u,, u, in U have
degrees d(u,), d(u;) < (n—5)/2. By L4, u, and u, have neighbours in C—U only
and, by (1.5), no neighbour in common, whence d(u,)+d(u,) < |C|—d(v).
Moreover, the set {u,, u,, v} is independent, whence ¢, < |C| < n, contrary to
(14). =

L16. If 3<v<4 then v=3 and r =4,

Proof. Suppose the contrary. Then, by (3.1),3<v=r <4 and, forv=13,
either |C|=n~2 and |X|=(m—-5)/2 or |C|=n—1 and |X| = (n—4)/2, else
v=4, |C| =n-1 and |X| = (n—5)/2. Moreover, we may assume that S = §,
uS;uUS;uS, where D <i<j<g<|X|, §;=yzforl=0,ij,g9 and g =jiff
v=3. By LII, |T| =21 and, by L4, N(¢) c X.

If no edge connects distinct segments then G is not tough, because then, by
L4, k(G — X) > |X]. On the other hand, due to symmetry, it is enough to show
that contradiction follows in each of the following three cases:

(@) zoy,€E;
(B) zoy,€E; )
(y) v=4 and EnE’ # O where E' = {z,y,, 2;¥5, 2;¥;, 2,}}-

Suppose («) holds. Let T" = T;,. Then, by L6, no yo-{x;, z;, z, z,} edge is
in E and, by L7%, y,x,¢E, whence, by L4, N(y,) < {zo}uX—{x,, x;}.
Similarly, N(z) < {y;}uX —{x,, x;} and also t'x,, ¢ x,¢ E. Hence d(t) < | X],
whence, by L15, |T’| < 1. Suppose i > 1. Then d(y,), d(z) < |X|, whence, by
L15, T' = @. Moreover, by (1.5), y, and z; have no common neighbour. Hence
g, < d(yy)+d(z,)+4d(v) € 2|X| < n, contrary to (1.4). Thus i =1. Then T = T,
ITI=1 and (X|=v+|T|. If- teT then o, <d(t)+d(y,)+d(v) <3v+2<n,
contrary to (1.4).

Thus z,y;¢ E and similarly z,y,, z;y, for g > j, and z y,¢E.

Suppose (f) holds, ie., z,y;€E. By L6 and L7, N(yo) < {2z, 2} U X
—{x;, x;} and N(z) = {y;, yi} v X—{x,, x;}. Similarly, if '€ Ty then t'x,,
'x;¢ E, whence d(t') < |X|—2. Therefore, by L15, |Tp| < 1. Hence, because
|T\ 2 1,if yo2;, z;y,€ E then one of the sets Tjo, Ty; and Tj) is a singleton and the
remaining two are empty, and d(¢) < |X|—2. Then |X| = v+ 1 and therefore
63 < d(yo)+d(z)+d() < 3v+1 < n, contrary to (1.4). Therefore d(y,) or d(z))
is smaller than |X|. Hence, by L15, Tj; = @ and N(¢f) = X, whence tx, € E for
each t. Moreover, the set {y,, z;, v} is independent, whence, by L14, d(y,)
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2 v+ 1. Therefore y, has a neighbour adjacent on C to some ¢, which
contradicts L9 with y;z,eE.

Thus z,y,¢ E and similarly the edges z;y, and z;y, if v = 3 as well as z;y,,
z,¥o, and z,y, if v =4 do not belong to E. This is a contradiction if v = 3.

Thus (y) holds. Now E’ contains all Y-Z chords of C that are in E. Suppose
that z,y,€E. Then, by L6 and L7, N(y,) < {20, z}uX—{x,,x,} and
N(z) = {y, y}uX—{x,, x,}. By L7, if te Tjo then N(t) = X —{x,,x,}. Hence
E' ¢ E because otherwise d(t) < |X| for each t, whence, by L15, |T|=1;
moreover, d(u) = |X| (with equality in fact) for each ue(YuZ)—1T, and
therefore y,x;, y,x,€E, contrary to L9 with y_ z,eE. Thus, without loss of
generality, assume that z,y, € E and z,y,¢ E. Then d(z,) < |X|, whence, by (1.5),
T,o = O but d(y,) = | X|. Hence y,z;€ E. Moreover, by L15, N(t) = X for each
t and therefore Ty; = Q. Thus y;,, €T or y,_, €T because T# OJ; moreover,

tx, € E for each t. Hence, by L9, y,x;., or y,x,_ is not in E, which contradicts
d(yo) = |X|. =

Case 4. v= 3. Then, by L16 and (3.1), v=3, r=4, |C|l=n—-1, |X|
= (n—3)/2, and we may assume that § = §,U§;US; where 0 <i <j<|X]|,
So = YoYo 2o, and S, = y;z, for I =i, j. By LII, [T| = 2; by L5, Nu)< !y, )
v X. Notice that yn2,€E for some ¢, he {0, i, j} such that either i # ¢ or
h = g = 0. In fact, otherwise by LS5, k(G—(X v {yg })) > |X|+ 1, contrary to the
toughness of G.

Suppose yoz;€ E and let T' = Ty;. Then, by L6, y,y5, ¥;Xo, ¥i2o ¢ E and, by
L7*, yx;+1¢E, whence, by LS, N(y) < {z,, z;} X —{xq, xi+1}. Similarly,
N(zg) € {¥o, Yo. ¥} W X —{x0, Xis1}, N(t) S X—{xo, x;+,} and N(t") € X.
Hence, by (1.5), |T'| < 1, whence T” # &. Suppose d(y,) =2 |X|. Then, by L15§,
x;to€ E for some tye T, whence x;y; can be matched in G onto an edge of
C incident to t,, contrary to L9. Else d(y,) <|X|. Then, by L15, N(t) = X,
whence T' =0 (ie, i = 1). Therefore, by (1.5), d(z,) = |X|. Consequently,
because |T"| = 2, z,x, can be matched onto an edge of C incident to some t”,
again a contradiction with L9. Hence y,z;¢ E and similarly y;z,¢E.

Suppose zoy;€E and let T' = Tj3. By L6 and/or L7, N(z) < {y;}uX
—{x,, ¢}, N(the X—{x,, x;}, and N(t") = X. Hence i > 1 because otherwise
T =@ and |T'| = 2, contrary to L15. Then d(z) < |X|, whence, by L15,
T'=@ and therefore i > 2; moreover, N(t) = X. Furthermore, by LI14,
d(z) = n—d(t)—d(v) = 5. Consequently, z,x,€E for some h, 1 < h <i. Then
y,€T and therefore z;x;.; can be matched in G onto x,y,, contrary to L9.
Hence z,y;¢ E and similarly v,z;¢E.

Suppose y;z;eE and let T'=T;j By L6, t'x,tx;,¢E, whence
d(t) < |X|. By (L5), d(z) or d(y;) = |X|. Without loss of generality, suppose
d(y) = 1X|. Then, by the above, N(y) = {z;, yg } WX —{x;, x;+.}. Hence, by
L9, no x{y,, t"} edge is in E. Moreover, by L7", y,z,¢E because y;y, € E.
Also, if u=y, or u=tyelx;+;Cx,] then ux,¢E [if t, €[x,Cx;] then
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t, x;+1 ¢ E] because otherwise there is a Hamiltonian u™-v path [Hamiltonian
t7-v path] of G—[y,Cz;] whose end-vertices can be matched in G onto
the edge y;x; of the cycle [z,y,Cz;], contrary to LO. Thus
N(yo) < {yo }w X —{x;, x;}, whence d(y,) < |X|. Hence, by L15, T' = 0, ie,
j =i+ 1. Therefore d(:,), d(t,) < |X|. whence, by L15. T” = @, a contradiction
with T # 9. Hence y;z;¢E.

Assume z;y,€ E and let T = T;. Now, t'x;+y, t'x;¢ E. Moreover, N(y)
< {(vo, 2y U X —{Xis1, X}, NWo) € {¥o, 2o} VX —{xi+4, x;} and, by L77, at
most one of the edges y,yg, ¥o2, is in E. Suppose j > i+1. Then d(t) < |X]
and, by L15, one of d(y,), d(y,) is |X| and the other smaller. Hence T’ = @,
j>i+2 because |T|>2, and d(t) > |X|. By L14, because {y,, y;, v} is
independent, d(y,) = 5. Hence yox,,eE for some h, i+1 < h < j. Therefore
y,€T and, by L9, we have y,yg, y,xo ¢ E, whence d(y,) < |X| contrary to
L15*. Thus j=i+1 if z;y,€E.

Suppose y,zo€E. Then z;y;¢ E because otherwise j=i+1 and no
t-{ys., x;} edge is in E, whence d(t} <|X|, contrary to L15 and |T|>2
Moreover, by L7, no yg (Y Z —{y,, z,}) edge is in E. Therefore and by the
above, k(G—X) > |X|, a contradiction with the toughness of G.

Hence finally, y;z, is the only chord of C of the form Y42, Which is in E.
Then j=i+1, {v, y;, z;, x;, y;, z;} induces J in G, and G G, in (1.1). =

4. Concluding remarks

The graphs G, and G? are used in [2] to show that the sufficient condition in
Corollary (Section 1) is sharp for large n’s. Namely, for G = G¢ with n > 7, the
Fan-type condition (1.6) holds if m, =my; = [(n—6)/27] but 0,(G%)=n—1.
On the other hand, for G = G, with n = 15 and n > 17, ¢4(G) = n but (1.6)
holds with the bound (n—4)/2 replaced with one by 1 smaller, ie.,

4.1) (u, weV, d(u, w) = 2) = max{d(u), d(w)} > (n—6)/2.

CoNJECTURE 1. Theorem 2 (Section 1) remains valid if (1.5) is replaced
with (4.1), the phrase “n is odd, n > 15” with “15 < n # 16”, and “the graph G,
in (1.1)" with “a graph in (1.1), (1.2), or (1.3)".

CoNJECTURE 2. For some integer n, and for a tough 3-connected n-vertex
graph G, if n > n, and (4.1) holds then either G is Hamiltonian or else G is
a factor of a graph in (1.1), (1.2), or (1.3).

The Tietze graph (cubic, on 12 vertices) shows that n, > 13.
Conjecture 2, if true, generalizes Theorem 5 of [2] which gives the
following sufficient condition for a tough n-vertex graph G to be Hamiltonian:

G is 3-connected, (1.6) holds and n = n,
where n, < 35. The graph G,, in (1.2) shows that n, > 13.
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