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Decomposition of graphs connected with problems of combinatorial op-
timization is studied. All the graphs considered are finite, nonoriented, without
loops and multiple edges.

1. Preliminary definitions and facts

Let V be a finite nonempty set, and let [ be a nonempty collection of its subsets
satisfying the following

Axiom 1. (Xel, Yc X)=(Yel).

Then the pair (V, I) is called an independence system. The set V is called the
support of the system (V, I), elements of I are called independent sets. By abuse
of language, in this situation we also call the set I an independence system.

We note two known interpretations of independence systems. The first one
is connected with monotonic Boolean functions [2]. Let V = {1, ..., n}. For
an arbitrary subset X < V we define its characteristic vector x = (x,, ..., x,)
putting

= 1 if ieX,
710 otherwise.

Evidently the mapping X — x is a bijection between 2* and the n-dimensional
cube B", B= {0, 1}. Now let f: B"> B be an arbitrary monotonic Boolean
function, f # 1. A subset X < V is called independent il f(x) = 0. If I is the set
of all independent subsets of V then (V, I) is an independence system. One says
that this independence system is determined by the function f.

Conversely, let (V,I) be an arbitrary independence system and
V =/{1, ..., n}. We define the Boolean function f: B"— B putting f(x) = 0 iff

[195]
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Xel Here X is the subset whose characteristic vector is x. Evidently, f is

the monotonic Boolean function determining the independence system (V, I).
Systems of linear inequalities with real coefficients provide another

interpretation of independence systems [3, 8]. Consider the system

(1) Zaijxjsbi’ i=1,...,n a;b >0
j=1

A subset X = V=/{l1,...,n} will be called independent if its characteristic
vector x satisfies (1). If I is the set of all independent subsets X, then the pair
(V, I) is an independence system. One says that this independence system is
determined by (1). Every independence system is known to be determined by
a system of linear inequalities.

A significant part of combinatorial optimization problems can be for-
mulated as follows:

P: find max(c,x, +...+¢,X,)
provided that f(x,, ..., x,) =0, x;€{0, 1}.

Here (c,, ..., ¢,) is a nonnegative real vector, f is a monotoni¢ Boolean
function.
A particular case of P is the well-known packing problem

PP: find max(e,x, +...+¢,x,)

n
provided that ) a;x;<1, a,;>0, x;€{0, 1}.
=

PP is known to be NP-hard even with the complementary conditions
a,;€{0, 1}, c¢; =1 (the independence number of graph problem) [9].
An independence system [ is called a matroid if it satisfies the following

Axiom 2." (X, Yel, |X| < |Y)=Q@yeY\X, Xu{y}el).

Partition matroids form a narrow class of matroids. Let (V:i=1,..., p)
be a partition of a finite set V. We call a subset X = V independent if
IXnV] <1fori=1,..., p. Denoting by I the set of all independent subsets of
V, we obtain the partition matroid (V, I).

Each independence system is known to be the intersection of matroids.
Namely, there exist matroids (V, 1), p=1,..., m, with the same support
V such that

@ =01,

We shall call the representation (2) a matroidal decomposition of (V, I) and the
minimal number m of components in a matroidal decomposition (2) the
matroidal number m(1).
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The number m(I) is an important parameter. If m(I)=1, then I is
a matroid; in this situation the problem P is quickly solved by the greedy
algorithm. For m(I) = 2, P is effectively solved by the method of alternating
sequences [9]. For m(I) > 3 even the independence number of a graph problem
is NP-hard [9]), but it is always useful to know the value of m(I). The point is
that the relative error of the gradient algorithm of the coordinate lifting for the
problem P on the intersection of m matroids does not exceed (m+1)~! (if a is
the obtained value of the maximized function and 4, is the maximal value, then
a, < a(m+1) [4]).

But finding m(I) and, moreover, the construction of an optimal matroidal
decomposition for an arbitrary independence system I seem to be difficult.

The representation of a Boolean function as the disjunction of functions of
a special form corresponds to a matroidal decomposition of an independence
system: if (2) is a matroidal decomposition, f,, p=1,..., m, and f are the
monotonic Boolean functions determining I, and I, respectively, then

3) f=fiv...vf,.
We shall call (3) a matroidal decomposition of f.

2. Graphical independence systems

Let G be an arbitrary graph and let VG be the set of its vertices. A subset
X < VG is called independent if it includes no edges of G. We denote by IG the
set whose elements are all independent subsets X = VG (the empty set & is not
excluded). Evidently, IG is an independence system. We call it the indepen-
dence system of G, or graph independence system. The maximal size a,(G)
of elements from IG is called the independence number of G.

The number of nonzero coordinates of a Boolean function [ is called the
norm of f. A Boolean function f'is called graphical if the norm of its every lowest
unit is equal to 2 or if f = 0. An independence system is known to be graphical
iff it is determined by a graphical Boolean function. Also, an independence
system is graphical iff it can be determined by a system of linear inequalities (1)
with a;;€{0, 1}, b, =1 [3].

A graph will be called an M-graph 1f all its connected components are
complete graphs. The following statement is used below.

STATEMENT 1 [2]. A graphical independence system IG is a matroid iff
G is an M-graph.

Let K be the set of all M-graphs, Since a 1-edge graph is an M-graph,
every graph G can be represented as the union

4} G=G,u...uG,, GeKk,
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of M-graphs with the same vertex set VG; we call such a representation
a matroidal decomposition of G.

STATEMENT 2. An independence system I is graphical iff it is the intersection
of partition matroids.

Proof. Let (4) be a matroidal decomposition of a graph G, let G, be one of
the components in (4) and let

(5) VG, =V, u...u¥,

be the partition into connected parts. Since all the induced subgraphs G(V)),
ji=1,..., p, are complete, IG, coincides with the matroid of the partition (5).
Now (4) implies that IG is the intersection of the matroids of the partitions of
VG into the connected parts of G,, k=1,...,m.

Coversely, let I = [\7- I, be the intersection of partition matroids I, and
let V=V u...0V, be the partition corresponding to I,. We denote the
complete graph with the vertex set ¥; by K(V) and set

G, = K(V)u...uK(V), G=G,u...uG,.
Evidently I, = IG,, I =1G = (\{-,IG,.
The minimal number m of components in matroidal decompositions of
a graph G is called the equivalent covering number of G and is denoted by eq G

[5]. For example, eq G = 2 for the graph G in Fig. 1.
In what follows EG denotes the set of edges of a graph G.

1

25
A\

7
Fig. 1

THEOREM 1. For every graph G
(6) , m(IG) =¢eqG.

Proof. If (4) is a matroidal decomposition of G, then IG = (\f-IG, is
a matroidal decomposition of IG, so m(IG) € eqG.

Conversely, let IG = (=], be an arbitrary matroidal decomposition of
the independence system /G, and let

f=flv"'vfm
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be the corresponding decomposition of the graphical monotonic Boolean
function determining IG. For k =1, ..., m let g, be the graphical monotonic
Boolean function whose lowest units coincide with those of f; with norm 2. If f,
has no such lowest units, we put g, = 0. Evidently,

7 f=91V. iV Gm

because the norm of every lowest unit of fis equal to 2. Now let G, be the graph
corresponding to g,, i.e. the graph whose independence system is determined
by gi: VG, =VG={l,...,n}, weEG, iff g,(x) =1 for the Boolean vector
x=(x,,..., x,) with norm 2, x, = x, = 1. (7) implies

(8) G=Gu...uG,.

Each of the components G, in (8) is an M-graph. Indeed, let uv, vwe EG,. Then
the sets {u, v} and {v, w} are cycles of the matroid I/G,. Consequently, the set
{u, w} is dependent. But all one-element subsets are independent with respect
to IG and so to IG,. So the vector

X=(Xy5ees X))y X,=x,=1, x,=0, v#u,w,

is a lowest unit of f, and so of g,. But then uwe EG,. We have proved
that G, is an M-graph and (8) is a matroidal decomposition. So, eq G < m(l),
which implies (6).

Computing eq G in the class of all graphs seems to be difficult.

Let N(v) be the neighbourhood of a vertex v in a graph G, i.e. the set of
vertices adjacent to v. The vertices u and v are called paired if
{u}UN(u) = {v} UN(v). A graph is called supercompact if it has no paired
vertices. The compressing operation G — C(G) is the process of deletion of one of
paired vertices at a time until the supercompact graph C(G) is obtained.

STATEMENT 3 [2]. If v is a paired vertex of a graph G, then eqG
= eq(G—v).

CoROLLARY 1. For every graph G, eqG = eq C(G).

Evidently, eq G = maxeq G; over all the connected components G; of G.
Thus the study of matroidal decompositions of graphs is reduced to the
same problem for supercompact connected graphs.

3. Some estimates of eq G

In what follows C, is the n-vertex chordless cycle, G is the graph complemen-
tary to G, 4(G) and 6(G) are the maximal and the minimal degree
of vertices of G, respectively.

A set of pairwise adjacent vertices of a graph is called a cligue. The clique
graph Q(C) is the graph whose vertices bijectively correspond to maximal
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cliques of G (with respect to inclusion), and two vertices are adjacent iff the
intersection of the corresponding cliques is nonempty.

A system (G: i=1,...,k) of complete subgraphs of G such that
EG = EG,u...VEG, is called a clique covering of G. The minimal number k of
components in a clique covering of G is called the clique covering number and
denoted by cc(G).

z(G) and x'(G) denote the chromatic number and the chromatic class (the
edge chromatic number) of a graph G, respectively, and y,(G) = x(Q(G)).

The following estimates of eq G are known:

1) [6]. eqC, >t for n> 31!

2) [1]. log,n—1<eqC, <log,n+3 for n>3.

3) [1]. I [VG| =n, A(G)<d, 6(G) > 1, then
log,n—log,d < eq G < 2e*(d+ 1)*log,n.

Here e is the base of natural logarithms.
The estimates given below have a rather theoretical significance because
they are expressed in terms of hardly computable parameters.

THEOREM 2. For every graph G

(9) eq G < cc(G),
(10) eq G < x'(G),
(11) eq G < x0(G).

All these estimates can be reached and are independent. Each of the
differences cc(G)—eqG, x'(G)—eqG, xo(G)—eqG can be arbitrarily large. If
G does not contain triangles, then

(12) eq G = x'(G) = xo(G).
For a bipartite graph G
(13) eq G = 4(G).

. Proof. (9) is evident.
We fix a right colouring of edges of G and consider the partition

(14) EG=E,u...UE,

into coloured classes. Evidently, the graph G, with VG; = VG, EG, = E; is an
M-graph and

(15) G=G,v...uG,

is a matroidal decomposition. Thus the partition into coloured classes (14)
determines a matroidal decomposition (15), which proves (10).
The subgraph of G induced by the union of cliques contained in the same
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coloured class for a right vertex colouring of the clique graph Q(G) is an
M-graph. Consequently, if VQ(G) = V,u...UV, is the partition of the vertex
set of Q(G) into coloured classes and G, is obtained from G(V)) by addition
of all the vertices from VG\V, as isolated ones, then G =G, u...uG,
is a matroidal decomposition. So (11) is proved.

If G has no triangles, then the complete subgraphs are edges or vertices, so
(12) is evident.

It is known that y'(G) = A(G) for a bipartite graph G [11], which
implies (13). .

The remaining statements of the theorem are proved by the following
examples. Let G be the graph pictured in Fig. 2. It is the “path” consisting of

[N J
v
n

Fig. 2
n > 1 copies of the complete graph K, in which the neighbouring graphs are
“sticked together” in one vertex; m is even. For this graph

eqG =2, cc(G)=n, Y(G)=2m—1), xoG)=2.

One more example. Let H be obtained from the star K, ,, by adding a new
vertex which is adjacent with all vertices of K, ,, m > 3. For this graph

eqH < y'(H)<m+3, xo(H)=2m.
Finally, for the graph F in Fig. 3
cc(F)=13, xo(F)=4.

The theorem is proved.

Fig. 3

4. The graphs with eq G = 2

The characterization of graphs with eq G = 2 in terms of forbidden subgraphs
is obtained in [10]. Let K, 5 be the 4-vertex star, let W, be the S-vertex wheel
and W, —e the graph in Fig. 4.



202 R. L TYSHKEVICH ET AL.

Fig. 4

THEOREM 3 [10]. For a connected graph G # K, the following statements
are equivalent:

1) eqG =2

2) G contains none of the graphs K, 3, W,, W,—e and C;,,,,n = 2, as an
induced subgraph.

COROLLARY 2. For a connected supercompact graph G, eqG = 2 iff G has
no induced subgraphs K, 5, K,—e and C,,,(, n = 2.

COROLLARY 3. A supercompact graph G with eqG =2 is a line graph.

To prove this it is sufficient to compare Corollary 2 with the list of
forbidden induced subgraphs for line graphs [7].

STATEMENT 4. A supercompact graph G with eqG = 2 is the line graph
L(H) of some bipartite graph H.

Proof. By Corollary 3, G ~ L(H) for some graph H. We shall prove that
H is bipartite. By Corollary 2, G has no induced chordless cycle C,,,; with
n = 2. Consequently, H has no such cycle either, because L(C,) = C,.

Now suppose that there are vertices u, v, w in H on which K, is induced.
We denote by xy the vertex of G corresponding to an edge xy of H. It is clear
that G induces the triangle on the set {uv, vw, uw}. Since G is supercompact,
for the edge uv, ww there exists a vertex z that zuve EG and zwve EG. Then,
evidently, z = ux. The edges ux and uw are adjacent in H. So zuwe EG. We

have obtained the induced subgraph K, —e in G, which contradicts Corollary
2. Thus H has no triangles and is bipartite.

BL

() -

Fig. §
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The relations between the class of graphs with eq G = 2 and line graphs
L(H) are illustrated in Fig. 5. Here L, BL, T and ST are the classes of all line
graphs, line graphs L(H) with bipartite H, all graphs with eqG =2 and
supercompact graphs with eq G = 2, respectively. The graphs in Figs. 6, 7
both have eq G = 2, but the first one is the line graph of a nonbipartite graph
and the second one is not a line graph.

<>

Fig. 6 Fig. 7

We note in connection with the equation considered above that y(H) = m
implies eq(L(H)) < m. The corresponding matroidal decomposition of L(H) is
constructed in the evident way.

Il
~0 ow
C
._l
~

[~

"3
1 2< ‘
4

K) 3
1 2< ‘
3

Fig. 8

A matroidal decomposition of a graph G with eq G = 2 is not unique, an
example is in Fig. 8.

THEOREM 4. Every connected supercompact graph G with eqG =2 has
a unique matroidal decomposition

(16) G = G,uG,.
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Moreover,

Proof. Let (16) be an arbitrary matroidal decomposition, e = uve EG,
N EG,. G does not permit pressings, so one of the ends of e, e.g. u, is adjacent to
some w¢ N(v)u {v}. We have uw¢ EG, and uw ¢ EG,, otherwise G, or G, has
an induced subgraph K, ; on the vertices u, v, w, which is impossible in an
M-graph. Thus uw¢ EG, v EG,, which contradicts (16). (17) is proved.

Now we shall prove the uniqueness of (16). We choose an arbitrary edge
e =uve EG,. Let K be some maximal complete subgraph of G containing e.
We shall prove that EK < EG,. Suppose otherwise: there exists
¢ = xye EKNEG,. If e and ¢ are adjacent (e.g. u = x), then vy (v # y) belongs
neither to EG, nor to EG, since otherwise either ee EG, or ¢ € EG,, which
contradicts (17). We thus obtain a contradiction with (16): vy¢ EG, U EG,.
If e and ¢’ are not adjacent, then ux is adjacent to e. As we have proved above,
- uxe EG,. The edge ¢ is adjacent to ux and so ¢’ € EG,. We have a contradic-
tion. Thus EK < EG,.

Evidently, all the edges having exactly one end in VK belong to EG,.
We take an arbitrary such edge f and some maximal complete subgraph K’
containing f. As above, EK' ¢ EG,.

Due to the connectedness of the graph G, its edges are uniquely distributed
between EG, and EG,. Then theorem is proved.

Theorem 4 implies the correctedness of the following algorithm for
recognizing graphs with eq G = 2 and constructing the corresponding decom-
position.

INPUT: a connected supercompact graph G # K.

STEPO. Put n =1 and label an arbitrary edge by 1.

STEP 1. Choose an arbitrary labeled edge e.

STEP 2. Choose an arbitrary maximal complete subgraph K con-
taining e.

STEP 3. If there is an edge in EK with label different from n, then
OUTPUT L. Otherwise label all the edges of K by n.

STEP4. Put n=n+1 (mod?2).

STEPS5. If there is an edge with label different from n among the
edges having exactly one end in K, then OUTPUTI.
Otherwise label all these edges by n.

STEP 6. Delete all the edges of K from the graph.

STEP 7. If the empty graph is obtained, go to STEP 8. Otherwise go
to STEP 1.

STEPS8. If the edges labeled by 1 and edges labeled by 0 form
M-graphs, then OUTPUT 2. Otherwise OUTPUT 1.

OUTPUT 1. eqG = 3.
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OUTPUT 2. eq G = 2 and the edges labeled by 0 and 1 induce M-graphs
G, and G,, respectively, and G = G, vG,.

Note. The dual problem is considered in [2]: an independence system I is
represented as a union of matroids. This is better suited for combinatorial
optimization problems, because a decomposition of an optimization problem
into several such problems on matroids is obtained. In particular, this can be
used for graphical independence systems. But we need to decompose graphical
independence systems into an intersection of matroids, and not a union, if we
want to preserve the graph-theoretic picture. The point is that an arbitrary
graphical system is not necessarily represented as a union of graphical
independence systems which are matroids, i.e. of partition matroids. The
standard transition to the dual Boolean function does not help because the
function fails to be graphical and matroidal here. The results of [2] and ours
complete each other.

Doctor Andras Faragé from Budapest has drawn our attention to the
connection between the line graphs of bipartite graphs and the graphs with
eq G = 2. The authors thank A. Farago for useful discussions and the referees
for helpful suggestions. )
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